		10. Key Economic Sectors and Services						
a b								
Coordinating Lead Authors								
Douglas Arent (USA), Richard S.J. Tol (Netherlands)								
Load	uthors							
Lead Authors Eberhard Foust (Cormony) Joseph D. Hollo (Tongonio) Sugar der Kumer (India). Konneth M. Starsent, (UNU /								
Ebernaru raust (Germany), Joseph P. Hena (Tanzania), Surender Kumar (India), Kenneth M. Strzepek (UNU / USA), Ferenc I. Toth (IAFA / Hungary), Denghua Yan (China)								
USA), refere L. rour (IALA / Hungary), Deligitua Tali (Cililia)								
Contri	buting A	uthors						
Francesco Bosello (), Paul Chinowsky (), Kristie L. Ebi (USA), Stephane Hallegatte (France), Philip Ward (), Eric								
Willian	ns ()							
Review Editors								
Amjad	Abdullah	(Maldives), Haroon Kheshgi (USA), He Xu (China)						
C (
Conter	IUS							
Executive Summery								
LACCUL	ive Guilli	tur y						
10.1.	Introduction and Context							
10.2.	Energy							
	10.2.1.	Energy Demand						
	10.2.2.	Energy Supply						
		10.2.2.1. Thermal Power						
		10.2.2.2. Nuclear Energy						
		10.2.2.3. Hydropower						
		10.2.2.4. Solar Energy						
		10.2.2.5. Wind						
	10.2.2	10.2.2.6. Bioenergy						
	10.2.5.	10.2.3.1 Dipalines						
		10.2.3.2 Electricity Grid						
	1024	Market Impacts						
	10.2.7.	Summarv						
10.3.	Water							
	10.3.1.	Water-Related Damages						
	10.3.2.	Municipal and Industrial Water Supply						
	10.3.3.	Wastewater and Urban Stormwater						
	10.3.4.	Energy: Hydropower and Cooling Water						
	10.3.5.	Inland Navigation						
	10.3.6.	Irrigation						
	10.3.7.	Nature Conservation						
	10.3.8.	Recreation and Tourism						
	10.3.9.	Water Management and Allocation						
10.4	Tropas	s et						
10.4.	10 4 1	ni Roada						
	10.4.1.	10.4.1.1. Paved Roads						
		10.4.1.2. Unnaved Roads						
	10.4 2	Rail						
	- · · · - ·							

1		10.4.3.	Pipeline		
2		10.4.4.	Shipping		
3			10.4.4.1. Inland Navigation and Low Flows		
4			10.4.4.2. Coastal/Ports and Sea-Level Rise		
5			10.4.4.3. Transport Costs: Storminess, Impacts, Effectual Speeds		
6		10.4.5.	Air		
7					
8	10.5.	Other P	rimary and Secondary Economic Activities		
9		10.5.1.	Primary Economic Activities		
10			10.5.1.1. Crop and Animal Production		
11			10.5.1.2. Forestry and Logging		
12			10.5.1.3 Fisheries and Aquaculture		
12			10.5.1.4 Mining and Quarrying		
17		10.5.2	Secondary Economic Activities		
14		10.5.2.	10.5.2.1 Monufacturing		
15			10.5.2.1. Manufacturing		
10			10.3.2.2. Construction and Housing		
1/	10.0	D (1 00 1		
18	10.6.	Recreat	Ion and Tourism		
19		10.6.1.	Recreation and Tourism Demand		
20			10.6.1.1. Recreation		
21			10.6.1.2. Tourism		
22		10.6.2.	Recreation and Tourism Supply		
23		10.6.3.	Market Impacts		
24					
25	10.7.	Insurance			
26		10.7.1.	Main results of IPCC AR4		
27		10.7.2.	Societal Role of Insurance Faced with Weather Hazards		
28		10.7.3.	Observed and Projected Losses from Weather Hazards		
29		10.7.4.	Supply-Side Challenges and Sensitivities		
30			10.7.4.1. High-Income Countries		
31			10.7.4.2. Middle- and Low-Income Countries		
32		10.7.5.	Products and Systems Responding to Changes in Weather Risks		
33			10.7.5.1. High-Income Countries		
34			10.7.5.2. Middle- and Low-Income Countries		
35		10.7.6.	Governance, Public-Private Partnerships, and Insurance Market Regulation		
36		100000	10.7.6.1 High-Income Countries		
37			10.7.6.2 Middle- and Low-Income Countries		
38			10.7.0.2. Whene and how meeting		
30	10.8	Services	o Other than Tourism and Insurance		
<i>4</i> 0	10.0.		Sectors Other than Health		
40		10.8.1.	Health		
41		10.6.2.	nealui		
42	10.0	т ,			
43	10.9.	Impacts	on Markets and Development		
44		10.9.1.	General Equilibrium Effects		
45		10.9.2.	Growth Effects		
46			10.9.2.1. The Rate of Economic Growth		
47			10.9.2.2. Poverty Traps		
48		10.9.2.3. Conclusion			
49					
50	10.10.	Researc	h Needs and Priorities		
51					
52	References				
53					
54	Appendix 10A.		Industrial Classification and Chapter Outline		
	11				

Appendix 10B. Industrial Classification and Literature Search

Executive Summary

7 Assessment of the literature on the impacts, vulnerability and adaptation of economic activities to climate 8 change has emerged as an active research area. Initial work has developed in a few key economic sectors and 9 through economy-wide assessments. Data, tools and methods continue to evolve to address additional sectors and 10 more complex interactions among the sectors in the economic systems and a changing climate.

11

1 2

3 4 5

6

12 Climate change will reduce energy demand for heating and increase energy demand for cooling in the

13 residential and commercial sectors; the balance of the two depends on the geographic, socioeconomic and 14 technological conditions. Increasing income will allow people to regulate indoor temperatures to comfort level that 15 leads to fast growing energy demand for air conditioning even in the absence of climate change in warm regions 16 with low income levels at present. Energy demand will be influenced by changes in demographics (upwards by 17 increasing population and decreasing average household size), lifestyles (upwards by larger floor area of dwellings),

the design and heat insulation properties of the housing stock, the energy efficiency of heating/cooling devices and 18

- 19 the abundance and energy efficiency of other electric household appliances. The relative importance of these drivers 20 varies across regions and will change over time. (10.2)
- 21

22 Climate change will affect different energy sources and technologies differently, depending on the resources (water flow, wind, insulation), the technological processes (cooling) or the locations (coastal regions,

23

- 24 floodplains) involved. Gradual changes in various climate attributes (temperature, precipitation, windiness, 25 cloudiness, etc.) and possible changes in the frequency and intensity of extreme weather events will progressively
- 26 affect operation over time. Climate-induced changes in the availability and temperature of water for cooling are the 27 main concern for thermal and nuclear power plants, but several options are available to cope with reduced water
- 28 availability. Similarly, already available or newly developed technological solutions allow to reduce vulnerability of 29 new build and to enhance the climate suitability of existing energy installations. (10.2)
- 30

31 Climate change may influence the integrity and reliability of pipelines and electricity grids. Pipelines and

- 32 electric transmission lines have been operated for over a century in diverse climatic conditions on land from hot
- 33 deserts to permafrost areas and increasingly at sea. Climate change may require the adoption of technological
- 34 solutions for the construction and operation of pipelines and power transmission and distribution lines from other 35 geographical and climatic conditions, adjustments in existing pipelines and improvements in the design and
- 36 deployment of new ones in response to the changing climate and weather conditions. (10.2)
- 37

38 Climate change would have substantial impacts on water resources and water use, but the economic

- 39 implications are not well understood. Economic impacts include flooding, scarcity and cross sectoral competition.
- 40 Flooding can have major economic costs, both in term of impacts (capital destruction, disruption) and adaptation
- 41 (construction, defensive investment). Water scarcity and competition for water, driven by institutional, economic or
- 42 social factors, may mean that water assumed to be available for a sector is not. (10.3)
- 43 44 Transportation is vulnerable to climate impacts. Transport infrastructure malfunctions if the weather is outside 45 the design range, which would happen more frequently should climate change. Paved roads are particularly 46 vulnerable to temperature extremes, unpaved roads to precipitation extremes. All infrastructure is vulnerable to
- 47 freeze-thaw cycles. Transport infrastructure on ice or permafrost is especially vulnerable. (10.4)
- 48

49 Because of climate change, tourists are likely to spend their holidays at higher altitudes and latitudes. Climate

- 50 change would affect tourism resorts, particularlyski resorts, beach resorts, and nature resorts. The economic
- implications of climate-change-induced changes in tourism demand and supply may be substantial, with gains for 51
- 52 countries closer to the poles and losses for countries closer to the equator. The demand for outdoor recreation is
- 53 affected by weather and climate, but there are only a few anecdotal estimates of the impact of climate change. (10.6)
- 54

1 Climate change strongly influences insurance and related financial industries. More frequent and/or intensive 2 weather disasters would increase losses and loss volatility in various regions through and challenge insurance 3 systems to offer affordable coverage while generating more risk-based capital. The greatest challenge is in low- and 4 middle-income countries. Solutions suggested include, first, assessing risk in a way that allows for temporal changes 5 in hazard conditions, and second, transmitting the risk information to policyholders and stakeholders through 6 premiums calibrated to existing risk, thereby encouraging them to reduce vulnerability. Reduction of vulnerability 7 can be further incentivized through various insurance conditions. Large-scale public risk prevention programmes 8 and government insurance of the non-diversifiable portion of risk are other forms of adaptation., Commercial 9 reinsurance and risk-linked securitization markets also have a role in ensuring financially healthy insurance systems. 10 (10.7)11 12 Climate change could affect the health sector through increases in the frequency, intensity, and extent of extreme weather events adversely affecting infrastructure and increase the demands for services, placing additional burdens 13 14 on public health and health care personnel and supplies; these have economic consequences. (10.8) 15 16 The literature on the impact of climate change on many sectors of the economy is extremely sparse. Few 17 studies have evaluated the possible impacts of climate change on mining, manufacturing or services (apart from 18 health, insurance and tourism). (10.5, 10.8) 19 20 The impacts of climate change on one sector of the economy of one country in turn affect other sectors and 21 other countries through product and input markets. For an individual sector or country, 'the market' provides an 22 additional mechanism for adaptation and thus reduces negative impacts and increases positive ones. However, as 23 sectoral or national studies omit market spillovers, such estimates tend to understate the total economic impact. 24 (10.9)25 26 The impacts of climate change would affect economic growth, but the magnitude of this effect is not well 27 understood. Climate could be one of the causes why some countries are trapped in poverty, and climate change may 28 make it harder to escape poverty traps. (10.9) 29 30 Based on a comprehensive assessment across economic sectors, few key sectors have been subject to detailed 31 research. Further research, collection and access to more detailed economic data and the advancement of analytic 32 methods and tools will be required to further assess the potential impacts of climate on key economic systems and 33 sectors. (10.10) 34 35 36 10.1. **Introduction and Context** 37 38 This chapter discusses the implications of climate change on key economic sectors and services. An inclusive 39 approach was taken, discussing all sectors of the economy. Appendix 10A shows the list of sectors according to the 40 International Classification of Industrial Classification. 41 42 However, some sectors are little vulnerable to climate change and few words are devoted to these. There is little 43 literature on other sectors. Section 10.10 discusses whether there may be vulnerable sectors that have yet to be 44 studied. We extensively discuss five sectors: Energy (10.2), water (10.3), transport (10.4), tourism (10.6), and 45 insurance (10.7). Other primary and secondary sectors are discussed in 10.5, and 10.8 is devoted to other service 46 sectors. 47 48 This chapter focuses on the impact of climate change on economic activity. Other chapters discuss impacts from a 49 physical, chemical, biological, or social perspective. Economic impacts cannot be isolated; and therefore, there are a 50 large number of cross-references to other chapters in this report. In some cases, particularly agriculture, the discussion of the economic impacts is integrated with the other impacts. 51 52 53 Focusing on the potential impact of climate change on economic activity, this chapter addresses questions such as: 54 how does climate change affect the demand for a particular good or service? What is the impact on its supply? How

4

do supply and demand interact in the market? What are the effects on producers and consumers? Chapter 19

2 assesses the impact of climate change on economic welfare – that is, the sum of changes in consumer and producer 3 surplus, including for untraded goods and services. This is not attempted here. The focus is on economic activity.

Sections 10.2 through 10.8 discuss individual sectors in isolation. Markets are connected, however. Section 10.9
therefore assesses the implications of changes in any one sector on the rest of the economy. It also discusses the
effect of the impacts of climate change on economic growth and development.

9 Previous assessment reports by the IPCC did not have a chapter on "key economic sectors and services". Instead, the 10 material assembled here was spread over a number of chapters. AR4 is referred to in the context of the sections 11 below. In some cases, however, the literature is so new that previous IPCC reports did not discuss these impacts at 12 any length.

15 **10.2.** Energy

17 Studies conducted since AR4 and assessed here confirm the main insights about the impacts of climate change on energy well-known since the SAR (Acosta Moreno et al., 1995) and reinforced by the TAR (Scott et al., 2001) and 18 19 AR4 (Wilbanks et al., 2007): ceteris paribus, in a warming world, energy demand for heating will decline and 20 energy demand for cooling will increase; the balance of the two depends on the geographic, socioeconomic and 21 technological conditions. Yet changes in climate and weather conditions are only one of the numerous driving forces 22 of energy demand. Their relative importance among the drivers varies across regions and will change over time. In 23 addition to the proliferation of demand studies, an increasing number of publications explore the vulnerability, 24 impacts and the adaptation options in various energy sectors.

25 26

1

8

13 14

16

27 10.2.1. Energy Demand28

Most studies and modelling exercises conducted since AR4 explore the impacts of climate change on residential energy demand, particularly electricity. Some studies encompass the commercial sector as well but very few deal with industry and agriculture. In addition to a few global studies based on global energy or integrated assessment models, the new studies tend to focus on specific countries or regions, rely on improved methods (ranging from advanced statistical techniques to global integrated assessment models) and data (both historical and regional climate projections) and many of them explicitly include non-climatic drivers of energy demand. A few studies consider changes in demand together with changes in climate-dependent energy sources, like hydropower.

36

The global picture is rather diverse. Isaac and van Vuuren (2009) use the reference climate change scenario from the TIMER/IMAGE model and show that energy demand for air conditioning increases rapidly in the 21st century. The increase is from close to 300 TWh in 2000, to about 4,000 TWh in 2050 and more than 10,000 TWh in 2100, mostly driven by increasing income in developing countries. Energy demand for heating increases too, but much less rapidly, since in most regions with the highest need for heating incomes are already high enough for people to heat their homes to the desired comfort level, except in some poor regions/households.

43

Figure 10-1 sorts the assessed studies according to the present climate (represented by mean annual temperature) and current income (represented by GDP per capita). Neither indicator is very explicit: country-level mean annual temperatures for large countries can hide huge regional differences and average incomes may conceal large differences, but they help cluster the national and regional studies in the search for general findings.

- 4849 [INSERT FIGURE 10-1 HERE
- 50 Figure 10-1: Demand.]
- 51
- 52 Studies clustered in the upper right block in Figure 10-1 deal with countries and regions in which mean annual
- 53 temperatures are already high but high incomes allow extensive deployment and operation of air conditioning (e.g.,

countries in the Persian Gulf). Further increases in temperature will be offset by heavier use of air-conditioning and
 will be the main driver of increasing the demand for electricity while increasing incomes will play a marginal role.

3

9

4 Countries and regions explored by studies in the upper left and upper central cells are also situated in already warm 5 regions but the bulk of the population cannot afford to purchase and operate space-cooling equipment at the current 6 income levels (India, countries in Southeast Asia). Although temperatures are projected to increase in these regions 7 as well, the main driver of household energy demand (in the form of electricity) will be income growth, leading to 8 expanding installation of air-conditioning.

10 The temperate climate conditions in countries and regions analysed by studies in the right middle zone involve

11 colder and warmer seasons in a year but high incomes allow the population to heat/cool indoor temperatures to the

12 desired comfort level (e.g., central to northern and Pacific states in the USA, Western Europe). Therefore changes in

- 13 seasonal and total per capita energy and electricity demand and in the fuel mix will be largely driven by temperature 14 changes: decreasing demand for heating (and thus for non-electric energy) during the winter and increasing demand 15 for cooling (almost entirely operated by electricity) in the summer.
- 16

17 Warmer temperatures and increasing incomes will both be significant drivers of changes in energy demand in

countries examined by studies in the central middle segment in Figure 10-1 (e.g., Central and Eastern Europe,

19 Central Asia). In these regions space heating in winter is usually adequate to reach comfort level (although there are

20 poor people even in OECD countries for whom this is not the case) but space cooling has been emerging only 21 recently as increasing incomes allow more people to install air-conditioning equipment. As climate warms,

reduction in energy demand for heating will be largely influenced by temperature while increase in energy demand

for air-conditioning will be mostly driven by income (to achieve comfort levels under current climate) and partly by

- 24 temperature increase (in response to higher cooling needs).
- 25

The general patterns observed above and especially the quantitative results of the projected shifts in energy and electricity demand can be modified by many other factors. In addition to changes in temperatures and incomes, the

actual energy demand will be influenced by changes in demographics (upwards by increasing population and

decreasing average household size), lifestyles (upwards by larger floor area of dwellings), the design and heat insulation properties of the housing stock, the energy efficiency of heating/cooling devices, the abundance and

insulation properties of the housing stock, the energy efficiency of heating/cooling devices, the abundance and energy efficiency of other electric household appliances, etc. Some of these factors are considered implicitly or

- explicitly in some of the studies in Figure 10-1 but ignored in many others.
- 33 34

36

35 **10.2.2.** Energy Supply

Changes in various climate attributes (temperature, precipitation, windiness, cloudiness, etc.) will affect different
energy sources and technologies differently. Gradual climate change (CC) will progressively affect normal operation
over time. Possible changes in the frequency and intensity of extreme weather events (EWEs) represent a different
kind of hazard for energy installations and infrastructure. This section considers both.

- 41 42
- 43 10.2.2.1. Thermal Power
- 44

45 Thermal power plants provide about 80% of global electricity and their share is projected to remain high even under 46 ambitious but realistic climate mitigation scenarios (IEA 2010a, 2010b). Thermal power plants are operated under 47 diverse climatic conditions from the cold artic to the hot tropical regions and are well adapted to the prevailing 48 conditions. However, they might face new challenges and will need to respond by hard (design or structural

49 methods) or soft (operating procedures) measures as a result of climate change (Sieber née Schulz, 2011). Impacts of

50 CC and EWEs on thermal power plants and the adaptation options are summarized in Table 10-1.

51

52 [INSERT TABLE 10-1 HERE

- 53 Table 10-1: Impacts of CC and EWEs on thermal power generation.]
- 54

1 The most intrusive impact of CC on thermal power generation in many countries is the decreasing efficiency of 2 thermal conversion as a result of rising temperature. This follows from Carnot's rule and cannot be offset per se. Yet 3 there is much room to improve the efficiency of currently operating subcritical steam power plants (IEA, 2010b). As 4 new materials allow higher operating temperatures in coal-fired power plants (Gibbons, 2011), supercritical and 5 ultra-supercritical steam-cycle plants will reach even higher efficiency that can more than compensate the efficiency 6 losses due to higher temperatures. 7 8 Another problem facing thermal power generation is the decreasing volume and increasing temperature of water for 9 cooling, leading to reduced power generation, operation at reduced capacity and even temporary shutdown of power 10 plants (Ott and Richter, 2008; Hoffmann et al., 2010; Sieber née Schulz, 2011). Adaptation possibilities range from 11 relatively simple and low-cost options like exploiting non-traditional water sources and re-using process water to 12 more drastic and expensive measures like installing dry cooling towers, heat pipe exchangers and regenerative 13 cooling (Ott and Richter, 2008; de Bruin et al., 2009). While it is easier to plan for changing climatic conditions and 14 select the conforming cost-efficient cooling technology for new builds, response options are more limited for 15 existing power plants, especially for those towards the end of their economic lifetime. 16 17 18 10.2.2.2. Nuclear Energy 19 20 The impacts of CC and EWEs on the nuclear energy sector, together with the adaptation options are summarized in 21 Table 10-2. 22 23 **[INSERT TABLE 10-2 HERE**

24 Table 10-2: Impacts of CC and EWEs on nuclear energy.]

CC impacts on thermal efficiency and cooling water availability affect nuclear power plants similarly to their
thermal counterparts (Williams and Toth, 2011). Whereas there is no escape from Carnot's rule affecting efficiency,
a range of alternative cooling options are available or increasingly considered to deal with water deficiency, ranging
from re-using wastewater and recovering evaporated water (Feeley III et al., 2008) to installing dry cooling (EPA,
2001).

31

32 The implications of EWEs for nuclear plants can be severe due to the nature of the technology. Reliable 33 interconnection (onsite power and instrumentation connections) of intact key components (reactor vessel, cooling 34 equipment, control instruments, back-up generators) are indispensible for the safe operation and/or shutdown of a 35 nuclear reactor. A reliable connection to the grid for power to run cooling systems and control instruments in 36 emergency situations is another crucial item (IAEA, 2011). Several EWEs can damage the components or disrupt 37 their interconnections. Preventive and protective measures include technical and engineering solutions (circuit 38 insulation, shielding, flood protection) and adjusting operation to extreme conditions (reduced capacity, shutdown) 39 (Williams and Toth, 2011).

- 40 41
- 42 *10.2.2.3. Hydropower*
- 43

44 Amongst the renewable energy sources, hydropower represents by far the largest share in the current energy mix. It 45 is also projected to remain important in the future, irrespective of the climate change mitigation targets in many 46 countries (IEA 2010a, 2010b). The resource base of hydropower is the hydrologic cycle driven by prevailing climate 47 and geography (differences in elevation). The former makes the resource base and hence hydropower generation 48 highly dependent on future changes in climate and related changes in extreme weather events.

- 49
- 50 Assessing the impacts of climate change on hydropower generation is the most complex endeavour in the energy
- 51 sector. A series of non-linear and region-specific changes in mean annual and seasonal precipitation and
- 52 temperatures, the resulting evapotranspiration losses, shifts in the share of precipitation falling as snow and the
- timing of its release from high elevation make resource estimates difficult (see Chapters 3 and 4) while regional
- 54 changes in water demand due to changes in population, economic activities (especially irrigation demand for

- 1 agriculture) present competition for water resources that are hard to project (see Section 10.3). Further complications
- 2 stem from the possibly increasing need to combine hydropower generation with changing flood control and
- 3 ecological (minimum dependable flow) objectives induced by changing climate regime. This section focuses on
- 4 possible impacts of CC on hydroelectricity and the adaptation options in the sector in response to the changes in the
- 5 amount, seasonal and inter-annual variations of available water after changes in the resource base and other demands 6 are accounted for. Table 10-3 provides an overview.
- 7
- 8 [INSERT TABLE 10-3 HERE
- 9 Table 10-3: Impacts of CC and EWEs on hydropower generation.]
- 10

The overall conclusion from the literature is that the impacts of CC and EWEs on hydropower generation will be diverse across large global regions (increases in most, decreases in some), across watersheds within regions and even across river basins within watersheds. The hydropower industry will need to enhance its long-term planning tools to cope with slow but persistent shifts in water availability and its short-term management models to deal with the impacts of EWEs. A series of hard and soft measures are available to protect the related infrastructure (dams, channels, turbines, etc.) and optimize incomes by timing generation when electricity prices are high.

- 17
- 18

19 *10.2.2.4. Solar Energy* 20

In various climate change mitigation scenarios, solar energy is expected to increase its currently negligible share in the global energy balance to a significant level (IEA 2008, 2009, 2010a, 2010b). The three main types of technologies for harnessing energy from insulation include thermal heating (TH) (by flat plate, evacuated tube (aka vacuum) and unglazed collectors), photovoltaic (PV) cells (crystalline silicon (Si) and thin film technologies) and

25 concentrating solar power (CSP) (power tower and power trough producing heat to drive a steam turbine for

26 generating electricity). The increasing body of literature exploring the vulnerability and adaptation options of solar

27 technologies to CC and EWEs are reviewed by Patt et al. (2011). The impacts of CC and EWEs on solar

- technologies are summarized in Table 10-4.
- 30 [INSERT TABLE 10-4 HERE
- 31 Table 10-4: Impacts of CC and EWEs on solar energy.]
- 32

All types of solar energy are sensitive to changes in climatic attributes that directly or indirectly influence the
 amount of insulation reaching them. Increasing cloudiness reduces the intensity of solar radiation and hence the
 output of heat (warm water) or electricity. Efficiency losses in cloudy conditions are less for technologies that can

36 operate with diffuse light (evacuated tube collectors for TH, PV collectors with rough surface). Since diffuse light

- 37 cannot be concentrated, CSP output would cease under cloudy conditions but the easy and relatively inexpensive
- 38 possibility to store heat reduces this vulnerability if sufficient volume of heat storage is installed (Khosla, 2008;
- 39 Richter et al., 2009).40

The exposure of sensitive material to harsh weather conditions is another source of vulnerability for all types of solar technologies. Windstorms can damage the mounting structures directly and the conversion units by flying debris, whereby technologies with smaller surface areas are less vulnerable. Hail can also cause material damage

and thus reduced output and increased need for repair. Depending on regional conditions, strong wind can deposit

- 45 sand and dust on the collectors' surface, reducing efficiency and increasing the need for cleaning.
- 46

The above and the other CC and EWE hazards listed in Table 10-4 per se do not pose any particular constraints for the future deployment of solar technologies. ST is mature compared to PV and CSP, but technological development

- 48 the future deployment of solar technologies. ST is mature compared to PV and CSP, but technological development 49 continues in all three solar technologies towards new designs, models and materials. One of the objectives of these
- 49 continues in an three solar technologies towards new designs, models and materials. One of the objectives 50 development efforts is to make new models less vulnerable to current climate and EWEs. Technological
- 51 development also results in a diverse portfolio of models to choose from according to the climatic and weather
- 52 characteristics of the deployment site. These development efforts can be integrated in addressing the key challenge
- 53 for solar technologies today: reducing the costs.

54

10.2.2.5.Wind

Harnessing wind energy for power generation is an important part of the climate change mitigation portfolio in many countries. Therefore it is increasingly important to assess the possible impacts of climate change on this technology and to explore possible adaptation options. Such an assessment is complicated by the complex dynamics characterizing wind energy today. Relevant attributes of climate are expected to change, the technology is evolving (blade design, other components; see Barlas and van Kuik, 2010; Kong et al., 2005), there is an increasing deployment offshore and a transition to larger turbines (Garvey, 2010) and larger sites (multi megawatt arrays) (Barthelmie et al., 2008).

10 11

1 2

3 4

5

6

7

8

9

Pryor and Barthelmie (2011a) provide a comprehensive overview of the impacts of CC and EWEs on wind energy,
 based on which the relevant climatic attributes and EWEs possibly modified by CC, their impacts on wind power
 and the related adaptation options are summarized in Table 10-5.

- 15
- 16 [INSERT TABLE 10-5 HERE

17 Table 10-5: Impacts of CC and EWEs on wind power.]

18

19 The key question concerning the impacts of a changing climate regime on wind power is related to the resource

base: how climate change will rearrange the temporal (inter- and intra-annual variability) and spatial (geographical
 distribution) characteristics of the wind resource. Reviewing related studies (e.g., Bloom et al., 2008; Pryor and

22 Schoof, 2010; Pryor et al., 2006; Sailor et al., 2008; Walter et al., 2006), Pryor and Barthelmie, 2010) find that in the

next few decades wind resources (measured in terms of multi-annual wind power densities) are likely to remain

24 within the $\pm 50\%$ of the values under current climate. The wide range of the estimates results from the circulation

and flow regimes in different GCMs and regional climate models (RCMs) (Bengtsson et al., 2006; Pryor and

26 Schoof, 2010) and it seems to narrow in more recent studies. A set of four GCM-RCM combinations for the period

27 2041-2062 indicates that average annual mean energy density will be within $\pm 25\%$ of the 1979-2000 values in all 50 28 km grid cells over the contiguous USA (Pryor and Barthelmie, 2011a, 2011b). Yet little is known about changes in

the inter-annual, seasonal or diurnal variability of wind resources.

30

31 Wind turbines already operate in diverse climatic and weather conditions. Engineering solutions have been

developed to install the turbine design and material combination most suitable for the site conditions. As shown in Table 10-5, siting, design and engineering solutions are available to cope with various impacts of gradual changes in relevant climate attributes over the coming decades. The requirement to withstand extreme loading conditions resulting from climate change are within the safety margins prescribed in the design standards, although load from combinations of extreme events may exceed the design thresholds (Pryor and Barthelmie, 2011a). In summary, the

37 wind energy sector does not face insurmountable challenges resulting from climate change.

38

39

40 10.2.2.6. Bioenergy

41

42 The two main contributions of bioenergy to climate change mitigation and the green energy – sustainable 43 development strategies include liquid motor fuels for transport and power generation by combustion. The impacts of 44 climate change on growing plants for use as biofuels is assessed as part of climate impacts on land use and 45 agriculture (Chapter 7). The transportation of related material (from fields to processing plants to the distribution network for liquids or to the power plants for combustion) is exposed to the same impacts as the transport sector in 46 47 general (see 10.2.3 and 10.4). The impacts of climate change on the combustion of biofuels for power generation is 48 largely the same as fossil-fuelled thermal power plants (see 10.2.2.1) and the impacts on their conversion into liquid 49 fuels are comparable to those on refineries.

- 50
- 51
- 52

1 2

10.2.3. Transport and Transmission of Energy

Primary energy sources (coal, oil, gas, uranium), secondary energy forms (electricity, hydrogen, warm water) and waste products (CO₂, coal ash, radioactive waste) are transported in diverse ways to distances ranging from a few kilometres to thousands of kilometres. The transport of energy-related materials by ships (ocean and inland waters), rail and road are exposed to the same impacts of climate change as the rest of the transport sector (see Section 10.4). This subsection deals only with transport modes that are unique to the energy sector (power grid) or predominantly used by it (pipelines).

9 10

11 *10.2.3.1.Pipelines* 12

13 Pipelines play a central role in the energy sector by transporting oil and gas from the wells to processing and 14 distributing centres to distances from a few hundred to thousands of kilometres. With the spread of the carbon 15 dioxide capture and storage (CCS) technology, another important function will be to deliver CO₂ from the capture 16 site (typically thermal power plants) to the disposal site onshore or offshore. Pipelines have been operated for over a 17 century in diverse climatic conditions on land from hot deserts to permafrost areas and increasingly at sea. This 18 implies that technological solutions are available for the construction and operation of pipelines under diverse 19 geographical and climatic conditions. Yet climate change may require adjustments in existing pipelines and 20 improvements in the design and deployment of new ones in response to the changing climate and weather

- conditions. Table 10-6 provides an overview of the impacts of CC and EWEs, together with the options to reduce
 vulnerability.
- 22 23

24 [INSERT TABLE 10-6 HERE

- 25 Table 10-6: Impacts of CC and EWEs on pipelines.]
- 26

Pipelines will be mainly affected by secondary impacts of climate change: sea-level rise in coastal regions, melting permafrost in cold regions, and floods and landslides triggered by heavy rainfall. The proposed way to reduce vulnerability to these events is the amendment of land zoning codes, and the design and construction standards for new pipelines and structural upgrade for existing ones.

31 32

33 10.2.3.2. Electricity Grid34

Due to its very function to transmit electricity from power plants to consumers, the bulk of the grid components (overhead lines, substations, transformers) are located outdoors and exposed to the vagaries of weather. The power industry has developed numerous technical solutions and related standards to protect those assets and to secure a reliable electricity supply under prevailing climate and weather conditions worldwide. Drawing on Ward (2011), impacts of CC and EWEs on the neuron grid are summarized in Table 10.7

- impacts of CC and EWEs on the power grid are summarized in Table 10-7.
- 40
- 41 [INSERT TABLE 10-7 HERE
- 42 Table 10-7: Impacts of CC and EWEs on the electricity grid.]
- 43

Higher average temperatures decrease transmission efficiency by about 0.4%/°C but this effect is relatively small
 compared to the physical and monetary damages that can be caused by EWEs (Ward, 2011). Historically, high wind

46 conditions, including storms, hurricanes and tornados, have been the most frequent cause of grid disruptions (mainly

47 due to damages to the distribution networks) and more than half of the damage was caused by trees (Reed, 2008).

- 48 While the frequency and power of high wind conditions may increase in the future, vegetation management along
- 49 existing power lines and rerouting new transmission lines along roads or across open fields would reduce wind
- 50 related risks.
- 51

52 The economic importance of a reliable transmission and distribution network is highlighted by the fact that the

- 53 damage to customers tend to be much higher than the value of electricity not delivered (lost production and service
- 54 delivery, decay of frozen or refrigerated food and other stocks). The economically efficient balance between the

higher costs for the transmission and distribution companies and the benefits of lower fault frequency for the clients
 will be an outcome of technical standards, market regulation and possibly other arrangements depending on the type
 and degree of liberalization and deregulation of grid services.

10.2.4. Market Impacts

8 Until recently, almost all economic research related to climate change has focused on mitigation rather than the 9 economic implications of climate change itself. In the last few years, some analysts have begun to adapt models that 10 had been used for economic analysis of mitigation to use for analysis of scenarios in which warming continues with 11 or without adaptation policies.

As with mitigation policy, the full economic consequences of climate change are best examined by using computable general equilibrium (CGE) models or hybrid models with a CGE or full macroeconomic representation. Recent climate impact studies using a CGE model with energy sector detail include Jorgenson et al. (2004), Bosello et al. (2007), Aaheim et al. (2009), Boyd and Ibarraran (2009), Bosello et al. (2009), and Jochem and Schade (2009).

Jorgenson et al. (2004), using the Inter-temporal General Equilibrium Model (IGEM) for the United States, consider three climate scenarios (1.7, 3.1 and 5.3 °C increase by 2100) combined with pessimistic and optimistic assumptions regarding the ability of sectors to adapt. The authors find that for optimistic adaptation assumptions, the productivity of the energy sector in an average year is 4% to 6.7% higher with climate change compared to a reference case without climate change (over the period 2000 – 2100). For pessimistic assumptions, energy productivity is 0.5% to 2.2% lower with climate change. The response to climate change in the energy sector is based on changes to energy

24 demand driven by warmer weather rather than changes in supply brought on by warmer weather, climate variability 25 or extreme weather.

25 26

4 5 6

7

12

Bosello et al. (2007) amr

Bosello et al. (2007) employ a global 8-region one-period CGE model to evaluate climate change impacts on the
global economy in 2050. The 2050 reference case is calibrated by adjusting 2001 GTAP data so that the model
produces results consistent with 2050 rather than running an annual model that gradually evolves out to 2050.

30 Bosello et al. find that crude oil production declines in all regions, ranging from 0.43% to 1.2% compared to the

reference case without climate change. Natural gas production goes down in all but one region (Rest of World),

ranging from 0.61% to 17.82%; Rest of World increases by 0.04%. On the other hand, coal production increases in

all regions, from 0.133% to 3.37%. Electricity production varies. Most regions are expected to see electricity

34 consumption go up by 0.58% to 1.89% in response to greater cooling demand. Electricity production in cooler

- regions is expected to decrease, ranging from -0.63% to -2.94% due to less cooling demand. Japan see a negligible change (-0.06%). Energy sector results are driven by expected changes in energy demand stemming from climate
- 37 change rather than changes in supply.
- 38

39 Aaheim et al. (2009) examine the impact on Europe of a 2, 3 and 4 °C increase in global mean temperature using 40 GRACE adapt, an integrated macroeconomic general equilibrium model with 8 primary regions and 11 sectors calibrated to 2006 data (results are not forward looking and based on the current structure of the economy). The 41 42 purpose of the study is to compare the GDP impact of the three temperature scenarios with and without adaptation, 43 all relative to a reference case without climate change. Like other studies, the authors factor in the demand response 44 to changing temperature (less need for heating and more need for cooling). Aaheim et al. also consider the direct 45 impact of climate change on electricity generation. They assume that hydro, bio and wind resources change in response to changing rainfall patterns, temperatures, wind speeds, etc. in most regions, but other types of generation 46 47 do not. The paper does not report sector-level results, but does report the magnitude of the changes in assumptions 48 that were built into the GRACE_adapt model. Consumption of oil and gas is expected to decline in the range of 1 to 49 10% in all regions. Consumption of electricity is expected to decline in all regions except Southern Europe and the 50 Iberian Peninsula (due to increased cooling demand). The authors assume that total electricity generation will increase by 11% to 20% or more in the coldest regions (Nordic Countries, Baltic States, and British Islands) where 51 52 hydro, bio and wind power resources improve with warming. By contrast, Aaheim et al. assume that Southern 53 Europe and the Iberian Peninsula will experience declines in generation from hydro (11% - 20% or more), bio (1% 54 to 20%) and wind (1% to 10%). Total electricity generation is expected to decrease by 1% to 10% in the remaining

1 warmer regions. The authors do not elaborate on how some regions will cope with reductions in generation output

2 along with increased demand for electricity to provide cooling; presumably, this situation will lead to higher costs.

3 Aaheim et al. find that climate change lowers GDP in cooler regions by around 0.25% (2 °C scenario) to 1% (4 °C

- 4 scenario). GDP in warmer regions drops by around 0.5% (2 °C) to 2 - 3% (4 °C). The authors also find that 5 adaptation policies can mitigate 80% to 85% of the overall economic impact of climate change in Europe, even with
- 6 a 4 °C global mean temperature increase.
- 7

8 Boyd and Ibarraran (2009) study the implications of climate change on the Mexican economy using a CGE model 9 that was "modified to account for imperfect competition (in the energy sectors) which presently exists in the 10 Mexican economy." Climate change impacts are modelled as severe drought rather than mean global temperature 11 change, and adaptation measures are also modelled in a separate scenario. All scenarios are compared to a reference 12 case without climate change, and the model runs on an annual basis from 2004 to 2026, evolving over time. The 13 authors find that without adaptation, electricity generation, refining, coal, and natural gas production decline 2.1%, 14 10.1%, 7.8% and 2.0% respectively in 2026 as a result of climate change. Crude oil production increases 1.7%.

15 When adaptation is undertaken, all energy sectors increase production, ranging from 0.2% to 1.4%. Overall, GDP 16 declines by 3.0% without adaptation and increases by 0.3% with adaptation.

17

18 Bosello et al. (2009) analyse the impact of climate change and adaptation policies worldwide using a hybrid 12-

19 region hybrid inter-temporal optimization model that combines AD-WITCH, an Integrated Assessment Model

20 (IAM), with ICES, a CGE model. Climate change impacts in the energy sector are modelled as space heating and

21 cooling expenditures. The authors find that the net impact of energy expenditures as a result of climate change for

22 all regions translates to a positive contribution to GDP of approximately 0% to 0.75% depending on the region

23 (1.2°C scenario in 2050) or around 0% to 1.2% (3.1°C in 2050).

24

25 Jochem and Schade (2009) use an innovative hybrid model system (HMS) for Europe that combines three different 26 macroeconomic models that cover different timeframes, along with several technology-based sector models. Jochem 27 and Schade assume that the impact on the energy sector of climate change consists of changes to cooling and heating 28 demand. If global mean temperature increases 4°C by 2050, fuel costs drop by an amount equal to 0.08% of GDP, 29 while electricity costs increase by an amount equal to 0.02% of GDP. 63% of the fuel savings occur in Western 30 Europe, and 84% of the added electricity costs are faced by Southern Europe.

31 32 Other related studies have been conducted using partial equilibrium and econometric models that attempt to analyse

33 the impact of climate change on energy demand, though not with respect to the full macroeconomic implications as

34 with the previously discussed studies. These demand-oriented studies generally conclude that direct fuel

35 consumption by end-use residential and commercial sectors tends to decline as temperatures increase, and electricity

36 consumption tends to increase in order to provide more space cooling (Kirkinen, 2005; Mansur, Mendelsohn et al.,

- 37 2005; Mansur, Mendelsohn et al., 2008; Gunnar and Torben, 2010; Mideksa and Kallbekken, 2010; Rübbelke and 38 Vögele, 2010).
- 39

40 Modellers focus on the impacts of climate change as a trigger for changes in energy demand and assess the

41 economy-wide implications of this shift (substitutions in the consumer basket, shifts in the industrial output and

42 investments on the supply side). Most modellers assume that fuel demand declines and electricity demand increases,

43 but there are too few studies (and those focus on different regions and timeframes) to allow for larger conclusions 44 about the economic implications. Few models (only Aaheim et al. and Boyd and Ibarraran) look at impacts on the

45 resource base (water, windiness, insulation) or technological processes (efficiency of thermal generation) or cross-

46 sectoral impacts (competition for water), not to mention the adaptation options (larger dams in hydro/water sector,

47 closed cycle or dry cooling in thermal, etc.) partly because they do not have sufficient detail in their representation

48 of energy sector technologies and partly because the impacts are less well understood. The studies are limited in 49 scope even on the demand side; they mostly cover residential (and perhaps commercial) heating/cooling demand,

50 but ignore agriculture energy demand (energy for crop drying, for pumping irrigation water, etc.).

51

52

10.2.5. Summary

1 2

The balance of evidence emerging from the literature assessed in this section suggests that climate change per se will increase the demand for energy in most regions of the world. At the same time, increasing temperature will decrease the thermal efficiency of fossil, nuclear and solar power generation, the potential and dependability of hydropower, etc. However, temperature-induced impacts will make a relatively small contribution to the overall increase in demand for energy and electricity. Similarly, CC impacts on energy supply will be part of an evolving picture dominated by technological development in the pursuit for safer, cheaper and more reliable energy sources and technologies.

12 10.3. Water

13

10 11

14 This section summarizes of some of the key works that have been carried out with regards to the economic aspects 15 of climate change and adaptation in the field of water as it relates to economic activities. There has been much 16 written and reported in previous IPCC assessments including a special report (Bates et al., 2008) on the biophysical 17 impacts of the natural and managed water resource system and this is addressed in other chapters of this assessment. 18 This section focuses on economic costs.

19

20 Efforts to quantify the economic impacts of future climate-related changes in water resources are hampered by a

21 lack of data, the uncertainties in scenarios, and by the fact that the estimates are highly sensitive to both the cost

estimation methods and the different assumptions used with regards to the allocation of changes in water availability across various types of water use (e.g., Chagnon, 2005; Schlenker et al., 2005; Young, 2005). In some regions

24 hydrological changes may have impacts that are positive in some aspects and negative in others, for example

24 Invertigical changes may have impacts that are positive in some aspects and negative in others, for example
25 increased annual runoff may produce benefits for a variety of both in-stream and out-of-stream water users by

increasing renewable water resources, but may simultaneously increase flood risk. Overall, the IPCC states that it is

very likely that the costs of climate change to the water sector will outweigh the benefits globally (Bates et al.,
 2008).

28 29

This section looks at the qualification of climate change impacts, costs and benefits, to individual economic sectors that utilize water resources as an input to production and/or mechanism for waste disposal and costs to adapt to these impacts. This section also reports on the state of knowledge of costs to public and private infrastructure of climate

33 change impacts and adaptation due to flooding.

34 35

36 10.3.1. Water-Related Damages

Between the 1950s and the 1990s, the annual economic losses from large extreme events, including floods and
droughts, increased tenfold, with the developing world being hardest hit (Kabat et al., 2003). Currently, flood
damage constitutes about a third of the economic losses inflicted by natural hazards worldwide (Munich Re, 2005),
and the economic losses associated with floods worldwide have increased by a factor of five between the periods
1950-1980 and 1996-2005 (Kron and Bertz, 2007). From 1990 to 1996 alone, there were six major floods

throughout the world in which the number of fatalities exceeded 1,000, and 22 floods with losses exceeding US\$1

billion each (Kabat et al., 2003). Although these increases in loss are also attributable to several non-climatic

45 drivers, climatic factors are also partly responsible (Kundzewicz et al., 2007).

46

47 Most of the studies examining the economic impacts of climate change on the water sector have so far been carried

48 out at the local, national, or river-basin scale, and the global distribution of such studies is skewed towards

49 developed countries (e.g., Chen et al., 2001; Choi and Fisher, 2003; Dore and Burton, 2001; Evans et al., 2004; Hall

50 et al., 2005; Kirshen et al., 2005, 2006; Middelkoop et al., 2001; Schreider et al., 2000). Nevertheless, studies that

51 have assessed the economic impacts of climate variability on floods and droughts in the developing world have

52 found these to be substantial. For example, the cost to Kenya of two extreme events, namely the floods associated

- 53 with the 1997/8 El Niño event and the drought associated with the 1998-2000 La Niña event, show a cost to the
- country of 11% of its GDP for the former, and 16% of GDP for the latter (World Bank, 2006a). According to this

study, floods and droughts are estimated to cost Kenya about 2.4% of its GDP annually, and water resources degradation a further 0.5%. As these are likely to become more pronounced with climate change, economic costs can be expected to be more substantial in the future, holding all other factors constant. For Ethiopia, economy-wide models incorporating hydrological variability show a drop in projected GDP growth by up to 38% compared to when hydrological variability is not included (Mogaka et al., 2006). However, it is not hydrological variability per se that causes the problem, but rather an extreme vulnerability to it due a lack of the necessary capacity, infrastructure, and institutions to mitigate the impacts (Grey and Sadoff, 2007). Similarly, future flood damages will depend not only on changes in the climate regime, but also on settlement patterns, land use decisions, flood forecasting quality, warning and response systems, and other adaptive measures (e.g., Andréassian, 2004; Calder, 1993; Changnon, 2005; Mileti, 1999; Pielke and Downton, 2000; Ward and Robinson, 1999; Ward et al., 2008; WCD, 2000).

10 11

1

2

3

4

5

6

7

8

9

12 At the regional scale, the Association of British Insurers (ABI) estimated the financial costs of climate change

13 through its effects on extreme storms (hurricanes, typhoons, and windstorms) by using insurance catastrophe

14 models. They found that climate change could increase the annual cost of flooding in the UK almost 15-fold by the

15 2080s under high emission scenarios. If climate change increased European flood losses by a similar magnitude, 16 they estimate that costs could increase by up to \$120 - 150 billion, for the same high emission scenarios (ABI,

- they estimate that costs could increase by up to \$120 150 billion, for the same high emission scenarios (ABI,
 2005).
- 18

Ward et al 2010 found the average annual costs of adaptation for riverine flood protection for World Bank eligible nations¹ to range from \$3.5 to \$6.0 billion per year over the period 2010–50. These are simply the additional costs of providing flood protection measures against monthly floods with a nominal return period (that is, 50 years and 10 years for urban and agricultural areas, respectively), but do not consider the damages that would be caused by flood events with longer return periods.

[INSERT FOOTNOTE 1 HERE: These were the low-income, lower-middle-income and upper-middle-income countries as defined in http://data.worldbank.org/about/country-classifications/country-and-lending-groups.]

28 29 10.3.2. Municipal and Industrial Water Supply

30

24 25

26

27

31 At the local, national, and river basin level, the geographical distribution of research is skewed towards developed 32 countries. Examples include: the costs of adaptation measures to maintain water quality in the Assabet River near 33 Boston (Kirshen et al., 2006); the costs of adaptation to maintain the availability of drinking water supply and the 34 capacity of treating wastewater in Toronto (Dore and Burton, 2001); water management adaptation costs and 35 benefits for the Berg River in South Africa through the establishment of an efficient water market and an increase in 36 water storage by constructing a new dam (Callaway et al., 2006); the costs of defending the Netherlands against 37 increased river and coastal flooding as a result of climate change (Deltacommissie, 2008); the costs of adaptation to 38 reduce flood damage in the Rhine basin in Europe (EEA, 2007); and the costs of diverting water and building new 39 water infrastructure at an accelerated pace in order to cope with a reduction in water yields and supply in Quito, 40 Ecuador, as a result of glacier retreat (Vergara et al., 2007).

41

42 Muller (2007) estimated the costs of adapting urban water infrastructure in sub-Saharan Africa to climate change to 43 be USD 2 - 5 billion per year. This study assumes that: (a) reliable yields from dams will reduce at the same rate as 44 stream flow (e.g., a 30% reduction in stream flow will mean a 30% reduction in reliable yield, and the unit cost of 45 water will go up by more than 40%); (b) where waste is disposed into streams, a reduction in stream flow by x% will 46 mean that the pollutant load must be reduced by x%; and (c) power generation reduces linearly with stream flow. 47 The costs of adapting existing urban water storage facilities are estimated at \$50 - 150 million/year, and the costs of 48 additional new developments are estimated at \$15 - 50 million/year. For wastewater treatment, the adaptation costs 49 of existing facilities are estimated at \$100 - 200 million/year, and the costs of additional new facilities are estimated 50 at \$75 - 200 million/year.

51

52 Hurd et al (2004), based on partial equilibrium river basin models, estimate that for the USA climate change impacts

- on municipal and industrial welfare is less than a 1% decrease for both wet and dry scenarios.
- 54

1 Ward et al 2010 estimate the adaptation costs to provide enough raw water to meet future global industrial and 2 municipal water demand, based on country-level demand projections to 2050. Increased demand is assumed to be 3 met through a combination of increased reservoir yield and alternative backstop measures. The global adaptation 4 costs of \$12 bn p.a., with 83-90% in developing countries; the highest costs are in Sub Saharan Africa. Globally, 5 adaptation costs are low compared to baseline costs (ca. \$73 bn p.a.), which supports the notion of mainstreaming 6 climate change adaptation into broader policy. The method provides a tool for estimating broad costs at the global 7 and regional scale; such information is of key importance in international negotiations. The global cost estimates 8 (developing and developed countries combined) of climate-change related adaptation in the water resources sector 9 amount to 0.04–0.06 percent of world GDP. The baseline adaptation costs are significantly higher, but still low (0.33 10 percent).

11 12

13 10.3.3. Wastewater and Urban Stormwater

Climate change is expected to worsen many forms of water pollution, including the load of sediments, nutrients, dissolved organic carbon, pathogens, pesticides, and salt, as well as thermal pollution, as a result of higher water temperatures, increased precipitation intensity, and low flow periods (Kundzewicz et al., 2007). In addition, more frequent heavy rainfall events may overload the capacity of sewer systems and water and wastewater treatment plants more often. Increased occurrences of low flows will lead to decreased contaminant dilution capacities, and therefore higher pollutant concentrations.

21

Hughes, et al 2010, estimate the average annual costs of adaptation for urban sewers for World Bank eligible nations at \$3.0 billion per year over the period 2010–50. Price, et 2010 estimate for Canada the cost of building and maintaining additional storm water storage capacity necessary to manage the additional runoff associated with the change in the 100-year, 24-hour storm at between \$140 million to \$2 billion present value from 2010 to 2100 with a 3% discount rate. In a similar analysis for 19 major USA cities, Price, et al 2011 estimates for each city the increase in annual cost from the changes in the 10-year, 24-hour storm for Los Angeles in 2100 is \$135 million, Boston \$7 million and Chicago \$40 million.

29 30

31

32

10.3.4. Energy: Hydropower and Cooling Water

Hurd et al 2004, looking at intersectoral competition for water using a set of partial equilibrium river basin models,
estimate that for the USA climate change impacts welfare impacts on thermal cooling water to be as great as losses
\$622 million per year or a 6.5 % welfare loss in the energy sector. Block, et al 2010 find that for Ethiopia adaption
to climate change to maintain hydropower output from 2010 to 2050 would be an increase of 4% of capital cost
under the most sever dry scenario and a reduction of 3% under the extreme wet scenario.

38 39 40

41

10.3.5. Inland Navigation

Millerd (2005) analyzes the economic impacts of lower water levels in the Great Lakes, with consequent reductions in vessel cargo capacities and increases in shipping costs. The lower water levels predicted as a result of a doubling of the atmospheric concentration of carbon dioxide could increase annual transportation costs by 29 percent, more moderate climate change could result in a 13 percent increase in annual shipping costs, based on current prices. The impacts vary between commodities and routes.

47

48 Middelkoop, et al 2001, examines climate change impacts on inland navigation on the Rhine. Increased frequency of 49 flood periods will stop more often. Longer periods of low flow will also increase the average annual number of days

50 during which inland navigation is hampered or stagnates. When the Rhine discharge drops below about 1000 to

51 1200 m3/s, ships on the major transport route Rotterdam-Germany-Basle cannot be fully loaded, and transporting

- 52 cost rise. Current projects on channel improvements can only partly alleviate these problems. This provides a
- 53 qualitative estimate to economic impact which could be substantial given the value of navigation on the Rhine
- 54 System.

10.3.6. Irrigation

4 5 Fischer, et al 2007 analyze the additional irrigation water required under various climate change scenarios and the 6 associated costs. The cost of supplying water from different sources, investment in irrigation equipment, facilities, 7 land improvement, and computer technology; maintenance and repair, and labor were included, as were additional 8 pumping and energy cost, water price, operation and maintenance, and labor. Additional capital costs of increasing 9 irrigation on already irrigated land were assumed to be minimal. By 2080, the global annual costs of additional 10 irrigation water withdrawals for existing irrigated land caused by climate change are estimated at \$24–27 billion. 11 Benefits of climate mitigation are small or even negative up to around 2040, but amount to some\$ 8–10 billion 12 annually by 2080.

13

22

25

28 29 30

31

1 2 3

Nelson, et al 2010 estimate that the cost of improved irrigation efficiency to adapt to climate change in 2050 to maintain current climate project yields in developing countries to be between \$1.5 and 2.0 billion dollar per year.

Strzepek, et al 2010 find that adaptation for Ethiopia to maintain agricultural production at non-climate change level would be best achieved by soil water management from increased irrigated and drained areas, improved irrigation efficiency and research related to on-farm practices. The range of costs for these adaptions was from \$68 million per year for the dry scenario dominated by irrigation to \$71 million per year under the wet scenario dominated by

- 21 installation of agricultural drainage.
- 2324 10.3.7. Nature Conservation

Future water demands for nature conservation will be different than today's (see Chapter 4). There is no published assessment of the economic implications.

10.3.8. Recreation and Tourism

The impact of climate-change-induced change in water resources on tourism and recreation are discussed in Section
 10.6. Tourism and recreation use substantial amounts of water but the implications of climate-change-induced
 changes in tourism and recreation on water demand have yet to be quantified.

35 36 37

38

10.3.9. Water Management and Allocation

39 Adaptation to changing conditions in water availability and demand has always been at the core of water 40 management (Adger et al., 2007). Traditionally, water managers and users have relied on historical experience when 41 planning water supplies and distribution (UNFCCC, 2007). Water supply management has mainly concentrated on 42 meeting increasing water demand, and flood defense measures have assumed a stationarity of flood recurrence 43 periods. However, under a changing climate these assumptions are no longer valid (Kundzewicz et al., 2007). 44 Therefore, current water management practices need to be redesigned, and the procedures for designing water-45 related infrastructure need to be revised. Otherwise, systems may be wrongly conceived, and under- or 46 overdesigned, with either inadequate performance or excessive costs as a result. However, necessary adaptation to 47 climate change in the water sector goes beyond structural measures, but also includes forecasting/warning systems, 48 insurance instruments and a large variety of means to improve water use efficiency and related behavioral change, 49 economic and fiscal instruments, legislation, institutional change, etc. (Kundzewicz et al., 2008). 50 51

52

1 **10.4. Transport**

2

3 The issue of climate change in the transport sector is one that has received qualitative, but limited quantitative, focus 4 by the research and government communities. As detailed below, several governments have actively explored the 5 potential impacts of climate change on the transport sector. However, these studies are primarily informative in 6 nature and focus on overall impacts such as impacts on transportation safety or disruptions of transportation service. 7 A move toward quantitative, economic analysis is just beginning as researchers begin to bring the transport sector in 8 line with efforts in the water and agriculture sectors. Examples of this initial work include economic studies by 9 Larsen et al (2010), Chinowsky et al (2010), and Chinowsky et al (2011). Additional work that treats the transport 10 sector as a complement to the work such as in disaster research (Hallegatte and Ghil 2008), is providing insights to 11 the transport sector, but does not center on the sector itself. Additional work is in the early stages, but the transport 12 sector remains as a focus for additional research. 13 The impact of climate change on transportation depends greatly on the climatic zone the infrastructure is in and how

The impact of climate change on transportation depends greatly on the climatic zone the infrastructure is in and how climate change will be manifest. There are three major zones that face the effects of climate change on the array of transportation areas.

17	Geographic Zone	Vulnerabilities to Changes in Climate
18	Freezing/Frost Zone	Permafrost, freeze-thaw cycles, precipitation intensity
19	Temperate Zone	Change in Precipitation intensity, maximum daily precipitation
20	Tropical Zone	Change in Precipitation intensity, maximum daily precipitation
21		

10.4.1. Roads

10.4.1.1.Paved Roads

26 27 Studies on the effects of climate change on road networks are primarily focused on qualitative predictions 28 concerning road impacts on both safety and road durability (TRB 2008; Galbraith et al 2005; AUSTROADS 2004). 29 Typical of these findings are projections regarding the likelihood of reduced life spans for roads, increased erosion 30 of unpaved roads, and potential effects of sea level rise on coastal roads. In these studies, paved roads are the 31 primary focus due to the importance of these roads. Paved road degradation is directly related to climate change 32 stressors including precipitation amounts, traffic, temperature, and flooding incidents, among other factors. In this 33 section, these elements are presented in terms of paved roads and the vulnerability to climate change impacts. 34

35 36

37

22 23

24 25

10.4.1.1.1. Coastal roads

38 Coastal roads are at risk from a number of climatic change factors, including: sea level rise, storm surge, increased 39 intensity and frequency of severe events, increased precipitation, increased temperature, and more frequent freeze 40 thaw cycles for roads that lie in northern climates (Koetse, et al, 2009; URS 2010). Many of these are part of 41 emergency evacuation networks from coastal metropolitan areas in cases of severe events such as hurricanes and 42 extreme flooding (Potter, et al, 2008; Suarez, et al, 2005; TRB 2008). Many of the largest cities lie in coastal areas 43 (New York, London, New Orleans, Tokyo, Kolkata, Shanghai, etc) and each have large road networks that are 44 vulnerable to coastal effects (Kamal-Chaoui, et al, 2009). Of particular concern to coastal roads is the vulnerability 45 to erosion on the seaward side due to increased wave erosion and higher tides. Many coastal road networks are built along slopes or hills, which are affected by precipitation events that undermine the integrity of the road base, leading 46 47 to pavement failures or landslides. Hardening the seaward side of coastal roads is required to provide protection 48 against increased hydrologic action and specifically to protect the roadbed from direct exposure to the elements 49 (FHWA 2008). Finally, as the frequency of storm surges increases due to the increased severity of storms, the ability 50 to utilize lower cost remedies for coastal road defenses decrease and more expensive options such as road relocation or elevation increase will be required to offset increased risks. 51 52

- 53
- 54

10.4.1.1.2. Pavements

1 2

3 There are numerous studies on the lifespan of road pavements in relation to natural elements including temperature, 4 precipitation, and freeze-thaw cycles as well as traffic patterns and geographic factors (Koetse, et al, 2009). In terms 5 of temperature increases, the concern for pavements is the softening of road surfaces due to higher maximum 6 monthly temperature. This is a concern as these increases can lead to softening of the pavement as temperatures 7 exceed design thresholds (Lavin 2003). This can cause rutting or bleeding of asphalt surfaces with the effect 8 enhanced in higher traffic areas. Similar concerns exist with increased precipitation. Greater amounts of 9 precipitation are shown to increase pavement degradation due to cracking and sub-base degradation (N.D. Lea 10 International Ltd., 1995). Finally, an increase in the number of freeze-thaw cycles impacts both the base and 11 pavement surface (FHWA 2006). The associated pavement damage will increase in areas where the number of 12 freeze-thaw cycles is anticipated to increase.

13 14 15

16

10.4.1.1.3. Sub-base

Warming and the melting of permafrost in northern climates as well as increased precipitation and flooding threaten the integrity of road base and sub-bases. In northern climates, the melting of permafrost can shorten the trucking season, increase repair costs, and undermine the integrity of the road base in large areas. Changes in rainfall intensity and amount have the ability to threaten ground movement and slope instability (Larsen, et al, 2008). This affects the integrity of roads, rail, and pipeline beds. This may increase maintenance costs and cause safety issues. Where bridges exist, increased intensity and amount of precipitation can cause bridge scour, lessening the design life and resulting in safety concerns (TRB 2008; Larsen, et al, 2008).

24 25

26

27

10.4.1.1.4. Drainage

28 Drainage presents a specific problem for urban areas that experience precipitation events that are above their built environment capacity (Hunt 2010; Chicago Climate Action Plan). "Future increases in the intensity and frequency of 29 30 heavy rainfall events would have implications for the design of roads, highways, bridges and culverts with respect to 31 stormwater management, especially in urban areas where roads make up a large proportion of the land surface 32 (Lemmen, et al, 2010)." In terms of paved roads, the challenge to these locations is the capacity of existing drainage 33 networks, from culverts to storm sewers, to accommodate the projected increases in water flows. The failure of these 34 systems to accommodate the increases will lead to both the undermining of road bases as well as overtopping of 35 road surfaces (Kamal-Chaoui, et al, 2009). In terms of the former, the inability of drainage systems to move water 36 away from the road surface will cause saturation of soils and result in both softening of the road base as well as 37 erosion. Similarly, in areas prone to flooding, the inability of culverts to accommodate increased water levels will 38 result in the overtopping of road surfaces. This hydrologic action will result in increased failure rates of pavements 39 including cracking and shoulder erosion.

40 41

43

42 10.4.1.2. Unpaved Roads

Although paved roads are the primary transportation network in industrialized countries, unpaved roads continue to
be ubiquitous throughout the rest of the world. In 2008 only about 25% of sub-Saharan Africa's primary roads were
paved, compared to a global rate of 50% (Gwilliam et al 2008). Unpaved roads are vulnerable to a number of
climate-based factors.

48 49

50 10.4.1.2.1. Winter roads

51

52 Winter roads are temporary roads found in cold climates where sufficient snow levels allow grading to be performed 53 above environmentally sensitive areas that are exposed during warmer months. These roads require low

54 temperatures to function properly and would be impacted by climatic warming (Mills et.al, 2007; Tighe et. al, 2002).

The usage of winter roads is likely to be restricted (night time use only) where temperatures are predicted to exceed -2°C or be discontinued if temperatures exceed 0°C due to unstable road bases. This will reduce economic viability of winter roads and lessen connectivity of rural areas in Northern climates (Mills and Andrey 2002).

10.4.1.2.2. Ice roads

8 Similar to winter roads, ice roads are found in northern climates where extended periods of freeze are standard 9 during the winter months and are vulnerable to climatic warming (Mills et.al, 2007). However, ice roads differ from 10 winter roads in that they are maintained over bodies of water. In these instances, ice roads are dependent on 11 continuous freeze conditions to ensure that the ice is passable by heavy equipment and trucks. In many instances, 12 these roads provide the only access to remote communities or mining camps. The temperature above which an ice road is likely to become unstable depends on several factors, including the thickness of the ice and the weight of the 13 14 loads using the ice road (Treasury Board of Canada (undated)). The projected climate change indicators on increased 15 temperature place in doubt the ability to maintain these roads for the current usage cycles, raising economic 16 concerns.

17 18

20

1

2

3

4 5 6

7

19 10.4.1.2.3. Drainage and surface erosion

Unpaved roads, both dirt and gravel surface, are less vulnerable to temperature variations than paved roads, but have significantly higher vulnerability to changes in precipitation. Specifically, the rate of erosion on an unpaved road is linked with the level of traffic on the road, the slope of the road, and the precipitation striking the road surface among other lesser factors (Dube et al 2004; Sheridan and Noske 2005). As the amount of precipitation increases, the rate of erosion grows based on the slope and traffic levels. This degradation can be reduced, but not eliminated, through adaptations such as changing the surface of the road or increasing drainage.

27 28 29

30

10.4.1.2.4. Runoff

31 Since unpaved roads are less impervious than paved roads, the resulting rainfall from a storm is more likely to 32 penetrate the surface of the road and gather sediment and soil within the unpaved roads causing erosion (Ziegler, 33 1997). This erosion has environmental impacts such as pollution to nearby streams and lakes as well as damages to 34 vegetation and stream ecology (Turton, 2009; Gravel Road Maintenance Manual, 2010; Kahklen, 2001; Ziegler, 35 1997). Other factors which increase the erosion are: the steepness of road and cut-slopes (Arnáez, 2004; Ramos-36 Scharron, 2005), the amount of traffic intensity (Burroughs, 1989; Ziegler, 2001, Arnáez, 2004), rain splash 37 (Ziegler, 2000) and where relative to a residential area the road is located (Shi, 2008). Adaptations include adding 38 more vegetation or mulch, creating cut-slopes and ditches, and adding "proper" crowning to the unpaved surfaces 39 (Turton, 2009; Arnáez, 2004)

40 41

42 10.4.2. Rail

43

44 Rail beds are susceptible to increases in precipitation, sea level rise, extreme events and incidence of freeze-thaw 45 cycles. Similar to coastal roads, sea level rise endangers coastal rail lines by threatening the stability of the soil 46 beneath the rail bed (Baker et al, 2010). Additionally, large coastal events, including hurricanes and storm surge, 47 pose a threat to rail integrity through scour events.. Compounding these scour and visibility issues is the issue of 48 drainage systems unable to accommodate increased precipitation levels. Washouts of overpasses or sections of 49 tracks are common in areas where precipitation levels exceed design thresholds (DOT 2002; URS 2010). As 50 precipitation increases, this may occur along greater lengths of track. Finally, in Northern climates, the melting of permafrost may lead to ground settlement, undermining stability (Potter, et al, 2008; Larsen et al 2008). 51

52

Increased temperatures pose a threat to rail integrity. For air temperatures over 43°C, rail track deformities increase in likelihood (Baker, et al 2011; TRB 2008). However, there are suggestions that air temperature has a non-linear 1 relationship to rail temperature. Of greater concern is the rail temperature: "If rail heats more than 33°C above its

2 neutral temperature then a thermal misalignment, track buckle, or sun kink may result and derailments are possible

3 (Potter, et al, 2008)". Countermeasures to address this threat include adding air-cooling systems to keep rail

4 temperatures closer to 'neutral' and preheating rails to increase the neutral temperature of the rail and decrease the 5 impact of higher ambient air temperatures. These measures increase costs that will reflect in higher passenger and

6 freight transport costs. In urban areas, increased temperatures pose a threat to underground transport systems that

will see a burden on increased need for cooling systems (Hunt, et al 2010). In London, £178 million has been

- 8 allocated to finding a workable solution for increasing the capacity of the Tube's underground cooling system
- 9 (Arkell, et al, 2006). 10

Increased precipitation, flooding, storm surges, and extreme events can lead to the rendering of low-lying coastal or subterranean rail unusable until tracks are cleared (TRB 2008; Baker, et al 2010). This is of particular concern in coastal cities where rail is a major mode of transportation or where rail is used to transport goods form ports to other areas inland, such as New York, London, and New Orleans (Potter, et al, 2008; Kamal-Chaoui, et al, 2009; DOT 2002). These three cities have had extensive surveys and studies done for vulnerabilities and costs, but most major coastal urban areas are at some risk and merit greater investigation.

17 18

20

19 10.4.3. Pipeline

Increases in precipitation and temperature affect pipelines through scouring of base areas and unearthing of buried pipelines, compromised stability of bases built on permafrost,, and increases in necessary maintenance (TRB 2008; URS 2010). In cases of increased flood events, or temperature increases to create permafrost melting events, the pipeline can experience point failures in its support structure (Peterson, et al; Larsen, et al, 2008). The need for continuous stability along the pipeline creates the scenario where individual point failures can require extensive rerouting while the main pipeline is repaired. Temperature increase can result in thermal expansion of the pipelines, causing cracking at material connection points.

28 29

30 10.4.4. Shipping31

32 10.4.4.1. Inland Navigation and Low Flows

33 34 Inland navigation impacts from climate change vary widely due to projected rise or fall in water levels (Middlekoop, 35 et al, 2001). Increases in flooding events clog waterways, requiring additional time and resources to clear waterways 36 or ports. Landslides from increased precipitation cause a need for additional dredging of harbors or narrow 37 waterways (Peterson, et al; Potter, et al, 2008; UNCTAD 2009; Becker, et al 2011). Lower water levels negatively 38 affect lock systems that are necessary for inland transportation in some regions (Koetse, et al, 2009). In areas where 39 water level decreases, ships are restricted in terms of cargo weight and incur reductions to operating days (Jonkeren, 40 et al, 2009; Turpjin 2010; DOT 2002). Where dredging is an option to mitigate lower water levels, environmental 41 concerns including releasing toxins contained in the soils must be taken into account (Becker, et al 2011). Overall, 42 the effects on inland navigation are projected to be negative, but are region-specific. In areas such as the Rhineland 43 Basin, projected prolonged periods of low flow will increase the number of days during which inland navigation is 44 hampered or stopped. In the Great Lakes/St. Lawrence region, "ice-free navigation and [the] longer shipping season 45 is generally beneficial, but it is not likely to offset the losses associated with lower water levels (Lemmen, et al, 2010)." In Northern regions, increased days of ice-free navigation and a longer shipping season could positively 46 47 impact shipping and reduce transportation costs (Koetse, et al, 2009; UNCTAD 2009).

48 49

50 10.4.4.2. Coastal/Ports and Sea-Level Rise

51

52 Coastal areas will be affected by climatic change events including increased temperatures, sea level rise, increased 53 severe storm events, and increased precipitation (United Nations 2010; UNCTAD 2009; Potter, et al, 2008). Higher

severe some evens, and increased precipitation (officed Nations 2010, ONCEPTED 2007, Fotel, et al, 2000). If sea levels may increase the need for environmental mitigation to reduce contaminants that may enter the water 1 system through leeching (Gallivan, et al, 2009). Rising sea levels may affect the navigability of some ports,

2 specifically those with low-clearance bridge infrastructure (Gallivan, et al, 2009). It is important to distinguish that

3 the relative effect of sea level rise, increased severe events and increasing temperature and precipitation predictions

4 on coastal areas and ports seems to be negative overall, but differs widely by geographic location. The total assets of

136 of the world's largest port cities were examined and over \$3 trillion in assets were deemed vulnerable from
climatic change events. Coastal cities and ports cover only 2% of the world's geographic space, but house 13% of

7 the world's urban population (United Nations 2010).

8
9 Concerns for port and marine areas in response to temperature include increased degradation of pavement and paved storage areas, increased energy required for refrigerated ground units, and degradation of metal equipment used in the port areas, such as cranes and warehousing units. For paved areas, the effects of temperature and precipitation are similar to those of paved roads: rutting, increased degradation, and asphalt bleeding. For existing infrastructure, it may prove necessary to upgrade or replace new equipment projected to be severely adversely affected by climate change (Potter, et al, 2008; UNCTAD 2009; United Nations 2010; Gallivan, et al, 2009).

15 16

18

17 10.4.4.3. Transport Costs: Storminess, Impacts, Effectual Speeds

19 Transport costs are projected to be directly affected by climate change, but regional variations determine whether 20 the costs are expected to increase or decrease. Increased severe events and storminess in certain routes may affect 21 safety considerations and raise cost of shipping through requiring additional safety measures or longer routes that 22 are less prone to severe events (UNCTAD 2009; United Nations 2010). In ports where storminess and severe events 23 disrupt supply chains by destroying port infrastructure, delaying access to ports through debris or soil deposits, or 24 affects connecting road or rail infrastructure for transportation of goods, transport costs will increase and/or new 25 routes will be sought, creating modal or geographic shifts in transportation (Becker, et al 2011). Increased 26 storminess may also affect passage through lock systems, increasing weather-related delays and raising costs 27 (UNCTAD 2009; Potter, et al, 2008). Increased storminess may increase maintenance costs for ships and ports and 28 result in more frequent weather-related delays. In Northern climates, new shipping routes (Northwest Passage and 29 Northern Sea Route) may reduce shipping costs by reducing the distance ships must travel and lengthening the 30 number of days ships can travel through Arctic waters (United Nations 2010;TRB 2008).

31 32

33 10.4.5. Air 34

35 Airport pavement studies relating to climate change have mainly focused on the effects that increased/decreased precipitation, temperature, flooding, and extreme events will have on runways (DOT 2002; Fortier, et al). However, 36 37 airports in general have large amounts of paved areas including parking structures, tarmacs, hangars and areas for 38 loading and storage. Therefore the effect of temperature on airports is not restricted to runways, but rather imposes a 39 risk on the entire facility (Pejovic, et al, 2009). These effects are very similar to paved roads including: increased 40 rutting, softening and buckling under extreme temperatures, cracking, increased maintenance from greater freeze 41 thaw days, and decreased freight loads under hot conditions (Potter, et al, 2008). Where airports have infrastructure 42 built on permafrost that is projected to soften, this could compromise the base structures of runways and paved 43 areas. In coastal airports, inundation of runways and other areas is of concern, specifically from projected sea level 44 rise and risk of flooding and storm surges (Lemmen, et al, 2010; Potter, et al, 2008; Kamal-Chaoui, et al, 2009; DOT 45 2002). Flooding, storm surges, and increased extreme events all have effects on pavement and may degrade existing 46 infrastructure faster than projected under current climate conditions. In a study of climate effects on infrastructure in 47 Alaska, 24% of new costs are projected to come from airport maintenance and improvements resulting from climate 48 change, specifically permafrost considerations. One positive aspect is that warmer temperatures may benefit airports 49 in northern climates, including saved maintenance from less snow and ice removal and less degradation of pavement 50 from plowing and chemical compounds (Lemmen, et al, 2010; Potter, et al, 2008; DOT 2002). 51

52 An increase in air temperature affects air density; hotter air is less dense. In summer months, especially at airports

⁵³ located at high altitudes or with extreme temperatures, this will result in limitations for freight capacity, safety, and

54 weather-related delays (TRB 2008; Pejovic, et al, 2009). Hotter air requires less cargo or longer runways. However,

1

5 6

7 8

9

10 11 12

13 14

15

16

17 18 19

20 21

22

23 24 25

26

several studies argue that technological innovations will negate the challenges posed by extreme temperatures

(Chapman 2007). Increased storminess at airports, particularly those located in coastal regions, may increase the
 number of weather-related delays and cancellations (Pejovic, et al, 2009; Lemmen, et al, 2010).

number of weather-related delays and cancellations (Pejovic, et al, 2009; Lemmen, et al, 2010).
 4

10.5. Other Primary and Secondary Economic Activities

This section assesses the impact of climate change on primary (agriculture, mining) and secondary economic activities (manufacturing, construction), unless they are discussed elsewhere in the chapter or the report.

10.5.1. Primary Economic Activities

Primary economic activities (e.g. agriculture, forestry, fishing, mining) are particularly sensitive to the consequences of climate change because of their immediate dependence on the natural environment. In some regions, these activities dominate the economy.

10.5.1.1. Crop and Animal Production

Chapter 7 assesses the impact of climate change on agriculture, including the effects on (international) markets for crops.

10.5.1.2. Forestry and Logging

Chapter 4 assesses the biophysical impact of climate change on forestry, but does not address the economic effects.
(Sohngen and Mendelsohn, 1997; Sohngen and Mendelsohn, 1998; Sohngen *et al.*, 2001) develop an integrated
biophysical-economic model of forestry and the world market for forestry products. Including adaptation in forest
management, they find that climate change would accelerate tree growth. This would reduce prices to the benefits of
consumers all around the world. Low to mid latitude producers would benefit too as they switch to short-rotation
plantations. Mid to high latitude producers would be hurt by lower prices while their productivity increases only
modestly. Other studies reach very similar conclusions (Lee and Lyon, 2004; Perez-Garcia *et al.*, 2002).

35

36 10.5.1.3. Fisheries and Aquaculture

37 38 Chapter 4 assesses the impact of climate change on freshwater ecosystems, and Chapter 6 on marine ecosystems. 39 These assessments include the effects on commercially valuable fish stocks, but exclude the effects on markets. 40 Climate change impact the commercial fishing process through fish stock, capital, labour and enterprise, technological changes, prices and management practices (Link and Tol, 2009; Yazdi and Fashandi, 2010). (Allison 41 42 et al., 2009), using an indicator based approach, analyzed the vulnerability of capture fishery of 132 economies. 43 They find that though the precise impacts and direction of climate-driven change for particular fish stocks and 44 fisheries are uncertain, they are likely to lead to either increased economic hardship or missed opportunities for 45 development in countries that depend upon fisheries but lack the capacity to adapt. (Floc'h et al., 2008), for the Bay 46 of Biscay fisheries, analyze the market position and its evolution in nine key fish and cephalopod species and find 47 that a major part of the gross turnover remains potentially unaffected by long-term changes related to climate. On 48 the other hand, (Garza-Gil et al., 2011) find a decline in Iberian-Atlantic sardine biomass and profitability due to 49 climate change. The economic impact of climate change on fisheries is dominated by the impact of management 50 regime and market (Eide and Heen, 2002; Eide, 2008; McGoodwin, 2007; McIlgorm, 2010; Merino et al., 2010). 51 52

53

10.5.1.4. Mining and Quarrying

Climate change would affect exploration, extraction, production, and shipping processes in the mining and quarrying
industry (Pearce *et al.*, 2011). An increase in climate-related hazards (such as forest fires, flooding, windstorm and
likes) affects the viability of mining operations and potentially increases operating, transportation, and
decommissioning costs. Most infrastructure was built based on presumption of a stable climate so that there is little
preparation for adaptation (Ford *et al.*, 2010; Ford *et al.*, 2011; Pearce *et al.*, 2011).

10 10.5.2. Secondary Economic Activities

10.5.2.1.Manufacturing

13 14 Climate change would impact manufacturing through three channels. First, climate change affects primary economic 15 activities (see 10.5.1), and this means that prices and qualities of inputs are different. Second, the production process 16 is affected. The impact of climate change on energy demand is well understood (see 10.2). Using a biophysical model of the human body, (Kjellstrom et al., 2009a) show that labour productivity may fall, particularly of manual 17 labour in humid climates. (Hsiang, 2010) corroborate this with a statistical analysis of weather data and labour 18 19 productivity in the Carribbean for 1970-2006. Third, climate change affects the demand for products. This is 20 pronounced in manufactures that supply primary sectors (Kingwell and Farré, 2009) and construction material (see 21 below). Unfortunately, there is no literature that quantifies these effects (see Appendix 10B).

22 23

1

8 9

11 12

24 10.5.2.2. Construction and Housing

25 26 Climate and climate change affect construction in three ways. First, weather conditions are one of the key factors in 27 construction delays and thus costs. Climate change would change the length of the building season. Additionally, 28 precipitation affects the cost of construction through temporary flood protection (coffer) structures, slope 29 stabilization management and dewatering of foundations. There are adaptation measures that may reduce some of 30 the costs. Appattanavis, et al, 2010 reports the development of a probabilistic operational tools that has 31 demonstrated a reduction in the expected value of construction delays and thus associated costs. Second, buildings 32 and building materials are designed and selected to withstand a particular range of weather conditions. As climate 33 changes, design standards will change too. Third, a change in the pattern of natural disasters would imply a change 34 in the demand for rebuilding and repair. Fourth, exterior building components including windows, roofing, and 35 siding are all specified according to narrow environmental constraints. Climate change would introduce conditions 36 that are outside the prescribed operating environment for many materials, resulting in increased failures of window 37 seals, increased leaks in roofing materials, and reduced lifespans of timber or glass-based cladding materials. 38 Similarly, the interior building systems that allow for proper airflow in a facility face significant issues with climate 39 change. For example, the increases in temperature and precipitation will lead to increased humidity as well as indoor 40 temperatures. These increases require increased airflow in facilities that were designed to be temperature controlled 41 such as hospitals, schools, and office buildings. This increased airflow is required to offset potential issues with 42 mold that lead to "sick building" syndrome. However, these increased requirements will require upgrades to air 43 conditioning and fan units to ensure the capacity is available to meet environmental conditions. These upgrades will 44 require renovations that may be significant in scope and cost. Unfortunately, these impacts have yet to be quantified. 45

46 47

48

10.6. Recreation and Tourism

49 Recreation and tourism is one of the largest sectors of the economy. It accounts for a substantial share of consumer

- 50 spending in rich countries, and employs many people. Supply of tourism services is the dominant activity in many 51 regional economies.
- 52

1 Recreation and tourism encompass many activities, some of which are more sensitive to weather and climate than

others: compare sunbathing to angling, gambling, business seminars, family visits, and pilgrimage. Climate change
 would affect the place, time and nature of these activities.

4 5

6

7

There is a large literature on the impact of climate change on tourism. Some studies focus on the changes in the behavior of tourists, that is, the demand for recreation and tourism services (see 10.6.1). Other studies look at the implications for tourists resort, that is, the supply of recreation and tourism services (see 10.6.2). A few studies consider the interactions between changes in supply and demand (see 10.6.3).

8 9 10

11

12

10.6.1. Recreation and Tourism Demand

Conventionally, recreation does not involve an overnight stay whereas tourism does. That implies that recreation,
unlike tourism, is done close to home. Whereas tourists, to a degree, chose the climate of their holidays,
recreationists do not (although climate is a consideration in the choice where to live). Tourists would adapt to
climate change by changing the location, timing and activities of their holidays; recreations would adapt only timing
and activities (Smith, 1990).

18 19

21

20 10.6.1.1. Recreation

There has been no research on systematic differences of recreational behaviour due to differences in climate. The impact of climate change on recreation is therefore unknown. The economic impact is probably limited, as people are more likely to change the composition rather than the level of their time and money spent on recreation. For instance, (Shaw and Loomis, 2008) find a likely increase, due to climate change, in boating, golfing and beach recreation at the expense of skiing.

27

28 There are case studies of the impact of climate change on recreation. (Dempson et al., 2001) note that the salmon 29 fishery in Newfoundland is closed during hot weather and low water levels. (Ahn et al., 2000) study the impact of 30 climate change on recreational trout fishing in the Southern Appalachian Mountains. (Whitehead et al., 2009) study 31 the effect of sea level rise on sea shore fishing in North Carolina. Both studies find a substantial decrease in the 32 value recreationists would derive from these activities - so much so that one could expect people to adopt other 33 ways of enjoying themselves. Such alternatives were unfortunately excluded from the studies. Similarly, (Daugherty 34 et al., 2011) conclude that climate change will make it more difficult to guarantee adequate water levels for boating 35 and angling in artificial reservoirs – but do not study what recreationists would do instead. (Pouta et al., 2009) 36 project a reduction in cross-country skiing in Finland, particularly among women, the lower classes, and urban 37 dwellers. (Shih et al., 2009) find that weather affects the demand for ski lift trips. There are positive effects too. 38 (Richardson and Loomis, 2005) find that climate change would make trips to the Rocky Mountain National Park 39 more enjoyable. (Scott and Jones, 2006; Scott and Jones, 2007) foresee an increase in golf in Canada due to climate 40 change, (Kulshreshtha, 2011) sees positive impacts on Canadian recreation in general, and (Coombes et al., 2009) 41 predict an increase in beach tourism in East Anglia; but none of these studies accounts for budget constraints on time 42 or money.

43

44 Some studies confuse weather and climate, or suffer from selection bias. For instance, (Graff Zivin and Neidell, 45 2010) find that rear a rear when the weather is inclement. (South at al = 2007) estimate the relationship

2010) find that people recreate indoors when the weather is inclement. (Scott *et al.*, 2007) estimate the relationship
 between visitors to Waterton Lakes National Park and weather variables for eight years of monthly observations;

47 and use this to project an increase in visitor numbers due to climate change. A survey among current visitors

48 indicates that a deterioration of the quality of nature would reduce visitor numbers. (Taylor and Ortiz, 2009)

estimate the impact of weather on domestic tourism in the UK, finding that tourists often respond to past weather.

50 The hot summer of 2003 had a positive impact on revenues of the tourist sector. As another example, (Denstadli *et*

- 51 *al.*,) find that tourists in the Arctic do not object to the weather in the Arctic. (Gössling *et al.*, 2006) reaches the
- 52 same conclusion for tourists on Zanzibar. Neither study assesses the representativeness of their sample of all
- 53 tourists.
- 54

10.6.1.2.Tourism

2 3

1

Climate (Braun *et al.*, 1999; Gómez Martín, 2005; Wall and Badke, 1994) and weather (Agnew and Palutikof, 2006; Garbas, 2006; Rossello, 2011; Rosselló-Nadal *et al.*, 2010; Álvarez-Díaz and Rosselló-Nadal, 2010) are important factors in tourist destination choice. (Maddison, 2001) estimates a statistical model of the holiday destinations of British tourists. (Lise and Tol, 2002) replicate this for Dutch tourists and (Bigano *et al.*, 2006) for tourists from 45 countries. Tourists have a clear preference for the climate that is currently found in Southern France, Northern Italy and Northern Spain. People from hot climates are more particular about where they spend their holidays than people from cool climates.

11

However, whereas (Bigano *et al.*, 2006) find regularity in revealed preferences, (Scott *et al.*, 2008b) find
 pronounced differences in stated preferences. This suggests that the impact of climate change on tourism demand
 may be more complicated than suggest by the econometric analyses reviewed above (Gössling and Hall, 2006).

15

16 (Bigano *et al.*, 2007; Hamilton *et al.*, 2005a; Hamilton *et al.*, 2005b) use the above econometric analyses to

17 construct a simulation of domestic and international tourism. (Hamilton and Tol, 2007) downscale the national

results of these studies to the regions of selected countries. The advantage of such a model is that it assesses the

19 logical consequences of the econometric results, which is not trivial as all potential holiday destinations see a 20 simultaneous change in their attractiveness. The disadvantage is stylized representation of the effect of climate on

simultaneous change in their attractiveness. The disadvantage is stylized representation of the effect of climate on destination choice. Two main findings emerge. First, climate change would drive tourists to higher latitudes and

altitudes. International tourist arrivals would fall, relative to the scenario without warming, in hotter countries, and
 rise in colder countries. Tourists from Northwestern Europe, the main origin of international travelers at present,
 would be more inclined to spend the holiday in their home country, so that the total number of international tourists
 falls. Second, the impact of climate change is dominated by the impact of population growth and, particularly,
 economic growth. In the worst affected countries, climate change slows down the rate of growth in the tourism

27 sector, but tourism nowhere shrinks.

28 29

30 10.6.2. Recreation and Tourism Supply31

32 There are a number of so-called biometeorological studies of the impact of climate change on tourism. (Yu et al., 33 2009a) construct a Modified Climate Index for Tourism and apply it to fifty years of past data for Alaska and 34 Florida. They find that Alaska has become more attractive, and Florida less attractive to tourists. (Yu et al., 2009b) 35 use the same approach to conclude that the climate for sightseeing has improved in Alaska, while the climate for 36 skiing has deteriorated. (Scott et al., 2004) use a similar index. Climate change would make Mexico less attractive to 37 tourists, and Canada more attractive. Florida and Arizona would lose market share in US tourism. (Perry, 2006) 38 notes that the hot summer of 2003 had a negative impact on tourism in the Mediterranean. (Matzarakis et al., 2010) 39 construct a composite index of temperature, humidity, wind speed and cloud cover, and use this to map tourism 40 potential. (Lin and Matzarakis, 2011) apply the index to Taiwan and Eastern China. (Endler and Matzarakis, 2010a; 41 Endler and Matzarakis, 2010b; Endler and Matzarakis, 2011) use this index to study the Black Forest in Germany in 42 detail, highlighting the differences between summer and winter tourism, and between high and low altitudes; the 43 latter aspect is thoroughly investigated by (Endler et al., 2010). (Matzarakis and Endler, 2010) uses this method to 44 study Freiburg. (Matzarakis et al., 2007) use the same method to project this potential into the future, finding that 45 the Mediterranean is likely to become less attractive to tourists. (Amelung and Viner, 2006; Giannakopoulos et al., 2011; Hein et al., 2009; Perch-Nielsen et al., 2009) use a different index to reach the same conclusion, but also point 46 47 out that Mediterranean tourism may shift from summer to the other seasons. (Giannakopoulos et al., 2011) notes that 48 coastal areas in Greece may be affected more than inland areas because, although temperature would be lower, 49 humidity would be higher. (Moreno and Amelung, 2009), on the other hand, conclude that climate change will not 50 have a major impact on beach tourism in the Mediterranean (at least not before 2050) because sunbathers like it hot. (Amelung et al., 2007) use a weather index for a global study of the impact of climate change on tourism, finding 51 shifts from equator to pole, summer to spring and autumn, and low to high altitudes. (Perch-Nielsen, 2010) 52

53 combines a meteorological indicator of exposure with indicators of sensitivity and adaptive capacity. She uses this to

1 rank the vulnerability of beach tourism in 51 countries. India stands out as the most vulnerable, and Cyprus as the 2 least vulnerable.

3

4 The main criticism of most biometeorological studies is that the predicted gradients and changes in tourism 5 attractiveness have rarely been tested to observations of tourist behaviour. (De Freitas et al., 2008) validate their 6 proposed meteorological index to survey data. (Moreno et al., 2008) and (Ibarra, 2011) use video of beach 7 occupancy to test meteorological indices for beach tourism. (Gómez-Martín, 2006) tests meteorological indices against visitor numbers and occupancy rates.

8 9

10 Other studies put tourists centre stage. (Eijgelaar et al., 2010) argues that so-called "last chance tourism" is a strong

11 pull for tourists to visit Antarctica to admire the glaciers while they still can. (Farbotko, 2010) uses a similar

12 mechanism to explain the rise in popularity of Tuvalu as a destination choice.

13

14 Studies on the supply side often focus on ski tourism. (Abegg and Elsasser, 1996) is one of the earliest papers. 15 Under their particular climate scenario, a warming of 2°C would raise the altitude of snow-reliable resorts by 300

16 metres in the Swiss Alps; 22% fewer resorts would be snow-reliable. (Elsasser and Bürki, 2002) point out that 17 artificial snow-making cannot fully offset the loss in natural snowfall. (Hamilton et al., 2007) reaches a similar 18 conclusion for New England, highlighting the importance of "backyard snow" to induce potential skiers to visit ski 19 slopes. (Pickering et al., 2010) find a preference of skiers in Australia of natural snow over artificial snow. From a 20 series of interviews, (Hill et al., 2010) find that tourist operators in the Swiss Alps seek to maintain the status quo 21 through adaptation, rather than search for viable alternatives to ski tourism; and argue that better coordination is 22 needed for adaptation to be successful. (Scott and McBoyle, 2007) highlight that there are many options to adapt to a 23 loss of snow for skiing. (Hoffmann et al., 2009) use a survey of ski lift operators in the Swiss Alps and find that 24 adaptation measures are driven by the ability to adapt (rather than the need) and that adaptation is more prevalent on

25 higher slopes (which are less vulnerable). (Scott et al., 2006) study the impact of climate change on six ski areas in

26 eastern North America. Even with snowmaking, climate change could be an existential threat to 3 of the 6 ski areas 27 by 2050; and climate change would lead to a contraction in each area in each scenario. (Dawson et al., 2009) use

28 past analogues to study the impact of future climate change on ski tourism in the Northeastern USA. They find that

29 small and very large resorts will be hit hardest. (Scott et al., 2008a) find that snowmobiling would have disappeared 30 from the Northeastern USA by the end of the 21st century. Artificial snowmaking would halt the decline of ski

31 resorts, but water scarcity and the costs of snowmaking would be increasingly large problems. (Scott et al., 2003)

32 reach the same conclusion for southern Ontario, (Scott et al., 2007) for Quebec, and (Steiger and Mayer, 2008) for

33 Tyrol. (Bicknell and Mcmanus, 2006) study adaptation for ski resorts in Southeastern Australia. They note that

resorts may continue to be economically viable in the absence of snow by focusing on alternative activities. 34 35 (Pickering and Buckley, 2010) note that artificial snow-making may be infeasible and uneconomic at the scale

required to offset the loss of natural snow in Australia, and argue for a reorientation towards summer tourism and 36

37 residential property development. (Moen and Fredman, 2007) find that alpine ski resorts in Sweden would become

38 economically unviable, and that alternative livelihoods need to be developed. (Tervo, 2008) finds that the shortening

39 of the Finnish ski season would be too limited to affect the economic viability of tourist operators. (Serguet and

40 Rebetez, 2011) find that the Swiss Alps attract more tourists during hot summers, and argue that climate change

41 would structurally improve the mountains as a summer tourism destination. (Bourdeau, 2009) argue along the same

42 lines for the French Alps, stressing the importance of non-tourism alternatives as a source of economic development. 43 (Potocka and Zajadacz, 2009) argue that prudent management supplies tourism services suitable for all weather.

44

45 Other studies consider beach tourism. (Phillips and Jones, 2006) focuses on beach erosion due to sea level rise, and

the various options to prevent that. (Hamilton, 2007) finds an aversion against artificial coastlines, so that hard 46 47 protection measures against sea level rise would reduce the attractiveness of an area for recreation and tourism.

48 (Raymond and Brown, 2011) survey tourists on the Southern Fleurieu Peninsula. They conclude that tourists who

49 are there for relaxation worry about climate change, particularly sea level rise, while tourists who are there to enjoy

50 nature do not share that concern. (Becken, 2005) finds that tourist operators have adapted to weather events, and

argues that this helps them to adapt to climate change. (Belle and Bramwell, 2005) find that tourist operators on 51

Barbados are averse to public adaptation policies. (Uyarra et al., 2005) find that tourists on Barbados would consider 52

53 holidaying elsewhere if there is severe beach erosion. (Buzinde et al., 2010a; Buzinde et al., 2010b) find that there is

54 a discrepancy between the marketing of destinations as pristine and the observations of tourists, at least for Mexican beach resorts subject to erosion. They conclude that, contrary to official preconceptions, tourists are not deterred by
 environmental change.

3

Some studies focus on nature tourism. (Wall, 1998) notes the impact of climate change on water-based tourism, on the coast through sea level rise and inland through drought. (Cavan *et al.*, 2006) find that climate change may have a negative effect on the visitor economy of the Scottish uplands as natural beauty deteriorates through increased wild fires. (Saarinen and Tervo, 2006) interviewed nature-based tourism operators in Finland, and found that about half of them do not believe that climate change is real, and that few have considered adaptation options. (Nyaupane and Chhetri, 2009) argue that climate change would increase weather hazards in the Himalayas and that this would endanger tourists. (Uyarra *et al.*, 2005) find that tourists on Bonaire would not return if coral was bleached. (Hall,

2006) finds that small tourist operators in New Zealand do not give high priority to climate change, unless they were

12 personally affected by extreme weather in recent times. The interviewed operators generally think that adaptation is

13 a sufficient response to climate change for the tourism sector. (Wang *et al.*, 2010) note that glacier tourism is

14 particularly vulnerable to climate change, highlighting the Baishiu Glacier in China.

15

16 A few studies consider all aspects of the impact of climate change for particular countries or regions. (Ren Guoyu,

17 1996) shows that domestic tourism in China will shift northwards, that sea level rise would damage some tourist 18 facilities, and that the overall impact of climate change on China's tourist sector would be negative. (Harrison *et al.*,

18 facilities, and that the overall impact of climate change on China's tourist sector would be negative. (Harrison *et al* 1999) conclude that climate change would make Scotland less attractive to tourists in winter but more attractive in

summer. (Ceron and Dubois, 2005) assess the impact of climate change on tourism in France. They argue that the

French Riviera may benefit because it is slightly cooler than the competing coastal resorts in Italy and Spain. The

Atlantic Coast, although warming, would become less attractive because of increased rainfall. The increase in

summer tourism in the mountains is unlikely to offset the decrease in winter tourism. (Jones *et al.*, 2006) study the impact of climate change on three festivals in Ottawa. They argue for heat wave preparedness for Canada Day, find

that skating on natural ice may become impossible for Winterlude, and fret that the dates of the Tulip Festival may

- need to be shifted to reflect changing phenology. (Dawson and Scott, 2010) assess the impacts in the Great Lakes regions, finding reduced tourism potential in winter but increased opportunities in summer. (Turton *et al.*, 2010)
- study Australia. They conclude that tourist operators find the uncertainty about climate change too large for early investment in adaptation.

30 31

32 10.6.3. Market Impacts33

34 There are only two papers that consider the economic impacts of climate-change-induced changes in tourism supply 35 and demand. Both studies use a computable general equilibrium model, assessing the effects on the tourism sector as 36 well as all other markets. (Berrittella et al., 2006a) consider the consumption pattern of tourists and their destination 37 choice. They find that the economic impact is qualitatively the same as the impact on tourist flows (discussed 38 above): Colder countries benefit from an expanded tourism sector, and warmer countries lose. They also find a drop 39 in global welfare, because of the redistribution of tourism supply from warmer (and poorer) to colder (and richer) 40 countries. (Bigano et al., 2008a) extend the analysis with the implications of sea level rise. The impact on tourism is 41 limited because coastal facilities used by tourists are sufficiently valuable to be protected against sea level rise. The 42 study finds that the economic impacts on the tourism sector are reinforced by the economic impacts on the coastal 43 zone; and that the welfare losses due to the impact of climate change on tourism are larger than the welfare losses 44 due to sea level rise.

45 46

50

47 **10.7.** Insurance48

49 10.7.1. Main Results of IPCC AR4

51 Property insurance, expanding with economic growth both in developed and developing countries, was identified in 52 the AR4 as potentially affected by more intensive and/or frequent weather-related disaster events caused by climate 53 change. With rising risk, insurability can be preserved through risk-reducing measures, where governments have an 54 important responsibility (AR 4, WG II, 7.4.2.2.4). In order to incentivize adaptation to climate change, insurers 1 communicate region specific risk information through risk commensurate prices to their stakeholders. They can 2 relieve governments from a substantial part of their disaster liability, but need by themselves stay financially 3 healthy, e.g. through improved risk management (AR 4, WG II, 7.6.3.).

[Information from SREX will be included in FOD]

10.7.2. Societal Role of Insurance Faced with Weather Hazards

10 Insurance provides individuals and enterprises with a way to internalize catastrophe risk costs prior to catastrophic 11 events, reduces the economic impact of climate-related and other disasters, thus stabilizing income and 12 consumption-flow and decreasing societal vulnerability. Fundamentally, insurance is based on the law of large 13 numbers: the larger the pool of uncorrelated and relatively small risks, the smaller the statistical variance in the 14 distribution of losses. Hence, an insurer with a large pool can predict the average loss per policy more accurately and 15 thus charge a lower and more stable premium than an insurer with a smaller pool. In addition to spreading risk over 16 a diversified pool, insurance spreads risk over time, because premium payments are manageable in each single year, 17 as against the financial burden if a catastrophic loss materializes. However, weather disasters such as disastrous floods, that may increase in frequency and/or intensity with climate change, violate the principle of assuming 18 19 uncorrelated risks, because many are affected simultaneously. Consequently, large losses are much more likely and 20 loss variance is much greater than without correlation, and the actual incurred loss may considerably exceed the 21 statistically expected loss of the pool (Cummins and Mahul, 2009; Aakre et al., 2010; Geneva Association, 2009). 22 The more regional frequencies or intensities of weather disasters rise, the higher the demand for risk capital that 23 insurers need to indemnify catastrophic losses and ensure financial solvency. This is either in the form of equity 24 capital or purchased in the reinsurance and capital markets. The capital costs account for a substantial portion of 25 premiums and the affordability and viability of weather peril insurance are subjects of ongoing research given future 26 climate change in many regions (Herweijer et al., 2009; Kunreuther et al., 2009; Charpentier, 2008; Geneva 27 Association, 2009; Hecht, 2008; Mills, 2009).

28

4 5

6 7 8

9

29 From this perspective, increasing volatility and burden of losses in many regions are expected to fundamentally 30 impact on the industry, constituting grounds for insurers to adapt their business to the changing risk and to support 31 the mitigation of GHG emissions in various ways (Hecht, 2008; Herweijer et al., 2009; Wilkins, 2010; Phelan, 32 2011).

33 34

35 10.7.3. Observed and Projected Losses from Weather Hazards

36 37 Insured losses from weather-related disasters are robustly evidenced to have increased substantially in recent 38 decades both globally and in regions. One study determined the slope of the linear trend in global insured weather-39 related losses, deflated to 2008 values, in the period 1980–2008 to be US\$ 1.4bn per year ([Barthel and Neumayer, 40 2011]; Schwierz et al., 2009; Crompton and McAneney, 2008). Insured losses are likely to be measured more 41 accurately than direct economic loss estimates because insurers in competitive markets have to precisely register and 42 monitor claims and payouts (Changnon, 2009a). Most prominent driver of the increase is socio-economic change, 43 such as higher concentrations of people and destructible wealth in progressively urbanised environments with rising 44 insurance penetration (Bouwer et al., 2007; Kunreuther and Michel-Kerjan, 2009). In order to look for trends 45 beyond socio-economically triggered changes, the latter are removed from the time series of nominal weather losses by normalisation, i.e. scaling up losses from the event for the area affected based on relative changes in destructible 46 47 property, inflation, damage susceptibility and insurance penetration between the year of the event and the present 48 (e.g., Crompton and McAneney, 2008). 49

50 The few studies on trends in normalised insured weather-related losses focus mainly on individual perils and regions

in the developed world, in particular Australia, USA and Germany. In two of these countries (USA, Germany), 51

52 several upward trends were detected, e.g. for thunderstorms, floods or winter storms in the USA (Table 10-8).

53 Trends in normalised insured losses can be influenced ,e.g., by changing damage susceptibilities (Crompton and

54 McAneney, 2008), or by factors within the insurance system, e.g. changes in claims-handling. Given these 1 uncertainties, it is hard to conclusively estimate, to what degree trends in normalised insured weather losses indicate

- 2 that an external driver, such as climate, is mainly responsible. Such an impact presupposes the trend in normalised
- 3 insured losses to run parallel with a corresponding trend in an observed causative meteorological parameter. One
- 4 study demonstrates that the number of days when a regional insurer in southwest Germany sustains losses displays a 5 trend since analysis started in 1986, while the meteorological parameters associated with severe convective storms
- trend since analysis started in 1986, while the meteorological parameters associated with severe convective storms
 in that region also show positive trends (Kunz et al., 2009). Similarly, increasing US thunderstorm-related
- normalised insured losses correspond with meteorological observations of increasingly favourable conditions of
- 8 severe thunderstorm development ([Sander et al., 2012], -> WG I); the observed rise in US normalised insured flood
- 9 losses corresponds to increased heavy precipitation events in many parts of the USA (-> WG I). In all these cases,
- 10 no conclusive attribution of losses to anthropogenic climate change has yet been made. The recent upswing in
- 11 hurricane hazard and associated losses seems at least partly to be connected to a mode of natural climate variability
- 12 (-> WG I, Schmidt et al., 2009a, 2009b).
- 13
- 14 [INSERT TABLE 10-8 HERE
- 15 Table 10-8: Observed normalized insured losses from weather hazards.]
- 16

17 Most studies concerning climate-change projections for insured weather losses relate to the impact of the

- 18 extratropical-storm hazard on homeowners' insurance in the various European countries. Climate model ensemble
- studies display a roughly consistent pattern of change until the period 2020–2050 and the end of the 21st century,
- 20 respectively: annual expected loss ratios, i.e. insured loss relative to total insured value per region, declines at
- 21 Mediterranean latitudes and increases in central, west and northern Europe, in parallel with the fields of high-
- 22 percentile local wind speeds in those regions. In all studies, loss ratios decrease again with higher latitudes in 23 Scandinavia and more eastern longitudes in eastern Europe. Increases in very large individual storms and associated
- 23 Scandinavia and more eastern longitudes in eastern Europe. Increases in very large individual storms and associated 24 large loss variability are indicated by increasing standard deviations of projected annual loss ratio distributions
- large loss variability are indicated by increasing standard deviations of projected annual loss ratio distributions
 (Pinto et al., 2007; Donat et al., 2011). As regards the direction of change in most parts of Europe, there is robust
- 26 climate modeling evidence and high agreement between the studies (Table 10-9).
- 27
- 28 [INSERT TABLE 10-9 HERE
- 29 Table 10-9: Climate change projections of insured losses.
- 30
- 31 Mean annual insured flood property losses in the UK are projected to rise with climate change (Table 10-9);
- 32 confidence in the sign of change is high given recent attribution of increasing probabilities for heavy precipitation
- and flooding in the UK driven by anthropogenic climate change (-> WG I [Pall et al., 2011, Min et al., 2011]).
- Typhoon-wind and rainfall may lead to increased annual losses to insured property in China (Table 10-9). There is
- 35 medium confidence in the sign of change, given some recent projections of more higher-intensity cyclone tracks
- 36 close to China in a global warming scenario (-> WG I [Murakami et al., 2011, Emanuel et al., 2007]). Agricultural 37 hailstorm insurance losses in the Netherlands are projected, based on regional climate-change scenarios, to increase
- hailstorm insurance losses in the Netherlands are projected, based on regional climate-change scenarios, to increase,
 with high confidence on the direction of change given empirically established correlations to (minimum)
- with high confidence on the direction of change given empirically established correlations to (minimum)
 temperatures (Table 10-9). For paddy rice insurance in Japan, an overall decrease in standard crop yield and
- 40 insurance payouts is projected, due to changes in temperature, heat episodes and growth period length (Table 10-9).
- 41
- 42 Currently, projected impact analyses do not explicitly account for future economic growth and inflation, which
- 43 would likely result in higher levels of insurance uptake, insured values and, accordingly, insured losses (Bouwer,
- 44 2011). However, premiums would grow too. Unlike socio-economic effects, adjustments are not automatically made
- 45 for external drivers such as changing frequencies or intensities of hazardous events. Hence, projection studies using
- 46 relative entities such as loss ratios and a frozen spatial distribution of insured property can be justified as a relevant
- 47 approximation (Pinto et al., 2007; Donat et al., 2011). Research on the projection of insured losses is developing
- 48 and, for many perils, information on expected future losses has to be inferred from studies on direct economic
- losses, where available (-> Ch 18). Knowledge of the projection of future changes in damage susceptibility is still
 poor.
- 50 51
- 52
- 53

10.7.4. Supply-Side Challenges and Sensitivities

10.7.4.1. High-Income Countries

The provision of property insurance covering weather hazards is contingent on an insurer's ability to find a balance between affordability of the premiums and costs that have to be covered by the revenue, provided that the risk, i.e. the loss-distribution features, has been assessed. On the cost side, the expected level of losses, expenses for risk assessment, product development, marketing, operating, and claims processing are included. Moreover, the revenue must provide a fair return on shareholders' equity and, to a substantial proportion, allow for the purchase of external capital needed to cover large loss if a disaster materialises. Achieving equilibrium between these factors on the supply and demand side determines marketable insurability (Kunreuther et al., 2009; Charpentier, 2008).

13 The balance within an insurance system between affordability and costs to be covered is very sensitive to climate-14 driven increases in large weather-losses. These may corrode an insurer's ability to cover the losses (solvability) if it

driven increases in large weather-losses. These may corrode an insurer's ability to cover the losses (solvability) if it fails to reflect the temporal changes in hazard condition in its risk management, or is hampered in doing so.

Additionally, misguided incentives can aggravate the situation (Table 10-10).

17

1

2 3

4

18 [INSERT TABLE 10-10 HERE

19 Table 10-10: Supply-side challenges and sensitivities.]

21 Both the quantifiable and the non-quantifiable additional uncertainty, that might be involved with climate change,

translate into a need for more risk capital to compensate for higher risk (Kunreuther et al., 2009). In high-risk areas, this can transfer some strain on the affordability of insurance and hence viable local economies (Table 10-10).

23 24

20

While climate-change impacts are considered as primarily affecting property insurance, health and life insurance are also expected to be impacted in some regions by increases in infectious and respiratory diseases, heat stress, and climate-linked pollution and malnutrition (Hecht, 2008). Liability insurance, too, may be susceptible to climatechange losses. So far, no damages have been awarded for greenhouse gas emissions as such, but litigation where

29 damages are sought is pending, especially in the USA (Table 10-10).

30 31

32 10.7.4.2. Middle- and Low-Income Countries

33

Today, middle- and low-income countries account for a much smaller share of worldwide non-life insurance (12% of premiums in 2007) than high-income, industrialised countries (88%). Whereas in high-income countries around 40% of direct economic losses are covered by insurance, only about 13% in middle-income countries and approximately 4% in low-income countries is covered (Geneva Association, 2009; Cummins and Mahul, 2009). For instance, in Pakistan that was severely hit in 2010 by a major flood disaster, insured losses amounted to only approximately 1% of direct economic losses (US\$ 100m of US\$ 9.5bn) (Munich Re, 2011). These small-scale catastrophe insurance systems in middle- and low-income countries feature several challenges that may adversely

41 combine with climate change impacts.

42

The small share of insurance in middle- and low-income countries' risk financing is not deemed economically prudent, because traditional post-disaster financing such as external credit or donor assistance materialises only many months after a disaster, leaving a risk financing gap in the months immediately following the event. Hence, in the short and medium term, pre-disaster financing instruments such as insurance or trigger-based risk-transfer products seem an appropriate means of providing prompt liquidity for households, farmers, businesses and governments (Ghesquiere and Mahul, 2007; Linnerooth-Bayer et al., 2009). These may gain even more importance,

- 49 given an increase in disaster incidence with climate change.
- 50
- 51 Any endeavor to upscale catastrophe insurance in these countries to reduce the post-disaster risk financing gap, is

52 challenged by both domestic pressures such as low business volumes, coupled with relatively high transaction costs,

- 53 and external pressures, including high price phases in the international reinsurance markets following large disasters.
- 54 When those stresses combine, small-scale (agricultural) insurance companies in middle- and low-income countries

1 may find it difficult to ensure sufficient risk capital (Cummins and Mahul, 2009; Mahul and Stutley, 2010),

2 particularly when faced with climate change driven increases in loss volatility.

3

4 Microinsurance schemes serve individuals, households and small enterprises in low-income markets by mainly

5 providing limited health, life and in some regions funeral-expenses coverage, while maintaining transaction costs at

6 the lowest operable level. Correlated weather risks aligned with enhanced risk capital requirements are among the

7 grounds to deter such low-cost schemes from any substantial commitment to offer property insurance. Yet, there are

8 schemes offering weather coverage, typically with government and NGO assistance and cross-subsiding by

collaborating local insurers (Linnerooth-Bayer and Mechler, 2009; Qureshi and Reinhard, 2011). These schemes
 may be particularly sensitive to a regional rise in disaster risk due to climate change.

11

12 Another challenge that may compound losses associated with climate change is a situation of adverse selection,

where many purchasers of insurance have not disclosed their high-risk situation, e.g. a floodplain site, to the insurer so as to benefit from lower rates. Consequently, the revenue calculated by the insurer is inadequate to cover the real

risk. In low-income countries, where extensive monitoring involves relatively high costs and address-based,

16 geographical risk-assessment tools are not available, this information asymmetry can cause catastrophe insurance

markets to fail – particularly if weather-related losses are increasing in intensity or frequency (Barnett et al., 2008;

18 Collier et al., 2009; Mahul and Stutley, 2010).

19 20

21

22

24

10.7.5. Products and Systems Responding to Changes in Weather Risks

23 10.7.5.1. High-Income Countries

A rise in weather-related disaster risk may drive the need for more risk capital to cover the losses. This challenge can be addressed using several options that reduce vulnerability and sustain insurability. As vulnerability-related

drivers of risk are most common, options to reduce vulnerability are deemed sound even if currently expected

28 climate change impacts will not materialise in some regions. The most fundamental response option is to convey the

risk signal to individuals and enterprises by premiums reflecting the existing risk that in turn encourages

30 policyholders to reduce their vulnerability by implementing cost-effective adaptive measures (Hecht, 2008;

31 Kunreuther et al., 2009; for an example see Table 10-11). Further, vulnerability reduction can effectively be

32 incentivized by insurance conditions such as premium discounts for loss-prevention measures (Table 10-11). Moral

hazard, where the purchase of insurance motivates the insured to subsequently adopt more risk-prone behavior than anticipated by the insurer, can be reversed towards risk-conscious behavior by involving the policyholder to some

34 anticipated by the insurer, can be reversed towards risk-conscious behavior by involving the policyholder to some 35 extent in the payment of losses (deductibles, upper limits of insurance coverage). Collaborative work of insurers

35 extent in the payment of losses (deductibles, upper limits of insurance coverage). Conaborative work of insurers 36 together with authorities on damage prevention and building standards has a long-standing tradition and is crucial

for reducing vulnerability (e.g., Herweijer et al., 2009; Ward et al., 2008). As another option, risk reduction can also

be associated with innovative products, e.g. green residential policies (Table 10-11).

30 39

40 [INSERT TABLE 10-11 HERE

41 Table 10-11: Products and systems responding to changes in weather risks.]

42

43 Most commercial risk-assessment models now incipiently factor in temporal changes in climate-related hazard

44 conditions, mainly by making adjustments to include higher hurricane frequencies encountered since the mid-1990s,

45 while still assuming unchanging conditions over time for other weather hazards. Viewing past decades' temporally

46 changing hazard conditions under stationary assumptions, i.e. not considering any change in hazard conditions, can

47 result in an underestimation of current expected loss, loss volatility and risk capital requirements (Table 10-11).

48 Other confounding factors in recent extremely large losses, e.g. systemic economic impacts, have been increasingly

49 addressed (Table 10-11). Geographically referenced risk-assessment tools, e.g. flood-recurrence zoning in various

50 countries aligned with premium differentiation, counteract scarce specific risk information and adverse selection

- 51 (Kunreuther et al., 2009; Hecht, 2008). Adverse weather alert systems have been established by insurers and offered 52 to clients (e.g., WIND, 2011).
- 53

Rating agencies in the USA – crucial to an insurer's credit rating – and upcoming Solvency II insurance regulation in Europe contribute to enhanced disaster resilience, requiring insurers to prepare for sufficient liquidity to sustain severe climate-related catastrophe hits such as two 100-year hurricane losses in one year or a 200-year loss from an European winter storm, respectively (Table 10-11). Looking ahead, insurance associations such as the Association of British Insurers and the German Insurance Association have taken steps to project climate change driven losses to allow for adaptation of the industry (Table 10-11). However, compared to other sectors' typical foresight periods,

- e.g. infrastructure planning, the insurance sector is better adaptable due to its short-term contracts (Botzen et al.,
 2010a).
- 9

Reinsurers are key to the supply of climate-related disaster risk capital. To absorb regional disaster loss peaks from
 typhoons, hurricanes, or other disasters, they operate globally to diversify their risk across non-correlated
 geographical regions and hazards. In 2007, the branch of global reinsurance that pays out when losses exceed fixed

thresholds, offered seven times the capacity available in the capital market driven insurance-linked securities, thus highlighting the reinsurers' role (Cummins and Mahul, 2009; Kunreuther and Michel-Kerian, 2009). Shortages in

highlighting the reinsurers' role (Cummins and Mahul, 2009; Kunreuther and Michel-Kerjan, 2009). Shortages in
 the international reinsurance market, occurring after major disaster shocks and making risk capital more expensive

for primary insurers, have been moderating over the last two decades. This favorable development was mainly

helped by easier inflow of new capital from the capital markets following large disasters, such as Hurricane Katrina

18 (Table 10-11). 19

Truly disastrous climate-related risks, e.g. in excess of US\$ 100bn, may make additional capacity desirable. These disasters can be diversified across the large global financial securitisation market. Here, natural catastrophe risks are not correlated with traditional capital market risks and hence are attractive to institutional investors through

instruments such as catastrophe bonds to cover insured disaster losses (Table 10-11).

24 25

26

10.7.5.2. Middle- and Low-Income Countries

27 28 Index-based weather insurance products are considered particularly suitable for the agricultural sector in low- and 29 middle-income countries, also in the perspective of climate change impacts in some places (e.g., Collier et al., 30 2009). Payouts depend on a physical trigger, e.g. cumulative rainfall at a nearby weather station, so that fixed 31 transaction costs such as on-site loss assessments are avoided. Detrimental information asymmetry, resulting from 32 moral hazard, is removed. Risk-based premiums signaling changes in risk related to climate change to the 33 policyholder encourage adaptive responses, particularly if combined with access to advanced technologies, e.g. 34 drought-resistant seed (Table 10-11). Basis risk, where some farmers suffer losses but no payout was triggered by 35 weather-station readings and vice versa, is a crucial disadvantage of index-based schemes. As a difficult concept, it 36 may cause the insured to lose confidence in the scheme (Patt et al., 2010). Here, improvements can be achieved 37 (Table 10-11).

38

Many smaller developing countries can no longer diversify large-scale climate-related disaster risk caused by widespread floods, droughts or hurricanes. Post-disaster risk-financing instruments such as external credit or donor assistance provide liquidity only months after the event. Hence, dramatic liquidity gaps, aggravated by overstretched tax bases and substantially correlated infrastructure risks, render sovereign insurance economically sound for coping with increased disaster-risk levels (Ghesquiere and Mahul, 2007). Current schemes include government disaster reserve funds (FONDEN, Mexico) and pools of small states' sovereign risks (CCRIF, Caribbean). In both cases, peak risk is transferred to reinsurance and the capital market (catastrophe bonds) (Table 10-11).

46 47

48 10.7.6. Governance, Public-Private Partnerships, and Insurance Market Regulation 49

50 10.7.6.1. *High-Income Countries*

51

52 Economic insurance theory favors a social arrangement where individual risk is insured, but the non-diversifiable

- disaster component of risk (that in many regions will rise with climate change) is shared among the society $(K_{1}, K_{2}, K_{2}, K_{3}, K_{$
- 54 (Kunreuther et al., 2009; Borch, 1962). Accordingly, many high-income states already display public private

1 partnerships between the insurers and the public that involve governmental intervention on the non-diversifiable 2 catastrophic risk portion (Table 10-12). As a baseline across all these systems, the pro-adaptive and impact reducing 3 features of insurance are most efficient, if the risk-adjusted price signal can be spread throughout the market, and the 4 pool of insureds can be maximized, e.g. through bundled hazard packages (Kuhnreuther et al., 2009; Bruggeman et 5 al., 2010). People who can no longer afford insurance due to premium adjustment and high risk-location can be 6 cared for under the principle of social welfare (Table 10-12). Change in diversity is seen as key for adapting the 7 insurance systems of many developed markets to climate change challenges, based on their cultural and socio-8 historic roots (Schwarze et al., 2011). While insurance regulation is ensuring availability and affordability of 9 insurance for customers and is guarding against insurer insolvency, it often only adopts short-term to medium-term 10 views. Climate change will pose long-term changes in average loss, loss volatility and risk-based capital, hence 11 regulators have a new role in requiring insurers' risk-adequate price signals, risk education of consumers and advancing risk-reduction activities from a long-term perspective of viable insurance markets (Mills, 2009; Hecht, 12 13 2008; Grace and Klein, 2009). 14 15 [INSERT TABLE 10-12 HERE 16 Table 10-12: Governance, public-private partnerships, and insurance market regulation.]

17 18

20

19 10.7.6.2. Middle- and Low-Income Countries

21 From an emerging country's perspective, a key element of risk financing is deemed transfer of private risks to a 22 competitive insurance market. This can efficiently reduce the governments' fiscal burden and uncertainty due to 23 weather disasters by encouraging adaptation through risk adequate premiums and diminishing the need for 24 supplementary budget (Cummins and Mahul, 2009; Ghesquiere and Mahul, 2009). With the establishment of 25 competitive domestic insurance markets, interest in public-private partnerships may evolve, e.g. between farmers, 26 government and insurers, in order to expedite agricultural development and resilience, e.g. by means of subsidies for 27 the catastrophic risk portion (Collier et al., 2009; Mahul and Stutley, 2010; [Herbold, 2011], see Table 10-12). 28 Technically well designed laws and regulation can encourage purchase of insurance, allowing for all sorts of 29 relevant insurance mechanisms (indemnity-based and index-based). Coinsurance pools can diversify climate risks 30 across larger regions, reduce premiums and render access to external risk capital more easy (Candel 2007, [Herbold 31 2011]).

32

In low-income and many middle-income countries, that are most vulnerable to climate change, even incipient domestic insurance markets hardly exist. In those countries, weather catastrophe insurance and associated capital requirements cannot be provided by the private sector alone. As a consequence, adaptation oriented climate change risk management frameworks were proposed to be included in the post-2012 adaptation regime of the UNFCCC. Insurance is a central risk management element in these proposals, that plan for funding premium from UNFCCC adaptation finance processes according to the principles of "common but differentiated responsibilities and respective capabilities" (UNFCCC Art.3.1) and "polluter pays" (Table 10-12).

40

41 In all, the availability of innovative insurance concepts in middle- and low-income countries, at least at pilot stage, 42 that can advance adaptation to climate change impacts, is robustly evidenced with high agreement in the literature, 43 including concepts for improved provision of increased disaster risk capital. For countries all over the world, the 44 literature presents either available or at least realizable insurance designs based on premiums calibrated to existing 45 risk and shaped to incentivize risk-reduction, thereby benefiting from risk assessing and modeling capabilities that 46 allow for temporal changes in hazard conditions. Further contributing to a healthy state of insurance systems, also 47 regulatory requirements for relevant amount of risk capital, and efficient risk capital resources such as the 48 reinsurance and securitization markets are seen crucial in the literature. These provisions are deemed sound risk 49 management, even if uncertainty materialises to the extent that specific projections of climate change will not be 50 realised in some regions. 51

- 52
- 53

1 **10.8** Services Other than Tourism and Insurance

Other service sectors of the economy, not covered elsewhere, include waste management, wholesale and retail trade, engineering services, government including education and defense and health. Contributions to the economy vary substantially by country; however, overall worldwide economic activity related to government accounts for approximately 30% of global expenditures (with military expenditures representing approximately 2.5% of global GDP), while health accounts for approximately 10% of global GDP by expenditures. The literature on climate change impacts on health costs covers both morbidity and mortality impacts (section 10.8.2) and some estimates on the health care industry.

10 11

13

12 10.8.1 Sectors Other than Health

14 The literature on the impact of climate change on other sectors of the economy is extremely sparse. Few studies 15 have evaluated the possible impacts of climate change, and particularly the economic impacts, on these sectors. 16 Tamiotti (2009) conducted a qualitative assessment of climate and trade. (Travers and Payne, 1998) and (Subak et al., 2000) find that weather significantly affects retail. (Sabbioni et al., 2009) note that climate change may require a 17 greater effort to protect cultural heritage. Other studies have evaluated the potential increase in local and regional 18 19 conflict, with implications for additional military expenditures, but did not complete an economic assessment 20 (Gleditsch, 2009, Jensen and Gleditsch 2009, Nel and Righarts, 2008, Tol and Wagner, 2010, Zang 2006). Historical 21 analysis indicates some correlation of climate related changes with conflict, but correlations can be weak and may 22 weaken with further economic development (Tol and Wagner, 2010).

23 24

25 10.8.2. Health

26 27 Climate change could affect the health sector through increases in the frequency, intensity, and extent of extreme 28 weather events adversely affecting infrastructure and increase the demands for services, placing additional burdens 29 on public health and health care personnel and supplies; these have economic consequences. Large numbers of 30 people are affected in weather-related disasters; for example, more than 600,000 people required immediate 31 assistance in hydrological events in 2002 through 2010 (EM-DAT 2011). Although the proportion seeking medical 32 treatment is a small subset, the additional burden on health care facilities can be significant (Hess et al. 2009). Just 33 increases in ambient temperature and precipitation increase visits to health care facilities. For example, one trauma 34 center in the U.S. found a 5.25% increase in hourly admissions for each approximately 5°C increase in temperature; 35 and a 60-78% increase in admission for each 2.5 cm increase in precipitation in the previous three hours (Rising et 36 al. 2006).

37

38 Heatwaves and other extreme events can increase hospitalizations (cf. Mayner et al. 2010; Chapter 11) with 39 attendant increased costs. Heatwaves also can increase hospital visits by individuals looking for an air-conditioned 40 location (Carthey et al. 2009). Storm surges, floods, and wildfires can damage hospitals and clinics, injure or kill 41 health professionals, and/or affect transport so that health professionals cannot reach those affected or the affected 42 can't reach treatment centers. There is a wide range of possible impacts of extreme events on hospitals and clinics 43 range, such as overheating and possible failure of electrical equipment and computers; shortages of electricity, 44 water, food, sewage, and other critical resources required for patient treatment; and physical damage and destruction 45 of buildings (Carthey et al. 2009). Hospital equipment is not designed to be flood-proof, thereby requiring cleaning or replacement of critical equipment following flooding events. Flooding and wildfire events can require evacuation 46 47 of critical care patients, with the attendant risks for the patients. Adverse impacts on transportation (such as flooded 48 roads) exacerbate the situation. Very large events that affect multiple health care facilities challenge the ability of 49 the community and/or region to properly care for the affected and those with ongoing health issues requiring 50 medication and/or treatment. Areas projected to experience increases in the frequency and intensity of extreme events should consider adding "surge capacity" to increase the ability of health care facilities to manage such events 51 52 without interruption of service (Banks et al. 2007; Hess et al. 2009). 53

1 Climate change is projected to increase the burden of major worldwide causes of childhood mortality: malnutrition, 2 diarrheal diseases, and malaria (Chapter 11). Any increase in health burdens or risks would increase the demands for

3 public health services (e.g. surveillance and control programs) and the demands for health care and relevant supplies 4 (e.g. oral rehydration for severe cases of diarrheal disease).

5

6 The costs of treating additional cases of climate sensitive health outcomes could be significant (Ebi 2008; Pandey 7 2010). An estimate of the worldwide costs in 2030 of additional cases of malnutrition, diarrheal disease, and malaria 8 due to climate change, assuming no population or economic growth, emissions reductions resulting in stabilization 9 at 750 ppm CO2 equivalent in 2210, and current costs of treatment in developing countries, estimated treatment 10 costs without adaptation could be \$4 to 12 billion worldwide (Ebi 2008). The costs for additional infrastructure and 11 health care workers were not estimated, nor were the costs of additional public health services, such as surveillance and monitoring. The costs were estimated to be unevenly distributed, with most of the costs borne by developing 12 13 countries, particularly in South East Asia and Africa, to address the projected additional cases of diarrheal disease 14 and malaria (Markandya and Chiabai 2009). A second global estimate assumed UN population projections, strong 15 economic growth, updated projections of the current health burden of diarrheal diseases and malaria, two climate 16 scenarios, and updated estimates of the costs of malaria treatment (Pandey 2010). In 2010, the average annual 17 adaptation costs for treating diarrheal disease and malaria were estimated to be \$3 to 5 billion, with the costs 18 expected to decline over time with improvement in basic health services. Over the period 2010-2050, the average 19 annual costs were estimated to be around \$2 billion, with most of the costs related to treating diarrheal disease; the 20 largest burden is expected to be in Sub-Saharan Africa. The differences in costs from Ebi (2008) are primarily due to 21 a reduction in the baseline burden of disease and lower costs for malaria treatment.

22

23 These estimates are in addition to the costs of improving health protection for diarrheal diseases and malaria, for

24

example in the context of the Millennium Development Goals.

25

26 The malaria estimates from the global estimates of the costs of adaptation are comparable with estimates of the 27 additional health care costs in 2025 in Southern Africa due to a climate change-related increase in the incidence of

28 malaria (Van Rensburg and Blignaut, cited in Markandya and Chiabai 2009). Assuming low population growth and

29 2000 prices in purchasing power parity, additional costs for the prevention and treatment of malaria in South Africa

30 were estimated to be approximately US\$3.8 million; this represented 3% of GDP per capita in 2025. Smaller

31 populations resulted in lower cost estimates for Botswana (US\$ 125 million) and Namibia (US\$ 177 million); for

- 32 Namibia, this represented about 4.5% of GDP per capita.
- 33

34 Because any additional climate change-related cases are projected to occur primarily in low-income countries, where

- 35 no or limited health care is provided by the government, the treatment costs will primarily be borne by families.
- 36 Time off from work to care for sick children, including in rural areas transportation to health facilities, can be 37 expected to affect productivity, although estimates are few.
- 38

39 (Bosello et al., 2006) use a computable general equilibrium to study the economic impacts of climate-change-40 induced changes in the mortality and morbidity due to cardiovascular and respiratory diseases, malaria, diarrhea,

41 schistosomiasis, and dengue fever. They consider the effects on labor productivity and demand for health care. They 42 find that health and welfare impacts have the same sign; and that increase health problems are associated with an

- 43 expansion of the public sector at the expense of the private sector.
- 44 45

10.9. 46 **Impacts on Markets and Development** 47

48 Prior sections of this chapter present the direct impacts of climate change on the economy sector by sector. There 49 are, however, also indirect impacts. The effects that impacts in one sector may have on the rest of the economy are 50 initially presented, followed by the impacts on economic growth and development.

- 51
- 52 53

1 2

10.9.1. General Equilibrium Effects

3 General equilibrium analysis describes how climate change impacts in one sector propagate to the rest of the 4 economy; and how the changed macroeconomic context feedbacks on the sector. There are three channels through 5 which impact diffuse. First, outputs of one sector are used as inputs to other sectors. For example, a change in crop 6 yields would affect the food-processing industry. Second, products compete for the consumers' finite budget. If, for 7 example, food becomes more expensive, less money would be spent on other goods and services. Third, sectors 8 compete for the primary factors of production (labor, capital, land, water). If more labor is needed in agriculture to 9 offset a drop in crop yields, less labor is available to produce other goods and services. Firms and households react 10 to changes in relative prices, domestically and internationally.

11

12 General equilibrium models provide a comprehensive and internally consistent analysis of the medium-term impact

- of climate change on economic activity and welfare. However, these models necessarily make a number of
 simplifying assumptions, particularly with regard to the rationality of consumers and producers and the absence of
 market imperfections.
- 16

Computable general equilibrium models have long been used to study the wider economic implications of changes in crop yields (Kane *et al.*, 1992). (Yates and Strzepek, 1998) show for instance that the impact of a reduced flow of the Nile on the economy of Egypt is much more severe without international trade than with, because trade would

20 allow Egypt to focus on water-extensive production for export and import its food.

21

22 Older studies focused on the impact of climate change on patterns of specialization and trade, food prices, food

security and welfare (Darwin and Kennedy, 2000; Darwin, 2004; Kane *et al.*, 1992; Reilly *et al.*, 1994; Winters *et al.*, 1990; New John Marker, 1990; Darwin, 2000; Darwin, 2004; Kane *et al.*, 1992; Reilly *et al.*, 1994; Winters *et al.*, 199

al., 1998; Yates and Strzepek, 1998). This has been extended to land use (Lee, 2009; Ronneberger *et al.*, 2009),
water use (Calzadilla *et al.*, 2011; Kane *et al.*, 1992), and multiple stresses (Reilly *et al.*, 2007). General equilibrium

models have also been used to estimate the value of improved weather forecasts (Arndt and Bacou, 2000), a form of

adaptation to climate change. Computable general equilibrium analysis has also been used to study selected impacts

other than agriculture, notably sea level rise (Bosello *et al.*, 2007; Darwin and Tol, 2001), tourism (Berrittella *et al.*,

29 2006b; Bigano *et al.*, 2008b), human health (Bosello *et al.*, 2006) and energy (see 10.2).

30

31 (Bigano *et al.*, 2008b) study the joint impacts on tourism and coasts, finding that tourism dominates the welfare

impacts. (Kemfert, 2002) and (Eboli *et al.*, 2010) estimate the joint effect on the world economy of a range of climate change impacts, but conflate general equilibrium and growth effects. (Aaheim *et al.*, 2010) analyze the

economic effects of impacts of climate change on agriculture, forestry, fishery, energy demand, hydropower

35 production, and tourism on the Iberian peninsula. They find positive impacts on output in some sectors (agriculture,

electricity) negative impacts in other sectors (forestry, transport) and negligible ones in others (manufacturing,

services). (Ciscar *et al.*, 2011) study the combined effect of agriculture, sea level rise, river floods and tourism on

the European economy. They find a welfare loss of 0.2-1.0% of income by the end of the century for the European

Union. There are large regional differences with losses in Southern Europe and gains in Northern Europe.

40

The following initial conclusions emerge. First, markets matter. Impacts are transmitted across locations — with

42 local, regional and global impacts-- and across multiple sectors of the economy.. For instance, landlocked countries

43 are affected by sea level rise because their agricultural land increases in value as other countries face erosion and

floods. Second, consumers and producers are often affected differently. The price increases induced by a reduction

in production may leave producers better off while hurting consumers. Third, the distribution of the direct impacts
 can be very different than the distribution of the indirect effects. For instance, a loss of production may be

- 47 advantageous to an individual company or country if the competition loses more. Fourth, a loss of productivity or
- 48 productive assets in one sector leads to further losses in the rest of the economy. At the same time, fifth, markets
- 49 offer options for adaptation, particularly possibilities for substitution. This changes the size, and sometimes the sign
- 50 of the impact estimate.
- 51
- 52
- 53
10.9.2. Growth Effects

10.9.2.1. The Rate of Economic Growth

5 Climate change would also affect economic growth and development, but our understanding is limited. (Fankhauser 6 and Tol, 2005) investigate four standard models of economic growth and three transmission mechanisms: economic 7 production, capital depreciation, and the labor force. They find that, in three models, the fall in economic output is 8 slightly larger than the direct impact on markets – that is, the total impact is more than twice as large as the direct 9 impact – while the 4th model (which emphasizes human capital accumulation) points to indirect impacts that are 1.5 10 times as large as the direct impacts. The difference can be understood as follows. In the three models, impacts crowd 11 out consumption and investment in physical capital, while in the fourth model investment in human capital too is 12 crowded out. (Hallegatte, 2005) reaches a similar conclusion. (Hallegatte and Thery, 2007; Hallegatte and Ghil, 13 2008; Hallegatte and Dumas, 2009) highlight that the impact of climate change through natural hazards on economic 14 growth can be amplified by market imperfections and the business cycle. (Eboli et al., 2010) use a multi-sector, 15 multi-region growth model. The impact of climate change would lead to a 0.3% reduction of GDP in 2050. Regional 16 impacts are more pronounced, ranging from -1.0% in developing countries to +0.4% in Australia and Canada. 17 Sectoral results are varied too, with output changes ranging from output of +0.5% for power generation (to meet 18 increased demand to air conditioning) to -0.7% for natural gas (as demand for space heating falls) and rice.

19

1

2 3

4

Using a biophysical model of the human body's ability to do work, (Kjellstrom *et al.*, 2009b) find that by the end of the century climate change may reduce labor productivity by 11-27% in the humid (sub)tropics. Assuming a output elasticity of labor of 0.8, this would reduce economic output in the affected sectors (involving heavy manual labor without air conditioning) by 8-22%. Although structural change in the economy may well reduce the dependence on manual labor and air conditioning would be an effective adaptation, even the ameliorated impact would have a

25 substantial, but as yet unquantified, impact on economic growth.

26

27 In a statistical analysis, (Dell et al., 2009) find that one degree of warming would reduce income by 1.2% in the 28 short run, and by 0.5% in the long run. The difference is due to adaptation. (Horowitz, 2009) finds a much larger 29 effect: a 3.8% drop in income in the long run for one degree of warming. In a yet-unpublished study, (Dell et al., 30 2008) find that climate (change) has no effect on economic growth in countries with an income above the global 31 median (\$^{PPP,2000}3170) but a large impact on countries below the median. If companies can fully adapt to a new 32 climate in 10 years time, economic growth in the 21st century would be 0.6% slower if climate changes according to the A2 scenario than in the case without climate change. If economic growth is 2.6% per year without climate 33 34 change, and 2.0% with, then a century of climate change would reduce income by 44%.

35 36

37 *10.9.2.2. Poverty Traps*

38 39 Poverty is concentrated in the tropics and subtropics. This has led some analysts to the conclusion that a tropical 40 climate is one of the causes of poverty. (Gallup et al., 1999) emphasize the link between climate, disease, and 41 poverty while (Masters and McMillan, 2001) focus on climate, agricultural pests, and poverty. Other studies 42 (Acemoglu et al., 2001; Acemoglu et al., 2002; Easterly and Levine, 2003) argue that climatic influence on 43 development disappears if differences in human institutions (the rule of law, education, etc) are accounted for. 44 However, (Van der Vliert, 2008) demonstrates that climate affects human culture and thus institutions, but this 45 venue has yet to be explored in the economic growth literature. (Brown et al., 2011) find that weather affects 46 economic growth in Sub-Saharan Africa - particularly, drought decelerates growth. (Jones and Olken, 2010) find 47 that exports from poor countries fall during hot years. (Bloom et al., 2003) find limited support for an impact of climate (rather than weather) on past growth in a single-equilibrium model, but strong support in a multiple-48 49 equilibrium model: Hot and wet conditions and large variability in rainfall reduce long-term growth in poor 50 countries (but not in hot ones) and increase the probability of being poor. 51

52 (Galor and Weil, 1996) speculate about the existence of a climate-health-poverty trap. (Bonds *et al.*, 2010) and

53 (Strulik, 2008) posit theoretical models and offer limited empirical support, while (Tang *et al.*, 2009) offers more

rigorous empirical evidence. This is further supported by yet-to-be-published analyses (Bretscher and Valente, 2010;

1 Gollin and Zimmermann, 2008; Gollin and Zimmermann, 2010; Ikefuji *et al.*, 2010). Climate-related diseases such

2 as malaria and diarrhea impair children's cognitive and physical development. This leads to poverty in their later life

3 so that there are limited means to protect their own children against these diseases. Furthermore, high infant

4 mortality may induce parents to have many children so that their investment in education is spread thin. An increase

- 5 in infant and child mortality and morbidity due to climate change would thus trap more people in poverty. 6
- (Zimmerman and Carter, 2003) build a model in which the risk of natural disasters causes a poverty trap: At higher
 risk levels, households prefer assets with a safe but low return. (Carter *et al.*, 2007) find empirical support for this
 model at the household level, but (van den Berg, 2010) concludes the natural disaster itself has no discernible impact
 on investment choices. At the macro-economic level, natural disasters disproportionally affect the growth rate of
 poor countries (Noy, 2009).
- (Bougheas *et al.*, 1999; Bougheas *et al.*, 2000) show that more expensive infrastructure, for example because of
 frequent repairs after natural disasters, slows down economic growth and that there is a threshold infrastructure cost
 above which trade and specialization do not occur, suggesting another mechanism through which climate could
 cause a poverty trap. The implications of climate change have yet to be assessed.
- 17 18

19

20

27

29

12

10.9.2.3. Conclusion

In sum, the literature on the impact of climate and climate change on economic growth and development has yet to reach firm conclusions. There is agreement that climate change would moderate the rate of economic growth, by a little according to some studies and by a lot according to other studies. There is disagreement whether climate change would affect the nature of economic development, with some studies suggesting that more people may be trapped in poverty and fewer people enjoying exponential growth.

28 **10.10. Research Needs and Priorities**

Evaluating the economic aspects of the impacts, vulnerability and adaptation to climate change has emerged as an active research area. Initial work has developed in a few key economic sectors and through economy wide economic assessments. Data, tools and methods continue to evolve to address additional sectors and more complex interactions among the sectors in the economic systems and a changing climate.

- 34 35 Based on a comprehensive assessment across economic sectors, few key sectors have been subject to detailed 36 research. Multiple aspects of energy impacts have been assessed, but others remain to be evaluated, particularly 37 economic impact assessments of adaptation both on existing and future infrastructure, but also the costs and benefits 38 for future systems under differing climatic conditions. Despite an increasing number of studies implemented in 39 developing countries about the impacts of climate change on the energy sector in recent years, there is still a strong 40 asymmetry in the knowledge landscape between developed and developing countries. In energy supply, the 41 deployment of extraction, transport and processing infrastructure, power plants and other installations are expected 42 to proceed rapidly in developing countries in the coming decades to satisfy fast growing demand for energy. 43 Designing newly deployed facilities with a view to projected changes in climate attributes and extreme weather 44 patterns would require targeted inquiries into the impacts of climate change on the energy related resource base, 45 conversion and transport technologies.
- 46
- 47 The economics of transportation systems and their role in overall economic activity have yet to be well understood.
- 48 For water related sectors, improved estimation of flood damages to economic sectors, research on impacts of
- 49 ecosystems, rivers, lakes and wetlands, ecosystems service, and tourism and recreation are needed. Economic
- 50 assessments of adaptation strategies such as water savings technologies, particularly for semi-arid and arid
- 51 developing countries, are also needed.

- 53 Although both tourism and recreation are sensitive to climate change, the literature on tourism is far more extensive.
- 54 Current studies either have a rudimentary representation of the effect of weather and climate but a detailed

1 representation of substitution between holiday destination and activities, or a detailed representation of the

- immediate impact of climate change but a rudimentary representation of alternatives to the affected destinations or
 activities.
- 4

5 Considerable research has been developed related to climate change and associated weather risk to insurance;

- 6 however, limited research has been published on observed trends in normalized insured climate-related losses as
- 7 compared to trends in direct economic climate-related losses, including insured property and agriculture losses as
- 8 compared to direct economic losses. Additionally, no quantitative study could be found for projected impacts on
- 9 health and life insurance, or regional markets including scenarios on hazard, exposure, vulnerability and adaption
- status, regulation, risk capital availability. Furthermore, little is known regarding the temporal changes of
- vulnerability for insured risk such as how susceptibilities of structures to damage changed in the past and can be projected to change in the future.
- 12 13

Little literature exists on potential climate impacts on other economic sectors, such as mining, manufacturing, and services (apart from health, insurance and tourism); in particular assessments of whether these sectors are indeed sensitive to climate and climate change, as suggested by the dearth of research.

17

18 The spillover effects of the impacts of climate change in one sector on other markets are understood in principle, but 19 the number of quantitative studies is too few to place much confidence in the numerical results. Similarly, the

impact of climate and climate change on economic growth and development is not well understood, with some

21 studies pointing to a small or negligible effect and other studies arguing for a large or dominant effect.

22

27

23 Finally, assessments utilizing other approaches such as risk mitigation estimates, and stress testing of existing

models suggest further research of factors that influence the economic impact estimates such as intergenerational
 discounting, population dynamics, and economic development is needed (Farmer and Geanakopolis, Cooke, Portney
 and Weyant).

2829 References

30 [partially consolidated]

31

32 Most Sections

- Aaheim, A., T. Dokken, S. Hochrainer, A. Hof, E. Jochem, R. Mechler, and D.P. van Vuuren, 2010: National
 responsibilities for adaptation strategies: Lessons from four modelling framework. In: *Making climate change work for us: European perspectives on adaptation and mitigation strategies.* [Hulme, M. and H.
- 36 Neufeldt(eds.)]. Cambridge University Press, Cambridge, pp. 87-112.
- Abegg, B. and H. Elsasser, 1996: Climate, weather, and tourism in the swiss alps. *Geographische Rundschau*,
 48(12), 737-742.
- Acemoglu, D., S. Johnson, and J.A. Robinson, 2001: The colonial origins of comparative development: An
 empirical investigation. *American Economic Review*, 91(4), 1369-1401.
- Acemoglu, D., S. Johnson, and J.A. Robinson, 2002: Reversal of fortune: Geography and institutions in the making
 of the modern world income distribution. *Quarterly Journal of Economics*, 117(4), 1231-1294.
- Agnew, M.D. and J.P. Palutikof, 2006: Impacts of short-term climate variability in the UK on demand for domestic
 and international tourism. *Climate Research*, **31(1)**, 109-120.
- Ahn, S., J.E. De Steiguer, R.B. Palmquist, and T.P. Holmes, 2000: Economic analysis of the potential impact of
 climate change on recreational trout fishing in the southern appalachian mountains: An application of a nested
 multinomial logit model. *Climatic Change*, 45(3-4), 493-509.
- Allison, E.H., A.L. Perry, M.-. Badjeck, W. Neil Adger, K. Brown, D. Conway, A.S. Halls, G.M. Pilling, J.D.
 Reynolds, N.L. Andrew, and N.K. Dulvy, 2009: Vulnerability of national economies to the impacts of climate
 change on fisheries. *Fish and Fisheries*, **10**(2), 173-196.
- Álvarez-Díaz, M. and J. Rosselló-Nadal, 2010: Forecasting british tourist arrivals in the balearic islands using
 meteorological variables. *Tourism Economics*, 16(1), 153-168.
- Amelung, B., S. Nicholls, and D. Viner, 2007: Implications of global climate change for tourism flows and
 seasonality. *Journal of Travel Research*, 45(3), 285-296.

- Amelung, B. and D. Viner, 2006: Mediterranean tourism: Exploring the future with the tourism climatic index.
 Journal of Sustainable Tourism, 14(4), 349-366.
- Arndt, C. and M. Bacou, 2000: Economy-wide effects of climate variability and climate prediction in mozambique.
 American Journal of Agricultural Economics, 82(3), 750-754.
- Becken, S., 2005: Harmonising climate change adaptation and mitigation: The case of tourist resorts in fiji. *Global Environmental Change*, 15(4), 381-393.
- Belle, N. and B. Bramwell, 2005: Climate change and small island tourism: Policy maker and industry perspectives
 in barbados. *Journal of Travel Research*, 44(1), 32-41.
- Berrittella, M., A. Bigano, R. Roson, and R.S.J. Tol, 2006a: A general equilibrium analysis of climate change
 impacts on tourism. *Tourism Management*, 27(5), 913-924.
- Berrittella, M., A. Bigano, R. Roson, and R.S.J. Tol, 2006b: A general equilibrium analysis of climate change
 impacts on tourism. *Tourism Management*, 27(5), 913-924.
- Bicknell, S. and P. Mcmanus, 2006: The canary in the coalmine: Australian ski resorts and their response to climate
 change. *Geographical Research*, 44(4), 386-400.
- Bigano, A., F. Bosello, R. Roson, and R.S.J. Tol, 2008a: Economy-wide impacts of climate change: A joint analysis
 for sea level rise and tourism. *Mitigation and Adaptation Strategies for Global Change*, 13(8), 765-791.
- Bigano, A., F. Bosello, R. Roson, and R.S.J. Tol, 2008b: Economy-wide impacts of climate change: A joint analysis
 for sea level rise and tourism. *Mitigation and Adaptation Strategies for Global Change*, 13(8), 765-791.
- Bigano, A., J.M. Hamilton, and R.S.J. Tol, 2007: The impact of climate change on domestic and international
 tourism: A simulation study. Integrated Assessment Journal, 7(1), 25-49.
- Bigano, A., J.M. Hamilton, and R.S.J. Tol, 2006: The impact of climate on holiday destination choice. *Climatic Change*, **76(3-4)**, 389-406.
- Bloom, D.E., D. Canning, and J. Sevilla, 2003: Geography and poverty traps. *Journal of Economic Growth*, 8(4), 355-378.
- Bonds, M.H., D.C. Keenan, P. Rohani, and J.D. Sachs, 2010: Poverty trap formed by the ecology of infectious
 diseases. *Proceedings of the Royal Society B: Biological Sciences*, 277(1685), 1185-1192.
- Bosello, F., R. Roson, and R.S.J. Tol, 2006: Economy-wide estimates of the implications of climate change: Human
 health. *Ecological Economics*, 58(3), 579-591.
- Bosello, F., R. Roson, and R.S.J. Tol, 2007: Economy-wide estimates of the implications of climate change: Sea
 level rise. *Environmental and Resource Economics*, 37(3), 549-571.
- Bougheas, S., P.O. Demetriades, and T.P. Mamuneas, 2000: Infrastructure, specialization, and economic growth.
 Canadian Journal of Economics, 33(2), 506-522.
- Bougheas, S., P.O. Demetriades, and E.L.W. Morgenroth, 1999: Infrastructure, transport costs and trade. *Journal of International Economics*, 47(1), 169-189.
- Bourdeau, P., 2009: From après-ski to après-tourism: The alps in transition? reflections based on the french
 situation. *Revue De Geographie Alpine*, 97(3).
- Braun, O.L., M. Lohmann, O. Maksimovic, M. Meyer, A. Merkovic, E. Messerschmidt, A. Riedel, and M. Turner,
 1999: Potential impact of climate change effects on preferences for tourism destinations. A psychological pilot
 study. *Climate Research*, 11(3), 247-254.
- Bretscher, L. and S. Valente, 2010: Uneven Development due to Climate Change -- Growth Effects of Climate
 Change Exposure and Adaptation, Centre of Economic Research, ETH, Zurich, .
- Brown, C., R. Meeks, K. Hunu, and W. Yu, 2011: Hydroclimate risk to economic growth in sub-saharan africa.
 Climatic Change, **106(4)**, 621-647.
- Buzinde, C.N., D. Manuel-Navarrete, D. Kerstetter, and M. Redclift, 2010a: Representations and adaptation to
 climate change. *Annals of Tourism Research*, 37(3), 581-603.
- Buzinde, C.N., D. Manuel-Navarrete, E.E. Yoo, and D. Morais, 2010b: Tourists' perceptions in a climate of change:
 Eroding destinations. *Annals of Tourism Research*, 37(2), 333-354.
- Calzadilla, A., K. Rehdanz, and R.S.J. Tol, 2011: Trade liberalization and climate change: A CGE analysis of the
 impacts on global agriculture. *Water*, 3(2), 526-550.
- Carter, M.R., P.D. Little, T. Mogues, and W. Negatu, 2007: Poverty traps and natural disasters in ethiopia and
 honduras. *World Development*, 35(5), 835-856.
- 52 Cavan, G., J.F. Handley, J. Aylen, K. Albertson, J. McMorrow, S. Lindley, and D. McEvoy, 2006: Climate change
- and the visitor economy in the uplands. *International Journal of Biodiversity Science and Management*, 2(3),
 170-173.

- Ceron, J.-. and G. Dubois, 2005: The potential impacts of climate change on french tourism. *Current Issues in Tourism*, 8(2-3), 125-139.
- Ciscar, J.-., A. Iglesias, L. Feyen, L. Szabó, D. Van Regemorter, B. Amelung, R. Nicholls, P. Watkiss, O.B.
 Christensen, R. Dankers, L. Garrote, C.M. Goodess, A. Hunt, A. Moreno, J. Richards, and A. Soria, 2011:
 Physical and economic consequences of climate change in europe. *Proceedings of the National Academy of Sciences of the United States of America*, 108(7), 2678-2683.
- Coombes, E.G., A.P. Jones, and W.J. Sutherland, 2009: The implications of climate change on coastal visitor
 numbers: A regional analysis. *Journal of Coastal Research*, 25(4), 981-990.
- Darwin, R.F., 2004: Effects of greenhouse gas emissions on world agriculture, food consumption, and economic
 welfare. *Climatic Change*, 66(1-2), 191-238.
- Darwin, R.F. and D. Kennedy, 2000: Economic effects of CO₂ fertilization of crops: Transforming changes in yield
 into changes in supply. *Environmental Modeling and Assessment*, 5, 157-168.
- Darwin, R.F. and R.S.J. Tol, 2001: Estimates of the economic effects of sea level rise. *Environmental and Resource Economics*, 19(2), 113-129.
- Daugherty, D.J., D.L. Buckmeier, and P.K. Kokkanti, 2011: Sensitivity of recreational access to reservoir water
 level variation: An approach to identify future access needs in reservoirs. *North American Journal of Fisheries Management*, 31(1), 63-69.
- Dawson, J. and D. Scott, 2010: Climate change and tourism in the great lakes region: A summary of risks and
 opportunities. *Tourism in Marine Environments*, 6(2-3), 119-132.
- Dawson, J., D. Scott, and G. Mcboyle, 2009: Climate change analogue analysis of ski tourism in the northeastern
 USA. *Climate Research*, 39(1), 1-9.
- De Freitas, C.R., D. Scott, and G. McBoyle, 2008: A second generation climate index for tourism (CIT):
 Specification and verification. *International Journal of Biometeorology*, 52(5), 399-407.
- Dell, M., B.F. Jones, and B.A. Olken, 2009: Temperature and income: Reconciling new cross-sectional and panel
 estimates. *American Economic Review*, 99(2), 198-204.
- Dell, M., B.F. Jones, and B.A. Olken, 2008: Climate Change and Economic Growth: Evidence from the Last Half
 Century, National Bureau of Economic Research, Washington, DC, 1-48 pp.
- Dempson, J.B., M.F. O'Connell, and N.M. Cochrane, 2001: Potential impact of climate warming on recreational
 fishing opportunities for atlantic salmon, salmo salar L., newfoundland, canada. *Fisheries Management and Ecology*, 8(1), 69-82.
- Denstadli, J.M., J.K.S. Jacobsen, and M. Lohmann, Tourist perceptions of summer weather in scandinavia. *Annals of Tourism Research*, .
- Easterly, W. and R. Levine, 2003: Tropics, germs, and crops: How endowments influence economic development.
 Journal of Monetary Economics, 50(1), 3-39.
- Eboli, F., R. Parrado, and R. Roson, 2010: Climate-change feedback on economic growth: Explorations with a
 dynamic general equilibrium model. *Environment and Development Economics*, 15(5), 515-533.
- Eide, A., 2008: An integrated study of economic effects of and vulnerabilities to global warming on the barents sea
 cod fisheries. *Climatic Change*, 87(1-2), 251-262.
- Eide, A. and K. Heen, 2002: Economic impacts of global warming. A study of the fishing industry in north norway.
 Fisheries Research, 56(3), 261-274.
- Eijgelaar, E., C. Thaper, and P. Peeters, 2010: Antarctic cruise tourism: The paradoxes of ambassadorship, "last
 chance tourism" and greenhouse gas emissions. *Journal of Sustainable Tourism*, 18(3), 337-354.
- 43 Elsasser, H. and R. Bürki, 2002: Climate change as a threat to tourism in the alps. *Climate Research*, **20**(**3**), 253-257.
- Endler, C. and A. Matzarakis, 2010a: Analysis of high-resolution simulations for the black forest region from a point
 of view of tourism climatology a comparison between two regional climate models (REMO and CLM).
 Theoretical and Applied Climatology, 1-14.
- Endler, C. and A. Matzarakis, 2010b: Climatic potential for tourism in the black forest, germany winter season.
 International Journal of Biometeorology, 1-13.
- Endler, C. and A. Matzarakis, 2011: Climate and tourism in the black forest during the warm season. *International Journal of Biometeorology*, 55(2), 173-186.
- Endler, C., K. Oehler, and A. Matzarakis, 2010: Vertical gradient of climate change and climate tourism conditions
 in the black forest. *International Journal of Biometeorology*, 54(1), 45-61.
- 53 Fankhauser, S. and R.S.J. Tol, 2005: On climate change and economic growth. *Resource and Energy Economics*,
- 54 **27**(1), 1-17.

- Farbotko, C., 2010: 'The global warming clock is ticking so see these places while you can': Voyeuristic tourism and
 model environmental citizens on tuvalu's disappearing islands. *Singapore Journal of Tropical Geography*,
 - model environmental citizens on tuvalu's disappearing islands. *Singapore Journal of Tropical Geography*, **31(2)**, 224-238.
- Floc'h, P.L., J.-. Poulard, O. Thébaud, F. Blanchard, J. Bihel, and F. Steinmetz, 2008: Analyzing the market position
 of fish species subject to the impact of long-term changes: A case study of french fisheries in the bay of biscay.
 Aquatic Living Resources, 21(3), 307-316.
- Ford, J.D., T. Pearce, J. Prno, F. Duerden, L. Berrang Ford, T.R. Smith, and M. Beaumier, 2011: Canary in a coal
 mine: Perceptions of climate change risks and response options among canadian mine operations. *Climatic Change*, 1-17.
- Ford, J.D., T. Pearce, J. Prno, F. Duerden, L.B. Ford, M. Beaumier, and T. Smith, 2010: Perceptions of climate
 change risks in primary resource use industries: A survey of the canadian mining sector. *Regional Environmental Change*, 10(1), 65-81.
- Gallup, J.L., J.D. Sachs, and A.D. Mellinger, 1999: Geography and economic development. *International Regional Science Review*, 22(2), 179-232.
- 15 Galor, O. and D.N. Weil, 1996: The gender gap, fertility, and growth. *American Economic Review*, **86**(**3**), 374-387.
- Garbas, K.V., 2006: The connection between the weather and the visits of selected tourist points in slovenia pp. 133 160.
- Garza-Gil, M.D., J. Torralba-Cano, and M.M. Varela-Lafuente, 2011: Evaluating the economic effects of climate
 change on the european sardine fishery. *Regional Environmental Change*, 11(1), 87-95.
- Giannakopoulos, C., E. Kostopoulou, K.V. Varotsos, K. Tziotziou, and A. Plitharas, 2011: An integrated assessment
 of climate change impacts for greece in the near future. *Regional Environmental Change*, , 1-15.
- Gollin, D. and C. Zimmermann, 2008: Malaria: Disease Impacts and Long-Run Income Differences, Economics
 Department, Williams College, Williamstown, .
- Gollin, D. and C. Zimmermann, 2010: Global Climate Change and the Resurgence of Tropical Disease: An
 Economic Approach, Economics Department, Williams College, Williamstown, .
- Gómez Martín, M.B., 2005: Weather, climate and tourism: A geographical perspective. *Annals of Tourism Research*, 32(3), 571-591.
- Gómez-Martín, M.B., 2006: *Climate potential and tourist demand in catalonia (spain) during the summer season* pp. 75-87.
- Gössling, S., M. Bredberg, A. Randow, E. Sandström, and P. Svensson, 2006: Tourist perceptions of climate
 change: A study of international tourists in zanzibar. *Current Issues in Tourism*, 9(4-5), 419-435.
- Gössling, S. and C.M. Hall, 2006: Uncertainties in predicting tourist flows under scenarios of climate change.
 Climatic Change, **79(3-4)**, 163-173.
- Graff Zivin, J. and M.J. Neidell, 2010: *Working Paper*. Temperature and the Allocation of Time: Implications for
 Climate Change, National Bureau of Economic Research, Washington, D.C., 1-41 pp.
- Hall, C.M., 2006: New zealand tourism entrepreneur attitudes and behaviours with respect to climate change
 adaptation and mitigation. *International Journal of Innovation and Sustainable Development*, 1(3), 229-237.
- Hallegatte, S., 2005: The long time scales of the climate-economy feedback and the climatic cost of growth.
 Environmental Modeling and Assessment, 10(4), 277-289.
- Hallegatte, S. and P. Dumas, 2009: Can natural disasters have positive consequences? investigating the role of
 embodied technical change. *Ecological Economics*, 68(3), 777-786.
- Hallegatte, S. and M. Ghil, 2008: Natural disasters impacting a macroeconomic model with endogenous dynamics.
 Ecological Economics, 68(1-2), 582-592.
- Hallegatte, S. and D. Thery, 2007: Are the economic impacts of climate change underestimated? *Revue d'Economie Politique*, 117(4), 507-522.
- Hamilton, J.M., 2007: Coastal landscape and the hedonic price of accommodation. *Ecological Economics*, 62(3-4),
 594-602.
- Hamilton, J.M., D.J. Maddison, and R.S.J. Tol, 2005a: Climate change and international tourism: A simulation
 study. *Global Environmental Change*, 15(3), 253-266.
- Hamilton, J.M., D.J. Maddison, and R.S.J. Tol, 2005b: Effects of climate change on international tourism. *Climate Research*, 29(3), 245-254.
- Hamilton, J.M. and R.S.J. Tol, 2007: The impact of climate change on tourism in germany, the UK and ireland: A
 simulation study. *Regional Environmental Change*, 7(3), 161-172.

- Hamilton, L.C., C. Brown, and B.D. Keim, 2007: Ski areas, weather and climate: Time series models for new
 england case studies. *International Journal of Climatology*, 27(15), 2113-2124.
- Harrison, S.J., S.J. Winterbottom, and C. Sheppard, 1999: The potential effects of climate change on the scottish
 tourist industry. *Tourism Management*, 20(2), 203-211.
- Hein, L., M.J. Metzger, and A. Moreno, 2009: Potential impacts of climate change on tourism; a case study for
 spain. *Current Opinion in Environmental Sustainability*, 1(2), 170-178.
- Hill, M., A. Wallner, and J. Furtado, 2010: Reducing vulnerability to climate change in the swiss alps: A study of
 adaptive planning. *Climate Policy*, 10(1), 70-86.
- Hoffmann, V.H., D.C. Sprengel, A. Ziegler, M. Kolb, and B. Abegg, 2009: Determinants of corporate adaptation to
 climate change in winter tourism: An econometric analysis. *Global Environmental Change*, 19(2), 256-264.
- Horowitz, J.K., 2009: The income-temperature relationship in a cross-section of countries and its implications for
 predicting the effects of global warming. *Environmental and Resource Economics*, 44(4), 475-493.
- Hsiang, S.M., 2010: Temperatures and cyclones strongly associated with economic production in the caribbean and
 central america. *Proceedings of the National Academy of Sciences of the United States of America*, **107(35)**,
 15367-15372.
- Ibarra, E.M., 2011: The use of webcam images to determine tourist-climate aptitude: Favourable weather types for
 sun and beach tourism on the alicante coast (spain). *International Journal of Biometeorology*, 55(3), 373-385.
- Ikefuji, M., J. Magnus, and H. Sakamoto, 2010: Climate Change, Economic Growth, and Health, Osaka, Institute of
 Social and Economic Research, Osaka University, .
- Jones, B., D. Scott, and H.A. Khaled, 2006: Implications of climate change for outdoor event planning: A case study
 of three special events in canada's national capital region. *Event Management*, 10(1), 63-76.
- Jones, B.F. and B.A. Olken, 2010: Climate shocks and exports. *American Economic Review*, **100**(2), 454-459.
- Kane, S., J.M. Reilly, and J. Tobey, 1992: An empirical study of the economic effects of climate change on world
 agriculture. *Climatic Change*, 21(1), 17-35.
- Kemfert, C., 2002: An integrated assessment model of economy-energy-climate the model wiagem. *Integrated Assessment*, 3(4), 281-298.
- Kingwell, R. and I. Farré, 2009: Climate change impacts on investment in crop sowing machinery. *Australian Journal of Agricultural and Resource Economics*, 53(2), 265-284.
- Kjellstrom, T., R.S. Kovats, S.J. Lloyd, T. Holt, and R.S. Tol, 2009a: The direct impact of climate change on
 regional labor productivity *Archives of Environmental & Occupational Health*, 64(4), 217-227.
- Kjellstrom, T., R.S. Kovats, S.J. Lloyd, T. Holt, and R.S.J. Tol, 2009b: The direct impact of climate change on
 regional labor productivity. *Archives of Environmental and Occupational Health*, 64(4), 217-227.
- Kulshreshtha, S.N., 2011: Climate change, prairie agriculture, and prairie economy: The new normal. *Canadian Journal of Agricultural Economics*, **59**(1), 19-44.
- Lee, D.M. and K.S. Lyon, 2004: A dynamic analysis of the global timber market under global warming: An integrated modeling approach. *Southern Economic Journal*, **70(3)**, 467-489.
- Lee, H.-., 2009: The impact of climate change on global food supply and demand, food prices, and land use. *Paddy and Water Environment*, 7(4), 321-331.
- Lin, T.-. and A. Matzarakis, 2011: Tourism climate information based on human thermal perception in taiwan and
 eastern china. *Tourism Management*, 32(3), 492-500.
- Link, P.M. and R.S.J. Tol, 2009: Economic impacts on key barents sea fisheries arising from changes in the strength of the atlantic thermohaline circulation. *Global Environmental Change*, **19**(**4**), 422-433.
- 43 Lise, W. and R.S.J. Tol, 2002: Impact of climate on tourist demand. *Climatic Change*, **55**(4), 429-449.
- Maddison, D., 2001: In search of warmer climates? the impact of climate change on flows of british tourists.
 Climatic Change, 49(1-2), 193-208.
- Masters, W.A. and M.S. McMillan, 2001: Climate and scale in economic growth. *Journal of Economic Growth*,
 6(3), 167-186.
- Matzarakis, A. and C. Endler, 2010: Climate change and thermal bioclimate in cities: Impacts and options for
 adaptation in freiburg, germany. *International Journal of Biometeorology*, 54(4), 479-483.
- Matzarakis, A., T. Georgiadis, and F. Rossi, 2007: Thermal bioclimate analysis for europe and italy. *Nuovo Cimento Della Societa Italiana Di Fisica C*, 30(6), 623-632.
- Matzarakis, A., E. Rudel, M. Zygmuntowski, and E. Koch, 2010: Bioclimatic maps for tourism purposes. *Physics and Chemistry of the Earth*, 35(1-2), 57-62.

- 1 McGoodwin, J.R., 2007: Effects of climatic variability on three fishing economies in high-latitude regions:
- 2 Implications for fisheries policies. *Marine Policy*, **31**(1), 40-55.
- McIlgorm, A., 2010: Economic impacts of climate change on sustainable tuna and billfish management: Insights
 from the western pacific. *Progress in Oceanography*, 86(1-2), 187-191.
- Merino, G., M. Barange, and C. Mullon, 2010: Climate variability and change scenarios for a marine commodity:
 Modelling small pelagic fish, fisheries and fishmeal in a globalized market. *Journal of Marine Systems*, 81(1-2), 196-205.
- Moen, J. and P. Fredman, 2007: Effects of climate change on alpine skiing in sweden. *Journal of Sustainable Tourism*, 15(4), 418-437.
- Moreno, A. and B. Amelung, 2009: Climate change and tourist comfort on europe's beaches in summer: A
 reassessment. *Coastal Management*, 37(6), 550-568.
- Moreno, A., B. Amelung, and L. Santamarta, 2008: Linking beach recreation to weather conditions: A case study in
 zandvoort, netherlands. *Tourism in Marine Environments*, 5(2-3), 111-119.
- 14 Noy, I., 2009: The macroeconomic consequences of disasters. *Journal of Development Economics*, **88(2)**, 221-231.
- Nyaupane, G.P. and N. Chhetri, 2009: Vulnerability to climate change of nature-based tourism in the nepalese
 himalayas. *Tourism Geographies*, 11(1), 95-119.
- Pearce, T.D., J.D. Ford, J. Prno, F. Duerden, J. Pittman, M. Beaumier, L. Berrang-Ford, and B. Smit, 2011: Climate
 change and mining in canada. *Mitigation and Adaptation Strategies for Global Change*, 16(3), 347-368.
- Perch-Nielsen, S.L., 2010: The vulnerability of beach tourism to climate change-an index approach. *Climatic Change*, **100(3)**, 579-606.
- Perch-Nielsen, S.L., B. Amelung, and R. Knutti, 2009: Future climate resources for tourism in europe based on the
 daily tourism climatic index. *Climatic Change*, , 1-19.
- Perez-Garcia, J., L.A. Joyce, A.D. Mcguire, and X. Xiao, 2002: Impacts of climate change on the global forest
 sector. *Climatic Change*, 54(4), 439-461.
- Perry, A.H., 2006: Will predicted climate change compromise the sustainability of mediterranean tourism? *Journal of Sustainable Tourism*, 14(4), 367-375.
- Phillips, M.R. and A.L. Jones, 2006: Erosion and tourism infrastructure in the coastal zone: Problems, consequences
 and management. *Tourism Management*, 27(3), 517-524.
- Pickering, C.M. and R.C. Buckley, 2010: Climate response by the ski industry: The shortcomings of snowmaking
 for australian resorts. *Ambio*, , 1-9.
- Pickering, C.M., J.G. Castley, and M. Burtt, 2010: Skiing less often in a warmer world: Attitudes of tourists to
 climate change in an australian ski resort. *Geographical Research*, 48(2), 137-147.
- Potocka, I. and A. Zajadacz, 2009: Weather and climate as elements of tourism space controlling the demand for and
 forms of tourist activity. *Quaestiones Geographicae*, (28 A1), 53-64.
- Pouta, E., M. Neuvonen, and T. Sievänen, 2009: Participation in cross-country skiing in finland under climate
 change: Application of multiple hierarchy stratification perspective. *Journal of Leisure Research*, 41(1), 91-108.
- Raymond, C.M. and G. Brown, 2011: Assessing spatial associations between perceptions of landscape value and
 climate change risk for use in climate change planning. *Climatic Change*, **104(3-4)**, 653-678.
- Reilly, J.M., N. Hohmann, and S. Kane, 1994: Climate change and agricultural trade: Who benefits, who loses?
 Global Environmental Change, 4(1), 24-36.
- Reilly, J.M., S. Paltsev, B. Felzer, X. Wang, D.W. Kicklighter, J.M. Melillo, R.G. Prinn, M. Sarofim, A.P. Sokolov,
 and C. Wang, 2007: Global economic effects of changes in crops, pasture, and forests due to changing climate,
 carbon dioxide, and ozone. *Energy Policy*, **35**, 5370-5383.
- 44 Ren Guoyu, 1996: Global climate changes and the tourism of china. *Journal of Chinese Geography*, **6**(2), 97-102.
- Richardson, R.B. and J.B. Loomis, 2005: Climate change and recreation benefits in an alpine national park. *Journal of Leisure Research*, 37(3), 307-320.
- Ronneberger, K., M. Berrittella, F. Bosello, and R.S.J. Tol, 2009: KLUM@GTAP: Introducing biophysical aspects
 of land-use decisions into a computable general equilibrium model a coupling experiment. *Environmental Modeling and Assessment*, 14(2), 149-168.
- Rossello, J., 2011: North atlantic oscillation influences on european airline traffic. *Transportation Research Part D: Transport and Environment*, 16(2), 183-187.
- 52 Rosselló-Nadal, J., A. Riera-Font, and V. Cárdenas, 2010: The impact of weather variability on british outbound
- 53 flows. *Climatic Change*, , 1-12.

- Saarinen, J. and K. Tervo, 2006: Perceptions and adaptation strategies of the tourism industry to climate change: The
 case of finnish nature-based tourism entrepreneurs. *International Journal of Innovation and Sustainable*
- 3 *Development*, **1**(3), 214-228.
- Sabbioni, C., M. Cassar, P. Brimblecombe, and R.-. Lefevre, 2009: Vulnerability of cultural heritage to climate
 change. *Pollution Atmospherique*, (202), 157-169.
- Scott, D., J. Dawson, and B. Jones, 2008a: Climate change vulnerability of the US northeast winter recreation tourism sector. *Mitigation and Adaptation Strategies for Global Change*, 13(5-6), 577-596.
- Scott, D., S. Gössling, and C.R. De Freitas, 2008b: Preferred climates for tourism: Case studies from canada, new
 zealand and sweden. *Climate Research*, 38(1), 61-73.
- Scott, D. and B. Jones, 2006: The impact of climate change on golf participation in the greater toronto area (GTA):
 A case study. *Journal of Leisure Research*, 38(3), 363-380.
- Scott, D. and B. Jones, 2007: A regional comparison of the implications of climate change for the golf industry in
 canada. *Canadian Geographer*, **51(2)**, 219-232.
- Scott, D., B. Jones, and J. Konopek, 2007: Implications of climate and environmental change for nature-based
 tourism in the canadian rocky mountains: A case study of waterton lakes national park. *Tourism Management*,
 28(2), 570-579.
- Scott, D. and G. McBoyle, 2007: Climate change adaptation in the ski industry. *Mitigation and Adaptation Strategies for Global Change*, **12(8)**, 1411-1431.
- Scott, D., G. McBoyle, and B. Mills, 2003: Climate change and the skiing industry in southern ontario (canada):
 Exploring the importance of snowmaking as a technical adaptation. *Climate Research*, 23(2), 171-181.
- Scott, D., G. McBoyle, and A. Minogue, 2007: Climate change and quebec's ski industry. *Global Environmental Change*, **17(2)**, 181-190.
- Scott, D., G. McBoyle, A. Minogue, and B. Mills, 2006: Climate change and the sustainability of ski-based tourism
 in eastern north america: A reassessment. *Journal of Sustainable Tourism*, 14(4), 376-398.
- Scott, D., G. McBoyle, and M. Schwartzentruber, 2004: Climate change and the distribution of climatic resources
 for tourism in north america. *Climate Research*, 27(2), 105-117.
- Serquet, G. and M. Rebetez, 2011: Relationship between tourism demand in the swiss alps and hot summer air
 temperatures associated with climate change. *Climatic Change*, , 1-10.
- Shaw, W.D. and J.B. Loomis, 2008: Frameworks for analyzing the economic effects of climate change on outdoor
 recreation. *Climate Research*, 36(3), 259-269.
- Shih, C., S. Nicholls, and D.F. Holecek, 2009: Impact of weather on downhill ski lift ticket sales. *Journal of Travel Research*, 47(3), 359-372.
- 33 Smith, K., 1990: Tourism and climate change. Land use Policy, 7(2), 176-180.
- Sohngen, B. and R. Mendelsohn, 1997: A dynamic model of forest carbon storage in the united states during
 climatic change. *Critical Reviews in Environmental Science and Technology*, 27(SPEC. ISS.), S309-S321.
- Sohngen, B. and R. Mendelsohn, 1998: Valuing the impact of large-scale ecological change in a market: The effect
 of climate change on U.S. timber. *American Economic Review*, 88(4), 686-710.
- Sohngen, B., R. Mendelsohn, and R. Sedjo, 2001: A global model of climate change impacts on timber markets.
 Journal of Agricultural and Resource Economics, 26(2), 326-343.
- Steiger, R. and M. Mayer, 2008: Snowmaking and climate change: Future options for snow production in tyrolean
 ski resorts. *Mountain Research and Development*, 28(3-4), 292-298.
- Strulik, H., 2008: Geography, health, and the pace of demo-economic development. *Journal of Development Economics*, 86(1), 61-75.
- Subak, S., J.P. Palutikof, M.D. Agnew, S.J. Watson, C.G. Bentham, M.G.R. Cannell, M. Hulme, S. McNally, J.E.
 Thornes, D. Waughray, and J.C. Woods, 2000: The impact of the anomalous weather of 1995 on the U.K.
 economy. *Climatic Change*, 44(1-2), 1-26.
- Tang, K.K., D. Petrie, and D.S.P. Rao, 2009: The income-climate trap of health development: A comparative
 analysis of african and non-african countries. *Social Science and Medicine*, 69(7), 1099-1106.
- Taylor, T. and R.A. Ortiz, 2009: Impacts of climate change on domestic tourism in the UK: A panel data estimation.
 Tourism Economics, 15(4), 803-812.
- 51 Tervo, K., 2008: The operational and regional vulnerability of winter tourism to climate variability and change: The
- 52 case of the finnish nature-based tourism entrepreneurs. *Scandinavian Journal of Hospitality and Tourism*, **8(4)**,
- 53 317-332.

- 1 Travers, J. and V.G. Payne, 1998: The impact of climate change on traditional seasonal ranges for high street
- 2 women's wear in england. *Journal of Fashion Marketing and Management*, **2(4)**, 370-382.
- Turton, S., T. Dickson, W. Hadwen, B. Jorgensen, T. Pham, D. Simmons, P. Tremblay, and R. Wilson, 2010:
 Developing an approach for tourism climate change assessment: Evidence from four contrasting australian case
 studies. *Journal of Sustainable Tourism*, 18(3), 429-447.
- 6 Uyarra, M.C., I.M. Côté, J.A. Gill, R.R.T. Tinch, D. Viner, and A.R. Watkinson, 2005: Island-specific preferences
 7 of tourists for environmental features: Implications of climate change for tourism-dependent states.
 8 *Environmental Conservation*, 32(1), 11-19.
- 9 van den Berg, M., 2010: Household income strategies and natural disasters: Dynamic livelihoods in rural nicaragua.
 10 *Ecological Economics*, 69(3), 592-602.
- 11 Van der Vliert, E., 2008: *Climate, affluence, and culture* Cambridge University Press, Cambridge, pp. 264.
- Wall, G., 1998: Implications of global climate change for tourism and recreation in wetland areas. *Climatic Change*,
 40(2), 371-389.
- Wall, G. and C. Badke, 1994: Tourism and climate change: An international perspective. *Journal of Sustainable Tourism*, 2(4), 193-203.
- Wang, S., Y. He, and X. Song, 2010: Impacts of climate warming on alpine glacier tourism and adaptive measures:
 A case study of baishui glacier no. 1 in yulong snow mountain, southwestern china. *Journal of Earth Science*,
 21(2), 166-178.
- Whitehead, J.C., B. Poulter, C.F. Dumas, and O. Bin, 2009: Measuring the economic effects of sea level rise on
 shore fishing. *Mitigation and Adaptation Strategies for Global Change*, 14(8), 777-792.
- Winters, P., R. Murgai, E. Sadoulet, A. De Janvry, and G. Frisvold, 1998: Economic and welfare impacts of climate
 change on developing countries. *Environmental and Resource Economics*, 12(1), 1-24.
- Yates, D.N. and K.M. Strzepek, 1998: An assessment of integrated climate change impacts on the agricultural
 economy of egypt. *Climatic Change*, 38(3), 261-287.
- Yazdi, S.K. and A. Fashandi, 2010: The economic effects of climate change on fisheries and aquaculture. In: *ICEEA* 2010 2010 International Conference on Environmental Engineering and Applications, Proceedings pp. 335 340.
- Yu, G., Z. Schwartz, and J.E. Walsh, 2009a: A weather-resolving index for assessing the impact of climate change
 on tourism related climate resources. *Climatic Change*, 95(3-4), 551-573.
- Yu, G., S. Zvi, and J.E. Walsh, 2009b: Effects of climate change on the seasonality of weather for tourism in alaska.
 Arctic, 62(4), 443-457.
- Zimmerman, F.J. and M.R. Carter, 2003: Asset smoothing, consumption smoothing and the reproduction of
 inequality under risk and subsistence constraints. *Journal of Development Economics*, **71(2)**, 233-260.

35 Section 10.4

- Arkell, BP, Darch, GJC. "Impact of Climate Change on London's Transport Network" Municipal Engineer 159,
 December 2006, Issue ME4, Pages 231-237.
- Arnáez, J., V. Larrea, and L. Ortigosa, 2004. Surface runoff and soil erosion on unpaved forest roads from rainfall
 simulation tests in northern Spain. Catena 57. 1-14.
- AUSTROADS (2004). Impact of Climate Change on Road Infrastructure, Austroads Publication No. AP-R243/04,
 Sydney, Australia.
- Baker, CJ; Chapman, L; Quinn, A; Dobney, K. "Climate Change and the Railway Industry: A Review". Journal of
 Mechanical Engineering Science, Volume 224, Part C. 2010. Special Issue 519.
- Burroughs, Edward R. Jr., King, John G., July 1989. Reduction of Soil Erosion on Forest Roads, General Technical
 Report Int-264. U.S. Department of Agriculture Forest Service. 4
- Chapman, Lee. "Transport and Climate Change: A Review". Journal of Transport Geography, 15 (2007) pp 354367.
- 48 "Chicago Climate Action Plan: Our City, Our Future". Chicago Climate Task Force.
 49 http://www.chicagoclimateaction.org/filebin/pdf/finalreport/CCAPREPORTFINALv2.pdf
- Collier, Paul, Gordon Conway, and Tony Venables, 2008. Climate change and Africa. Oxford Review of Economic
 Policy. Vol. 24. No 2. 337-353.
- 52 DOT (2002). "The Potential Impacts of Climate Change on Transportation". Federal Research Partnership
- Workshop, 1-2 October 2002. Department of Transportation Center for Climate Change and Environmental
 Forecasting.

1 Dubé, Kathy, Walt Megahan, and Marc McCalmon (2004). Washington Road Surface Erosion Model, prepared for 2 State of Washington Department of Natural Resources. February 20, 2004. 3 FHWA (2006). Long-Term Pavement Performance (LTPP) Data Analysis Support: National Pooled Fund Study 4 TPF-5(013) - Effects of Multiple Freeze Cycles and Deep Frost Penetration on Pavement Performance and 5 Cost, Publication No. FHWA-HRT-06-121. November 2006. 6 FHWA (2008). Highways In The Coastal Environment, Hydraulic Engineering Circular 25, Federal Highway 7 Administration. 8 Fortier, Allard; Sarrazin, D; Calmels, F; Fortier, D; Chaumont, D; Savard, JP; Tarussov, A. "L'impact du 9 Réchauffement Climatique sur les Aéroports due Nunavik: Caractéristiques du Pergélisol et Caractérisation des 10 Processus de Dégradation des Pistes" Natural Resources Canada. 11 Galbraith, R.M., Price, D.J., and L. Shackman (2005). Scottish Road Network Climate Change Study, Scottish 12 Executive. 13 Gallivan, Frank; Bailey, Kathleen; O'Rourke, Larry. "Planning for Impacts of Climate Change at US Ports". 14 Transportation Research Record: Journal of the Transportation Research Board, No. 2100. (2009) pp. 15-21. 15 Gravel Road Maintenance Manual: A guide for land owners on camp and other gravel roads. April 2010. Maine 16 Department of Environmental Protection Bureau of Land and Water Quality. 17 Gwilliam, Ken, Foster, Vivien, Archondo-Callao, Rodrigo, Briceño-Garmendia, Cecilia, Nogales, Alberto, and 18 Kavita Sethi (2008). Africa Infrastructure Country Diagnostic: Roads in Sub-Saharan Africa, Summary of 19 Background Paper 14, World Bank. 20 Hunt, Alistair, Watkiss, Paul. "Climate Change Impacts and Adaptation in Cities: A Review of the Literature" 21 Climatic Change. Published online 8 December 2010 22 Jonkeren, Olaf; Jourquin, Bart; Rietveld, Piet. "Modal-Split Effects of Climate Change: The Effect of Low Water 23 Levels on the Competitive Position of Inland Waterway Transport in the River Rhine Area" 2009. 24 Transportation Research Part D. 25 Kahklen, Keith. April 2001. A method for measuring sediment production from forest roads. Research Note PNW-26 RN-529. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Reseach Station. 17 27 p. 28 Kamal-Chaoui, Lamia; Robert, Alexis (eds). (2009) "Competitive Cities and Climate Change". OECD Regional 29 Development Working Papers, Number 2, 2009, OECD Publishing. Koetse, Mark; Rietveld, Piet. "The Impact of Climate Change and Weather on Transport: An Overview of Empirical 30 31 Findings". Transportation Research Part D. 2009. Pages 205-221. 32 Larsen, Peter; Goldsmith, Scott; Smith, Orson; Wilson, Meghan; Strezepek, Ken; Chinowsky, Paul; Saylor, Ben. 33 "Estimating Future Costs for Alaska Public Infrastructure at Risk from Climate Change". Global Environmental Change, 18, 2008, pp. 442-457. 34 35 Lavin, Patrick G. (2003). Asphalt Pavements: A Practical Guide to Design, Production, and Maintenance for 36 Architects and Engineers, Spon Press, 2003. 37 Lemmen, Donald; Warren, Fiona (editors). "Climate Change Impacts and Adaptation: A Canadian Perspective" 38 Natural Resources Canada. 2 October 2010. 39 "Marine Shipping" Climate TechBook. PEW Center on Global Climate Change. Accessed 24 May 2011. 40 http://www.pewclimate.org/technology/factsheet/MarineShipping Middelkoop, H; Daamen, K; Gellens, D; Grabs, W; Kwadijk, JCJ; Lang, H; Parmet, BWAH; Schadler, B; Schulla, 41 42 J; Wilke, K. "Impact of Climate Change on Hydrological Regimes and Water Reources Management in the 43 Rhine Basin" Climatic Change, 2001. 105-128. 44 Mills, B.N. and Andrey, J. (2002). Climate change and transportation: Potential interactions and impacts. DOT 45 Center for Climate Change and Environmental Forecasting. The Potential Impacts of Climate Change on 46 Transportation - Federal Research Partnership Workshop. October 1-2, 2002. 47 Mills, B.N., Tighe, S.L., Andrey, J., Smith, J.T., Parm, S. and Huen, K. (2007). The road well Traveled: 48 Implications of climate change for pavement structure in southern Canada. Environment Canada. 49 N.D. Lea International, Limited (1995). Modelling Road Deterioration and Maintenance Effects in HDM-4, 50 prepared for the Asian Development Bank. October 1995. Peterson, Thomas; McGuirk, Marjorie; Houston, Tamara; Horvitz, Andrew; Wehner, Michael. "Climate Variability 51 52 and Change with Implications for Transportation" Transportation Research Board.

1	Pejovic, Tamara; Williams, Victoria; Noland, Robert; Toumi, Ralf. "Factors Affecting the Frequency and Severity				
2	of Airport Weather Delays and the Implications of Climate Change for Future Delays". Transportation Research				
3	Board, Journal of the Transportation Research Board No. 2139. 2009. Pp 97-106.				
4	Potter, Joanne; Burkett, Virginia; Savonis, Michael; Dokken, David (editors). "Impacts of Cliamte Change and				
5	Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I". U.S. Climate Change				
6	Science Program. March 2008.				
7	Ramos-Scharron, Carlos E. and Lee H. MacDonald, 2005. Measurement and prediction of sediment production from				
8	unpaved roads, St John, US Virgin Islands. Earth Surface Processes and Landforms 30. 1283-1304.				
9 10	Sheridan, Gary and Philip Noske (2005). Quantifying the Water Quality Benefits of Erosion and Sediment Control				
10	Practices on Unsealed Forest Roads Final Report. Research Report for the Gippsiand Lakes Future Directions				
11	Action Fian and the victorian Forest Service, Department of Sustainability and Environment. 2003.				
12	Sni, A.Z., K. wang, E.D. warner, D.S. Yu, H.J. wang, K.W. Yang, Y. Liang, and D.M. Sni, 2008. Relationship				
13	Sugraz Pable: Anderson William: Mahal Vijey: Lakshmanan TP. "Impacts of Elooding and Climate Change on				
14	Jurban Transportation: A System wide Parformance Assessment of the Boston Matro Area" Transportation				
15	Research Board Part D 10 (2005) pp 231-244				
17	Tighe S Haas R and Li N (2002) Overlay performance in Canadian strategic highway research program's long				
18	term payement performance study. Transportation Research Record 1778. Paper No. 01-2200				
19	TRB (2008) Potential Impacts of Climate Change on U.S. Transportation TRB Special Report 290 Transportation				
20	Research Board Washington DC				
21	Treasury Board of Canada Secretariat, (undated). Safety guide for operations over ice. Retrieved on March 30, 2010.				
22	from http://www.tbs-sct.gc.ca/pubs_pol/hrpubs/TBM_119/CHAP5_3-1-eng.asp.				
23	Turpijn, Bas. (2010). "Climate Change and Inland Waterway Transport" Rijkwaterstaat – Ministry of Transport,				
24	Public Works and Water Management. 3 September 2010.				
25	Turton, Donald J., Smolen, Michael D., and Stebler, Elaine, December 2009. Effectiveness Of BMPs In Reducing				
26	Sediment From Unpaved Roads In The Stillwater Creek, Oklahoma Watershed. Journal of the American Water				
27	Resource Association Vol. 45 No 6.				
28	United Nations (2010). "Note by the United Nations Economic Commission for Europe and United Nations				
29	Conference on Trade and Development secretariats". Joint Workshop 'Climate Change Impacts on International				
30	Transport Networks'. 7-8 September 2010, Distributed: 29 June 2010.				
31	UNCTAD (2009). "Maritime Transport and the Climate Change Challenge, Summary of Proceedings" Multi-Year				
32	Expert Meeting on Transport and Trade Facilitation. United Nations Conference on Trade and Development.				
33	16-18 February 2009. Published 1 December 2009.				
34	URS Corporation (2010). "Adapting Energy, Transport, and Water Infrastructure to the Long-term Impacts of				
35	Climate Change, Summary Report" Ref. No RMP/5456. URS Corporation Limited. January 2010.				
36	Ziegler, Alan D., and Thomas W. Giambelluca, 1997. Importance of rural roads as a source areas for runoff in				
37	mountainous areas of northern Thailand. Journal of Hydrology, page 204-229				
38	Ziegler, Alan D., Ross A. Sutherland and Thomas W. Giambelluca, September 2000. Partitioning Total Erosion on				
39	Unpaved Roads into Splash and Hydraulic Components: The Roles of Interstorm Surface Preparation and				
40	Dynamic Erodibility. WATER RESOURCES RESEARCH, VOL. 36, NO. 9, PAGES 2/8/–2/91,				
41	Ziegler, Alan D., Ross A. Sutherland and Thomas W. Giambelluca, 2001. Interstorm Surface Preparation and				
42	Sediment Detachment by Vehicle Traffic on Unpaved Mountain Roads. Earth Surface Process and Landforms.				
43	235-250.				
44 15	Section 10.7				
4J 16	Arrow K L and R C. Lind 1070: Uncertainty and the evaluation of public desisions. American Economic Deview				
+0 47	60(3) 364-378				
-+ / 48	ou(3), 570. Aakre S. I. Banaszak R. Mechler, D. Rühhelke, A. Wreford and H. Kalirai. 2010: Financial adaptation to disaster				
49	risk in the European Union Mitigation and Adaptation Strategies for Global Change 15 721-736				
50	ABI 2005: Financial risks of climate change. Summary report. Association of British Insurers (ABI) London 39pp				
51	ABI, 2009: The financial risks of climate change: examining the financial implications of climate change using				

- 52 climate models and insurance catastrophe risk models. Association of British Insurers (ABI) research paper no.
- 53 19. The Association of British Insurers, London, 107pp.

1	AOSIS, 2008: Proposal to the AWG-LCA. Multi-window mechanism to address loss and damage from climate			
2	change impacts. Submission of the Alliance of Small Island States (AOSIS) to the UNFCCC on 6 December			
3	2008 [http://unfccc.int/files/kyoto_protocol/application/pdf/aosisinsurance061208.pdf, retrieved on 2 June			
4	2011]			
5	Barnett, B.J., C.B. Barrett, and J.R. Skees, 2008: Poverty traps and index-based risk transfer products. World			
6	Development, 36(10), 1766-1785.			
7	[Barthel, F. and Neumayer, E., 2011: A trend analysis of normalized insured damage from natural disasters.			
8	Submitted to Climatic Change]			
9	Borch, K., 1962: Equilibrium in a reinsurance market. Econometrica, 30(3), 424-444.			
10	Botzen, W.J.W. and J.C.J.M. van den Bergh, 2008: Insurance against climate change and flooding in the			
11	Netherlands: present, future, and comparison with other countries. Risk Analysis, 28(2), 413-426.			
12	Botzen, W.J.W., J.C.J.H. Aerts, and J.C.J.M. van den Bergh, 2009: Willingness of homeowners to mitigate climate			
13	risk through insurance. Ecological Economics, 68, 2265-2277.			
14	Botzen, W.J.W. and J. van den Bergh, 2009: Bounded rationality, climate risks and insurance: is there a market for			
15	natural disasters? Land Economics, 85(2), 265-278.			
16	Botzen, W.J.W., J.C.J.M. van den Bergh, and L. Bouwer, 2010a: Climate change and increased risk for the			
17	insurance sector: a global perspective and an assessment for the Netherlands. Natural Hazards, 52, 577-598.			
18	Botzen, W.J.W., L.M. Bouwer and J.C.J.M. van den Bergh, 2010b: Climate change and hailstorm damage: empirical			
19	evidence and implications for agriculture and insurance. Resource and Energy Economics, 32, 341-362.			
20	Bouwer, L.M., 2010: Have disaster losses increased due to anthropogenic climate change? Bulletin of the American			
21	Meteorological Society, 92, 39-46.			
22	[Bouwer, L.M., 2011: Projection of future disaster lossees under climate change. Submitted to: Risk Analysis]			
23	Bruggeman, V., M.G. Faure, and K. Fiore, 2010: The government as reinsurer of catastrophe risks? The Geneva			
24	papers, 35, 369-390.			
25	Burby, R.J., 2006: Hurricane Katrina and the paradoxes of government disaster policy: bringing about wise			
26	governmental decisions for hazardous areas. The Annals of the American Academy of Political and Social			
27	Science, 604, 171-191.			
28	Candel, F.M., 2007: Climate change and the global insurance industry: impacts and problems in Latin America. The			
29	Geneva Papers, 32, 29-34.			
30	Changnon, S.A., 2007: Catastrophic winter storms: An escalating problem. Climatic Change, 84, 131-139.			
31	Changnon, S.A., 2008: Assessment of flood losses in the United States. Journal of Contemporary Water Research &			
32	Education, 138, 38-44.			
33	Changnon, S.A., 2009a: Characteristics of severe Atlantic hurricanes in the United States: 1949-2006, Natural			
34	Hazards, 48, 329-337.			
35	Changnon, S.A., 2009b: Increasing major hail losses in the U.S. Climatic Change, 96, 161-166.			
36	Changnon, S.A., 2009c: Temporal and spatial distributions of wind storm damages in the United States. Climatic			
37	Change, 94, 473-482.			
38	Charpentier, A., 2008: Insurability of climate risks. The Geneva Papers, 33, 91-109.			
39	Collier, B., J. Skees, and B. Barnett, 2009: Weather index insurance and climate change: opportunities and			
40	challenges in lower income countries. The Geneva Papers, 34, 401-424.			
41	Crompton, R.P. and K.J. McAneney, 2008: Normalised australian insured losses from meteorological hazards: 1967-			
42	2006. Environmental Science & Policy, 11, 371-378.			
43	Cummins, J.D. and O. Mahul, 2009: Catastrophe risk financing in developing countries: principles for public			
44	intervention. The World Bank, Washington D.C., 256pp.			
45	Donat, M.G., G.C. Leckebusch, S. Wild, and U. Ulbrich, 2010: Benefits and limitations of regional multi-model			
46	ensembles for storm loss estimations. Climate Research, 44, 211-225.			
47	Donat, M.G., G.C. Leckebusch, S. Wild, and U. Ulbrich, 2011: Future changes in European winter storm losses and			
48	extreme wind speeds detected from GCM and RCM multi-model simulations, Natural Hazards and Earth			

- 49 System Sciences, 11, 1351-1370.
- Ebert, I., 2010: Legal aspects of U.S. claims based on greenhouse gas emissions. In: Liability for climate change?
 Experts' views on a potential emerging risk [Munich Re (ed.)]. Munich, 14-15.
- 52 Faure, M.G. and M. Peeters (eds.), 2011: Climate change liability. Elgar, Cheltenham, 304pp.

1

- GAO, 2010: National Flood Insurance Program: continued actions needed to address financial and operational
- issues. United States Government Accountability Office (GAO), Testimony before the Committee on Banking,
 Housing, and Urban Affairs, U.S. Senate, GAO-10-1063T, 20pp.
- GAO, 2011: Flood Insurance: public policy goals provide a framework for reform. United States Government
 Accountability Office (GAO), Testimony before the Subcommittee on Insurance, Housing, and Community
 Opportunity, Committee on Financial Services, House of Representatives, GAO-11-429T, 15pp.

Geneva Association, 2009: The insurance industry and climate change - Contribution to the global debate. The
 Geneva Reports - Risk and Insurance Research, No. 2. The Geneva Association (The International Association)

- 9 for the Study of Insurance Economics), Geneva, 138pp.
- 10 Gerrard, M.B. (ed.), 2007: Global climate change and U.S. law. American Bar Association, Chigaco, 784pp.
- Ghesquiere, F. and O. Mahul, 2007: Sovereign natural disaster insurance for developing countries: a paradigm shift
 in catastrophe risk financing. Policy Research Working Paper, 4345, World Bank, 24pp.
- Grace, M.F. and R.W. Klein, 2009: The perfect storm: hurricanes, insurance, and regulation. Risk Management and
 Insurance Review, 12(1), 81-124.
- Guy Carpenter, 2011: Global reinsurance outlook. Points of inflection. Positioning for change in a challenging
 market. Guy Carpenter & Company LLC., 72pp.
- Hecht, S.B., 2008: Climate change and the transformation of risk: insurance matters. UCLA Public Law & Legal
 Theory Research Paper Series, Research Paper No. 08-24, UCLA Law Review, 55, 1559-1620.
- Herbold, J., 2010: Crop insurance in developing economies the insurers' and reinsurers' perspective. Rural 21 The International Journal for Rural Development, 4, 14-18.
- 21 [Herbold, J., 2011: New approaches to agricultural insurance in developing economies (submitted for publication).]
- Herweijer, C., N. Ranger, and R.E.T. Ward, 2009: Adaptation to climate change: threats and opportunities for the
 insurance industry. The Geneva Papers, 34, 360-380.
- Hess, U. and P. Hazell, 2009: Innovations in insuring the poor: sustainability and scalability of index-based
 insurance for agriculture. International Food Policy Research Institute, Focus 17, Brief 5, 2pp.
- Hochrainer, S. and R. Mechler, 2011: Natural disaster risk in Asian megacities a case for risk pooling? Cities, 28, 53-61.
- Iizumi, T., M. Yokozawa, Y. Hayashi and F. Kimura, 2008: Climate change impact on rice insurance payouts in
 Japan. Journal of Applied Meteorology and Climatology, 47, 2265-2278.
- Kunreuther, H.C. and E. Michel-Kerjan, The development of new catastrophe risk markets. Annual Review of
 Resource Economics, 1(1), 119-139.
- Kunreuther, H.C., E.O. Michel-Kerjan, with N.A. Doherty, M.R. Grace, R.W. Klein, M.V. Pauly, 2009: At war with
 the weather Managing large-sclae risks in a new era of catastrophes. The Massachusetts Institute of
 Technology Press, Cambridge, Massachusetts, London, England, 416pp.
- Kunz, M., J. Sander and Ch. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm frequency and their
 relation to atmospheric characteristics in southwest Germany, International Journal of Climatology, 29, 2283 2297.
- Leckebusch, G.C., U. Ulbrich, L. Fröhlich, and J.G. Pinto, 2007: Property loss potentials for European midlatitude
 storms in a changing climate, Geophysical Research Letters, 34, L05703, doi:10.1029/2006GL027663.
- Leiva, A.J., and J.R. Skees, 2008: Using irrigation insurance to improve water usage of the Rio Mayo irrigation
 system in Northwestern Mexico. World Development, 36(12), 2663-2678.
- Linnerooth-Bayer, J. and R. Mechler, 2009: Insurance against losses from natural disasters in developing countries.
 United Nations Department of Economic and Social Affairs Working Papers No. 85, New York, USA, 35pp.
- Linnerooth-Bayer, J., K. Warner, C. Bals, P. Höppe, I. Burton, T. Loster, and A. Haas, 2009: Insurance, developing
 countries and climate change. The Geneva Papers, 34, 381-400.
- Mahul, O. and C.J. Stutley, 2010: Government support to agricultural insurance: challenges and options for
 developing countries. The World Bank, Washington D.C., 219pp.
- MCII, 2008: Proposal to the ad hoc working group on long-term cooperative action under the Convention (AWG LCA). International insurance mechanism a proposal for the Copenhagen Agreed Outcome, Submission by
 the Munich Climate Insurance Initiative (MCII) to the UNFCCC on 6 December 2008, 4th session of the AWG
- the Munich Climate Insurance Initiative (MCII) to the UNFCCC on 6 December 2008, 4th session of the AWG LCA, Poznan 1-13 December 2008, 33pp.
- Meze-Hausken, E., A. Patt, and S. Fritz, 2009: Reducing climate risk for micro-insurance providers in Africa: a case
 study of Ethiopia. Global Environmental Change, 19, 66-73.

- Michel-Kerjan, E. and F. Morlaye, 2008: Extreme events, global warming, and insurance-linked securities: how to
 trigger the "tipping point". The Geneva Papers, 33, 153-176.
- Mills, E., 2009: A global review of insurance industry responses to climate change. The Geneva Papers, 34, 323 359.

Muir-Wood, R. and P. Grossi, 2008: The catastrophe modeling response to Hurricane Katrina. In: Climate extremes
 and society [Diaz, H.F. and R.J. Murnane(eds.)]. Cambridge University Press, Cambridge, 296-319.

Munich Re, 2011: Natural catastrophes 2010: analyses, assessments, positions. Topics Geo, Münchener
 Rückversicherungs-Gesellschaft, Munich, 40pp.

- Patt, A., P. Suarez, and U. Hess, 2010: How do small-holder farmers understand insurance, and how much do they
 want it? Evidence from Africa. Global Environmental Change, 20, 153-161.
- Phelan, L., R. Taplin, A. Henderson-Sellers, and G. Albrecht, 2011: Ecological viability or liability? Insurance
 system responses to climate risk. Environmental Policy and Governance, 21, 112-130.
- Pinto, J.G., E.L. Fröhlich, G.C. Leckebusch, and U. Ulbrich, 2007: Changing European storm loss potentials under
 modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Natural
 Hazards and Earth System Sciences, 7, 165-175.
- Pinto, J.G., C.P. Neuhaus, G.C. Leckebusch, M. Reyers, and M. Kerschgens, 2009: Estimation of wind storm
 impacts over Western Germany under future climate conditions using a statistical-dynamical downscaling
 approach. Tellus A, 62, 188-201.
- Qureshi, Z. and D. Reinhard (eds.), 2011: Report: 6th international microinsurance conference 2010 Making
 insurance work for the poor, 9 11 November 2010, Manila, Philippines. Munich Re Foundation in cooperation
 with Micro Insurance Network, Munich, 89pp.
- 22 [Sander et al., to be submitted by 2012]
- Schmidt, S., C. Kemfert, and E. Faust, 2009b: Simulation of economic losses from tropical cyclones in the years
 2015 and 2050 the effects of anthropogenic climate change and growing wealth. Discussion Papers of DIW
 Berlin, No.914, 29pp.
- Schmidt, S., C. Kemfert, and P. Höppe, 2009a: Tropical cyclone losses in the USA and the impact of climate
 change--A trend analysis based on data from a new approach to adjusting storm losses. Environmental Impact
 Assessment Review, 29, 359-369.
- Schwarze, R. and G.G. Wagner, 2007: The political economy of natural disaster insurance: lessons from the failure
 of a proposed compulsory insurance scheme in Germany. European Environment, 17, 403-415.
- Schwarze, R., M. Schwindt, H. Weck-Hannemann, P. Raschky, F. Zahn, and G.G. Wagner, 2011: Natural hazard
 insurance in Europe: tailored responses to climate change are needed. Environmental Policy and Governance,
 21, 14-30.
- Schwierz, C., P. Köllner-Heck, E. Zenklusen Mutter, D.N. Bresch, P.-L. Vidale, M. Wild, and C. Schär, 2010:
 Modelling European winter wind storm losses in current and future climate. Climatic Change, 101, 485-514.
- Seaman, S. and J. DeLascio, 2010: Professional liability and global warming claims. In: Liability for climate
 change? Experts' views on a potential emerging risk [Munich Re (ed.)]. Munich, 16-18.
- Stewart, W.F. and D. Willard, 2010: Kivalina v. Exxonmobil dismissed by Federal Trial Court. In: Liability for
 climate change? Experts' views on a potential emerging risk [Munich Re (ed.)]. Munich, 11-13.
- Swiss Confederation, 2008: Funding scheme for Bali Action Plan. A Swiss proposal for global solidarity in
 financing adaptation. "Bali Paper" updated for SB28 Bonn. Berne, 59pp.
- Thieken, A.H., T. Petrow, H. Kreibich, and B. Merz, 2006: Insurability and mitigation of flood losses in private
 households in Germany, Risk Analysis, 26(2), 383-395.
- Van den Bergh, R. and Faure, M., 2006: Compulsory insurance of loss to property caused by natural disasters:
 competition or solidarity? World Competition, 29(1), 25-54.
- Ward, R.E.T., C. Herweijer, N. Patmore, and R. Muir-Wood, 2008: The role of insurers in promoting adaptation to
 the impacts of climate change. The Geneva Papers, 33, 133-139..
- Watson, C.C., Jr. and M.E. Johnson, 2008: Integrating hurricane loss models with climate models. In: Climate
 extremes and society [Diaz, H.F. and R.J. Murnane(eds.)]. Cambridge University Press, Cambridge, 209-224.
- Wilkins, M., 2010: The need for a multi-level approach to climate change: an Australian insurance perspective. The
 Geneva Papers, 35, 336-348.
- 52 WIND, 2011: http://www.isst.fraunhofer.de/en/business_units/gfaal/topic_projects/wind/ (retrieved 4 June 2011)
- 53 54

1 Section 10.8

- Banks LL, Shah MB, Richards ME. 2007. Effective healthcare system response to consecutive Florida hurricanes.
 Am J Disaster Med 2:285-95.
- Carthey J, Chandra V, Loosemore. 2009. Adapting Australian health facilities to cope with climate-related extreme
 weather events. J Facilities Management 7:36-51.
- Ebi KL. 2008. Adaptation costs for climate change-related cases of diarrhoeal disease, malnutrition, and malaria in
 2030. Globalization Health 4:9 doi:10.1186/1744-8603-4-9.
- 8 EM-DAT. 2011. The OFDA/CRED International Disaster Database, Universite catholique de Louvain, Brussels,
 9 Belgium. Accessed 4 June 2011.
- Epstein Y, Mills E. Climate Change Futures. Health, Ecological and Economic Dimensions; Center for Health and
 the Global Environment (CHGE). 2005. Boston, USA.
- Gleditsch, Nils Petter & Ragnhild Nordås (2009) Climate change and conflict: A critical overview. *Die Friedens- Warte* 84(2): 11–28.
- Hess JJ, Heilpern KL, Davis TE, Frumkin H. 2009. Climate change and emergency medicine: impacts and
 opportunities. Acad Emerg Med 16:782-94.
- Hutton G, Haller L. Evaluation of the Costs and Benefits of Water and Sanitation Improvements at the Global Level.
 World Health Organization 2004, Geneva, Switzerland. WHO/SDE/WSH/04.04.
- Jensen, Peter Sandholt & Kristian Skrede Gleditsch (2009) Rain, growth, and civil war: The importance of location.
 Defence and Peace Economics 20(5): 359–372.
- Kiszewski A, Johns B, Schapria A, Delacollette C, Crowell V, Tan-Torres T, Ameneshewa, B, Teklehaimanot A,
 Nafo-Traore F. Estimated Global Resources Needed to Attain International Malaria Control Goals. Bulletin
 WHO 2007;85:623-630.
- Kjellstrom R, Kovats RS, Lloyd SJ, Holt T, Tol RSJ. 2009. The direct impact of climate change on regional labor
 productivity. Arch Environ Occup Health 64:217-227.
- Markandya A, Chiabai Al. Valuing climate change impacts on human health: empirical evidence from the literature.
 Int J Environ Res Public Health 2009;6:759-786; doi:10.3390/ijerph6020759.
- Mayner L, Arbon P, Usher K. 2010. Emergency department patient presentations during the 2009 heatwaves in
 Adelaide. Collegian 17:175-182.
- Nel, Philip and M. Righarts, Natural Disasters and the Risk of Violent Civil Conflict, International Studies Quarterly
 52, 159, 2008.
- Pandey K. Cost of adapting to climate change for human health in developing countries. World Bank Discussion
 Paper 11. December 2010. World Bank, Washington, DC.
- Rising WR, O'Daniel JA, Roberts CS. 2006. Correlating weather and trauma admissions at a level 1 trauma center. J
 Trauma 60:1096-100.
- Tamiotti, L., R. Teh, V. Kulacoglu, A. Olhoff, B. Simmons, and H. Abaza, Trade and Climate Change, World Trade
 Organization, 2009.
- Tol, Richard SJ & Sebastian Wagner (2010) Climate change and violent conflict in Europe over the last millennium.
 Climatic Change 99(1–2): 65–79.
- Van Rensburg JJJ, Blignaut JN. The Economic Impact of an Increasing Health Risk due to Global Warming. In
 Proceedings of the Forum for Economics and Environment Conference, Cape Town, South Africa, 2002.
- 41 http://apps.who.int/whosis/data/Search.jsp. Accessed 4 June 2011.
- Zhang, David D; CY Jim, George C-S Lin, Yuan-qing He, James J Wang & Harry F Lee (2006) Climatic change,
 wars and dynastic cycles in China over the last millennium. *Climatic Change* 76(3–4): 459–477.

45 Section 10.10

- Ackerman, Frank, DeCanio, Stephen J., Howarth, Richard B., & Sheeran, Kristen. (2009). Limitations of integrated
 assessment models of climate change. *Climatic Change: An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change*, 95(3), pp 297-315. doi: 10.1007/s10584-0099570-x.
- Cooke, R. M. and G. N. Kelly (2010). Climate Change Uncertainty Quantification: Lessons Learned from the Joint
 EU-USNRC Project on Uncertainty Analysis of Probabilistic Accident Consequence Code. Resources for the
 Future Discussion Paper 10-29. Washington, D.C., Resources for the Future.
- 53 Farmer, J. D., and J. Geanakoplos, Hyperbolic Discounting is Rational: Valuing the Far Future with Uncertain
- 54 Discount Rates, Yale University Working Paper, 2009, <u>Http://cowles.econ.yale.edu/P/cd/d17a/d1719.pdf</u>.

1	Portney, P.R, and J. Weyant, 1999. Discounting and Intergenerational Equity; Paul R. Portney and John P. Weyant,			
2	Editors, RFF Press.			
3	Weitzman, M. (2010). GHG Targets as Insurance Against Catastrophc Climate Damages. Cambridge, MA, Harvard			
4	University.			
5	Weitzman, M. L. (2009). "On Modeling and Interpreting the Economics of Catastrophic Climate Change." <u>Review</u>			
6	of Economics and Statistics 91(1): 1-19.			
7				
8				
9	Appendix 10A. Industrial Classification and Chapter Outline			
10				
11	International Standard Industrial Classification (ISIC) of All Economic Activities, Rev.4, and outline of Chapter 10.			
12	• A Agriculture forestry and fishing (10.5)			
13	• A - Agriculture, forestry and fishing (10.5)			
14	o 01 - Crop and animal production, nunting and related service activities			
15	\circ 02 - Forestry and logging			
10	\circ U3 - Fishing and aquaculture			
1/	• B - Mining and quarrying (10.5)			
18	• US - Mining of coal and lignite			
19	• 06 - Extraction of crude petroleum and natural gas			
20	• 07 - Mining of metal ores			
21	• 08 - Other mining and quarrying			
22	o 09 - Mining support service activities			
23	• C – Manufacturing (10.5, except C19)			
24	• 10 - Manufacture of food products			
25	• 11 - Manufacture of beverages			
26	• 12 - Manufacture of tobacco products			
27	• 13 - Manufacture of textiles			
28	• 14 - Manufacture of wearing apparel			
29	 15 - Manufacture of leather and related products 			
30	 16 - Manufacture of wood and of products of wood and cork, except furniture; manufacture of 			
31	articles of straw and plaiting materials			
32	 17 - Manufacture of paper and paper products 			
33	 18 - Printing and reproduction of recorded media 			
34	 19 - Manufacture of coke and refined petroleum products (10.2) 			
35	 20 - Manufacture of chemicals and chemical products 			
36	 O 21 - Manufacture of basic pharmaceutical products and pharmaceutical preparations 			
37	 22 - Manufacture of rubber and plastics products 			
38	 23 - Manufacture of other non-metallic mineral products 			
39	• 24 - Manufacture of basic metals			
40	 25 - Manufacture of fabricated metal products, except machinery and equipment 			
41	 26 - Manufacture of computer, electronic and optical products 			
42	 27 - Manufacture of electrical equipment 			
43	 28 - Manufacture of machinery and equipment n.e.c. 			
44	 29 - Manufacture of motor vehicles, trailers and semi-trailers 			
45	 30 - Manufacture of other transport equipment 			
46	o 31 - Manufacture of furniture			
47	• 32 - Other manufacturing			
48	 33 - Repair and installation of machinery and equipment 			
49	• D - Electricity, gas, steam and air conditioning supply (10.2)			
50	 35 - Electricity, gas, steam and air conditioning supply 			
51	• E - Water supply; sewerage, waste management and remediation activities			
52	• 36 - Water collection, treatment and supply (10.3)			
53	o 37 – Sewerage (10.3)			

1		\circ 38 - Waste collection treatment and disposal activities: materials recovery (10.8)			
2		 30 - Waste concerton, deather and disposal activities, matchais recovery (10.0) 39 - Remediation activities and other waste management services (10.8) 			
3	•	F = Construction (10.5)			
4		o 41 - Construction of buildings			
5		~ 42 - Civil engineering			
6		 43 - Specialized construction activities 			
7	•	G - Wholesale and retail trade: repair of motor vehicles and motorcycles (10.8)			
8		\circ 45 - Wholesale and retail trade and repair of motor vehicles and motorcycles			
9		 46 - Wholesale trade, except of motor vehicles and motorcycles 			
10		• 47 - Retail trade, except of motor vehicles and motorcycles			
11	•	H - Transportation and storage (10.4)			
12		• 49 - Land transport and transport via pipelines			
13		\circ 50 - Water transport			
14		\circ 51 - Air transport			
15		• 52 - Warehousing and support activities for transportation			
16		• 53 - Postal and courier activities			
17	•	I - Accommodation and food service activities (10.6)			
18		• 55 - Accommodation			
19		• 56 - Food and beverage service activities			
20	٠	J - Information and communication (10.8)			
21		 58 - Publishing activities 			
22		• 59 - Motion picture, video and television programme production, sound recording and music			
23		publishing activities			
24		 60 - Programming and broadcasting activities 			
25		 61 - Telecommunications 			
26		 62 - Computer programming, consultancy and related activities 			
27		• 63 - Information service activities			
28	•	K - Financial and insurance activities (10.7)			
29		 64 - Financial service activities, except insurance and pension funding 			
30		 65 - Insurance, reinsurance and pension funding, except compulsory social security 			
31		• 66 - Activities auxiliary to financial service and insurance activities			
32	•	L - Real estate activities (10.8)			
33		o 68 - Real estate activities			
34	•	M - Professional, scientific and technical activities (10.8)			
35		• 69 - Legal and accounting activities			
30		 Activities of head offices; management consultancy activities 			
3/		 Architectural and engineering activities; technical testing and analysis Control of the second second			
38		 72 - Scientific research and development 72 - Advertising and research 			
39 40		 75 - Advertising and market research 74 Other professional estimities and technical estimities 			
40		 74 - Other professional, scientific and technical activities 75 Veterinery activities 			
41	•	0 = 75 - v elements derivities N Administrative and support service activities (10.8 excent N79)			
42	•	\sim 77 Reptal and leasing activities			
43 44		~ 78 - Further and reasing activities			
45		\sim 79 - Travel agency tour operator reservation service and related activities (10.6)			
46		\circ 80 - Security and investigation activities			
47		 81 - Services to buildings and landscape activities 			
48		 82 - Office administrative, office support and other business support activities 			
49	•	O - Public administration and defence; compulsory social security (10.8)			
50		• 84 - Public administration and defence: compulsory social security			
51	•	P - Education (10.8)			
52		o 85 - Education			
53	•	Q - Human health and social work activities (10.8)			
54		• 86 - Human health activities			

1	• 87 - Residential care activities				
2	 88 - Social work activities without accommodation 				
3	• R - Arts, entertainment and recreation (10.6)				
4	 90 - Creative, arts and entertainment activities 				
5	 91 - Libraries, archives, museums and other cultural activities 				
6	• 92 - Gambling and betting activities				
7	 93 - Sports activities and amusement and recreation activities 				
8	• S - Other service activities (10.8)				
9	• 94 - Activities of membership organizations				
10	• 95 - Repair of computers and personal and household goods				
11	96 - Other personal service activities				
12	• T - Activities of households as employers: undifferentiated goods- and services-producing activities of				
13	households for own use (10.8)				
14	~ -97 - Activities of households as employers of domestic personnel				
15	0 97 - Retrivities of households as employers of domestic personner				
15	• II Activities of extraterritorial organizations and bodies (10.8)				
17	- 00 Activities of extratermiterial organizations and bodies (10.8)				
10	0 99 - Activities of extratermonal organizations and bodies				
10					
19					
20	Appendix IVB. Industrial Classification and Literature Search				
21					
22	International Standard Industrial Classification (ISIC) of All Economic Activities, Rev.4, and nil returns in a				
23	literature search on Scopus.				
24					
25	• A - Agriculture, forestry and fishing				
26	 01 - Crop and animal production, hunting and related service activities 				
27	 02 - Forestry and logging 				
28	 O3 - Fishing and aquaculture 				
29	B - Mining and quarrying				
30	• 05 - Mining of coal and lignite				
31	 06 - Extraction of crude petroleum and natural gas 				
32	• 07 - Mining of metal ores				
33	• 08 - Other mining and quarrying				
34	 Climate change impact & quarrying: No results* 				
35	• 09 - Mining support service activities				
36	• C – Manufacturing				
37	• 10 - Manufacture of food products				
38	 Climate change economic & food products: No results* 				
39	 Climate change economic & food processing: No results* 				
40	\circ 11 - Manufacture of beverages				
41	 Climate change impact & beverages: No results* 				
42	\sim 12 - Manufacture of tobacco products				
43	 Climate change impact & tobacco: No results* 				
43 ΔΔ	 13 - Manufacture of textiles 				
77 15	 Climate change impact & textiles: No results* 				
4J 46	- 14 Manufacture of waaring apparel				
40	• Climete change import & engelte Ne regulte*				
41 10	 Unmate enange impact & apparer: No results" 15 Manufacture of loothon and related are duct: 				
4ð 40	\circ 15 - Interview of related products				
49 50	 Climate change impact & leather: No results* 				
50	• 16 - Manufacture of wood and of products of wood and cork, except furniture; manufacture of				
51	articles of straw and plaiting materials				
52	 Climate change impact & wood: No results* 				
53	 17 - Manufacture of paper and paper products 				
54	 Climate change impact & pulp paper: No results* 				

1		10 Drinting and range duction of recorded media
1		 Is - Printing and reproduction of recorded media Climate shares impact & minting. No results*
2		 Climate change impact & printing: No results* Climate change impact & meanded modie. No results*
3		 Climate change impact & recorded media: No results^{**} 10 Manufacture of actor and activation and desta
4		0 19 - Manufacture of coke and refined petroleum products
5		• 20 - Manufacture of chemicals and chemical products
6		Climate change impact & chemical production: No results*
7		• 21 - Manufacture of basic pharmaceutical products and pharmaceutical preparations
8		 Climate change impact & pharmaceutical: No results*
9		• 22 - Manufacture of rubber and plastics products
10		 Climate change impact & rubber: No results*
11		 Climate change impact & plastic: No results*
12		 O 23 - Manufacture of other non-metallic mineral products
13		 Climate change impact & cement: No results*
14		 Climate change impact & glass: No results*
15		• 24 - Manufacture of basic metals
16		 Climate change impact & steel: No results*
17		 Climate change impact & iron: No results*
18		 Climate change impact & alumina: No results*
19		 Climate change impact & aluminum: No results*
20		• 25 - Manufacture of fabricated metal products, except machinery and equipment
21		 Climate change impact & metal: No results*
22		• 26 - Manufacture of computer, electronic and optical products
23		Climate change impact & equipment: No results*
24		• 27 - Manufacture of electrical equipment
25		 Climate change impact & equipment: No results*
26		\circ 28 - Manufacture of machinery and equipment n.e.c.
27		 Climate change impact & equipment: No results*
28		 Climate change impact & machinery: No results*
29		~ 29 - Manufacture of motor vehicles trailers and semi-trailers
30		 Climate change impact & vehicle: No results*
31		~ 30 - Manufacture of other transport equipment
32		 Generative of other transport equipment Climate change impact & equipment: No results*
33		\sim 31 - Manufacture of furniture
34		 Gimate change impact & furniture: No results*
35		~ 32 - Other manufacturing
36		 32 - Other manufacturing 33 - Densir and installation of machinery and equipment
27		• Climate change impact & equipment: No results*
20		 Climate change impact & equipment. No results* Climate change impact & machinemy. No results*
20		• Chinate change impact & machinery: No results*
39 40	•	D - Electricity, gas, steam and air conditioning supply
40		o 35 - Electricity, gas, steam and air conditioning supply
41	•	E - Water supply; sewerage, waste management and remediation activities
42		• 36 - Water collection, treatment and supply
43		o 37 - Sewerage
44		• 38 - Waste collection, treatment and disposal activities; materials recovery
45		 39 - Remediation activities and other waste management services
46	•	F – Construction
47		 41 - Construction of buildings
48		• 42 - Civil engineering
49		 43 - Specialized construction activities
50	•	G - Wholesale and retail trade; repair of motor vehicles and motorcycles
51		 45 - Wholesale and retail trade and repair of motor vehicles and motorcycles
52		 46 - Wholesale trade, except of motor vehicles and motorcycles
53		 47 - Retail trade, except of motor vehicles and motorcycles
54	•	H - Transportation and storage

1		 49 - Land transport and transport via pipelines 				
2		 50 - Water transport 				
3		o 51 - Air transport				
4		 52 - Warehousing and support activities for transportation 				
5		o 53 - Postal and courier activities				
6	•	I - Accommodation and food service activities				
7		 55 - Accommodation 				
8		• 56 - Food and beverage service activities				
9	•	J - Information and communication				
10		• 58 - Publishing activities				
11		• 59 - Motion picture, video and television programme production, sound recording and music				
12		publishing activities				
13		 60 - Programming and broadcasting activities 				
14		 61 - Telecommunications 				
15		 62 - Computer programming, consultancy and related activities 				
16		 63 - Information service activities 				
17	•	K - Financial and insurance activities				
18		\circ 64 - Financial service activities except insurance and pension funding				
19		 65 - Insurance reinsurance and pension funding except compulsory social security 				
20		\circ 66 - Activities auxiliary to financial service and insurance activities				
20	•	L - Real estate activities				
21		\circ 68 - Real estate activities				
22	•	M - Professional scientific and technical activities				
23 24		\circ 69 - L egal and accounting activities				
25		\sim 70 - Activities of head offices: management consultancy activities				
25		 70 Therefore on head offices, management constrainely activities 71 - Architectural and engineering activities: technical testing and analysis 				
20 27		\sim 72 - Scientific research and development				
27		~ 73 - Advertising and market research				
20		~ 74 - Other professional scientific and technical activities				
30		~ 75 - Veterinary activities				
30	•	N Administrative and support service activities				
31		\sim 77 Rental and leasing activities				
32		o 78 Employment activities				
33 34		~ 70 - Travel agency tour operator reservation service and related activities				
3 4 35		 No. Security and investigation activities 				
36		 Security and investigation activities 81 Services to buildings and landscape activities 				
30 27		 81 - Services to buildings and fandscape activities 82 Office administrative, office support and other husiness support activities 				
28	•	O Public administration and defence: compulsory social security				
30 30	•	o 84. Dublic administration and defence: compulsory social security				
39 40	•	D Education				
40	•	r = Education				
41 42	•	0 0.5 - Education				
42 13	•	Q - Human health activities				
43		0 80 - Human health activities				
44 15		0 07 - Residential cale activities				
4J 46	•	 Arts entertainment and recreation 				
40 47	•	c 00 Creative arts and entertainment activities				
		\circ 91 - Libraries archives museums and other cultural activities				
+0 /0		 91 - Educates, archives, museums and other cultural activities Q2 Gambling and betting activities 				
47 50		 92 - Gambring and beaming activities 93 - Sports activities and amusement and recreation activities 				
50 51	•	• 55 - Sports activities and antisement and recreation activities				
51 52	•	o = 0.4 Activities of membership organizations				
52 52		 74 - Activities of memoership organizations 05 Denoir of computers and personal and household coords 				
55 51		 9.5 - Kepair of computers and personal and nousehold goods Of Other personal correlativities 				
54		0 90 - Other personal service activities				

1	•	T - Activities of households as employers; undifferentiated goods- and services-producing activities of		
2		households for own use		
3		 97 - Activities of households as employers of domestic personnel 		
4		0 98 - Undifferentiated goods- and services-producing activities of private households for own use		
5	•	U - Activities of extraterritorial organizations and bodies		
6		 99 - Activities of extraterritorial organizations and bodies 		

- 99 Activities of extraterritorial organizations and bodies 0
- 7 *No results = no results for the impact of climate change on this particular economic activity. There may be results 8 for the impact of climate change on a related activity, or for the impact of the activity on climate change.

Туре	Change in climatic or related attribute	Impact	Adaptation options
	Climate change		
All	Increasing air temperature	Reduces efficiency of thermal conversion [1] by 0.1-0.2% in the USA [2]; by 0.1-0.5% in Europe where the capacity loss is estimated in the range of 1- 2%/1°C temperature increase, accounting for decreasing cooling efficiency and reduced operation level/shutdown [3]	
All	Increasing air temperature increasing temperature and reduces the availability of water for cooling [4]	Less power generation [5,6, 11- 13]; annual average load reduction by 0.1-5.6% depending on scenario [15]	Use of non-traditional water sources (e.g., water from oil and gas fields, coal mines and treatment, treated sewage) [19, 20]; Re-use of process water from flue gases (can cover 25-37% of the power plants cooling needs) [5, 20], coal drying, condensers (dryer coal has higher heating value, cooler water enters cooling tower [21]), flue-gas desulphurization; Using ice to cool air before entering the gas turbine increases efficiency and output, melted ice used in cooling tower [5]; Condenser at the outlet of cooling tower to reduce evaporation losses (by up to 20%) [5]. Alternative cooling technologies: dry cooling towers, regenerative cooling, heat pipe exchangers [4, 23]; Costs of retrofitting cooling options depend on depend on features of existing systems, distance to water, required additional equipment, estimated at
All	Sea-level rise	Inundation of coastal power plants and related infrastructure [2, 5, 6, 12, 16]	Dykes, sea-walls, relocation [19, 33]
	Extreme weather events	-	
All	Increasing frequency of extreme hot temperatures	Exacerbating impacts of warmer conditions: reduced thermal and cooling efficiency [1]; overheating buildings; self- ignition of coal stockpiles	Cooling of buildings
	Reduced frequency of extreme cold/frost	Less corrosion due to frost, less freezing of coal stockpiles	
	Drought: reduced water availability	Exacerbating impacts of warmer conditions, reduced operation and output, shutdown	Same as reduced water availability under gradual CC
	Increasing heavy precipitation and resulting floods	Damage to power plant, Coal stockpile drenching - higher coal moisture reduces boiler	Change reference climate for drainage design [25], Barriers and windbreaks [26], spraying to

Table 10-1: Impacts of CC and EWEs on thermal power generation.

	efficiency (by 1%/10% increase in moisture content [7]).	create crusting surface [27]; plants/grass cover [28], compaction [29]
Increasing frequency and intensity of extreme wind conditions (storm, tornado) and combined events (blizzards) [1]	Damage to building, cooling towers [8], storage tanks [8,9]	Adjust construction standards [25]
Lightning	Storage tank damage [9, 10]	Enhanced lightning protection
Floods	Damage to buildings and equipment, shutdown [17, 18]	Hard measures: flood protection by dams, embankment, flood control reservoirs, ponds, channels [19, 30, 31]; drainage improvement, rerouting and isolation of water pipes [32]. Soft measures: zoning, restrictions in flood-prone areas, building codes, flood insurance [31]

Sources: [1] Sieber nee Schulz (2011) [2] Parkpoom et al. (2004) [3] ADAM-Project (2009) [4] Ott & Richter 2008 [5] DOE/NETL (2007) [6] EPRI (2009) [7] Hatt (2004) [8] Bailey & Levitan (2008) [9] Chang & Lin (2006) [10] Stock (2009) [11] Kirkinen et al. (2005) [12] Krysanova & Hattermann (2007) [13] Mills (2007) [15] Hoffmann et al. (2010) [16] Paskal (2009) [17] Young et al. (2004) [18] Krausmann & Mushtaq (2008) [19] UNFCCC (2006) [20] Feeley et al. (2008) [21] Lambertz & Ewers (2006) [23] de Bruin et al. (2009) [24] Maulbetsch and Zammit (2003) [25] Auld et al. (2007) [26] Cal et al. (1983) [27] Chakraborti (1995) [28] Hatt (2003) [29] Fierro et al. (1999) [30] Thomalla et al. (2006) [31] Kundzewicz & Kaczmarek (2000) [32] Vaurio (1998) [33] Leary (2004)

Table 10-2: Impacts of CC and EWEs on nuclear energy.

Change in	Impact	Adaptation options
climatic or		
related attribute		
Higher mean	Increased heat reduces the thermal efficiency of	Site selection for cooler local climates where
temperatures	nuclear plants [1]	possible
Changes in	Can reduce the availability of water from rivers	Alternative cooling options: reuse
rainfall patterns	and lakes, leading to potential reductions in	wastewater and recover evaporated water in
	output or even shutdowns with low water levels	recirculating systems [3]; dry cooling [4, 3]
	[2]	
Increased	Salt sprays from sea can lead to long-term	Weather seal critical equipment [6]
windiness near	corrosion and short-circuit exposed electrical	
coasts and dry	equipment [5]; dust and sand carried by wind can	
areas	lead to equipment malfunction [5]	
Extreme		
Weather Events		
Lightning	Can short-circuit or create false signals in	Ensure that circuits are insulated and
	instrumentation [7, 5]; can short-circuit onsite	grounded; bury key circuits underground;
	grid-connection [5]; can short-circuit back-up	shield diesel generators controls
	diesel connection and controls [5]	
High winds	Wind-generated missiles can damage buildings	Install tornado missile shields [6]
	and back-up generators [6]; can knock out grid	
	interconnection	

Extreme cold	Ice can clog water cooling systems, leading to	Route heated water from cooling system to
	reduced generation or automatic shutdown [5];	inlet area [5]; develop emergency weather
	ice can inhibit plant access; freezing pipes can	plans [6]; insulate critical piping [5]
	lead to internal flooding [5]	
Extreme heat	Extreme heat can limit water discharge if	Reduce generation to avoid raising stream
	temperatures are too high for water quality	temperatures from discharged water above
	regulations, which can in turn reduce generation	regulation [2, 8, 9, 10]; switch from once-
	output or force a shutdown [8, 9, 2, 10]; heat can	through cooling to recirculating to reduce
	also reduce the effectiveness of cooling [2]; heat	temperature of discharged wate [3]; switch
	can foster the rapid growth of biological material	from wet cooling to dry cooling [3]; increase
	that can clog water cooling intake, leading to	maintenance of screens to ensure that
	reduced generation or shutdown [11, 5]	biological matter does not clog water intake
		system [6]
Precipitation	Excessive rain or snow can collapse unreinforced	Ensure that all building housing critical
	structures [7]; excessive snow can inhibit plant	systems are reinforced; develop emergency
	access by critical personnel and supply deliveries	weather plans [6]; special procedures for
	[6]	removal of snow and ice [6]
Drought	Low water levels can force plants to reduce	Implement alternative cooling options: reuse
	generation output or shutdown [8, 9, 2, 10]	wastewater, recover evaporated water in
		recirculating systems, switch to dry cooling
		systems [3]
Floods/sea	Some coastal plants are increasingly vulnerable to	Site selection for new plants [12, 11];
level rise	storm surges as sea levels rise and storms become	earthworks to minimize risk of flooding [13,
	more intense [10] while other plants may be	10] ; upgrade flood-resistant doors [6]; raise
	vulnerable to river floods, both of which can	elevation of backup diesel generators [6]
	force an automatic shutdown but can also damage	
	critical safety systems, grid interconnections, and	
	threaten spent fuel storage [6]	
Forest and	Can disrupt plant access by critical personnel,	Develop emergency access and response
wildfire	supply deliveries, and emergency responders [11,	plans in case of nearby wildfires
	12]	

[1] Linnerud et al. (2011) [2] Förster and Lilliestam (2009) [3] Feely III et al. (2008) [4] EPA (2001) [5] Williams and Toth (2011) [6] US NRC (2002) [7] IAEA (2003a) [8] Parey and Albrecht (2005) [9] Müller et al. (2007) [10] Kopytko and Perkins (2011) [11] IAEA (2003b) [12] IAEA (2003c) [13] IAEA (2003d)

Туре	Change in climatic or related attribute	Impact	Adaptation options
	Climate change		
	Increase/decrease in average water availability	Increased/reduced power output [1- 10]	
	Changes in seasonal and inter- annual variation in inflows (water availability)	Shifts in seasonal and annual power output; floods and lost output in the case of higher peak flows [1-10]	Soft: adjust water management Hard: build additional storage capacity, improve turbine runner capacity [1- 10]
	EWEs		
	Extreme precipitation causing floods	Direct and indirect (by debris carried from flooded areas) damage to dams and turbines, lost output due to releasing water through by- pass channels [4,12]	Soft: adjust water management Debris removal Hard: increase storage capacity[12]
	Extreme cold conditions	Ice blocking turbine inlets [12]	Adopt operational strategies to reduce flow and manage ice-cover formation [12]

Table 10-3: Impacts of CC and EWEs on hydropower generation.

Notes: < yet to be completed >

Sources: [1] Schaefli et al. (2007) [2] Markoff and Cullen (2008) [3] Droogers (2009) [4] Watts et al. (2011) [5] Vicuna et al. (2008) [6] Ranzi et al. (2009) [7] AEG and Cubed (2005) [8] Iimi (2007) [9] Soito and Freitas (2011) [10] Maurer et al. (2009) [12] Sparks and Roy (2011)

Table 10-4: Impacts of CC and EWEs on solar energy.

Туре	Change in climatic or related attribute	Impact	Adaptation options
	Climate change		
	Increasing mean temperature	Improving performance of SH (especially in colder regions), reducing efficiency of PV and CSP with water cooling; PV efficiency drops by ~0.5%/1°C temperature increase [1] for crystalline Si [11,12] and thin-film modules [13] as well, but performance varies across types of modules [14-16], with thin film modules performing better; Long-term exposure to heat causes faster aging	
	Changing cloudiness	Increasing unfavourable (reduced output), decreasing beneficial (increased output) for all types, but evacuated tube collectors for SH can use diffuse insolation [6].	Apply rougher surface for PV panels that use diffuse light better [24]; optimize fixed mounting angle for using diffuse light [25], apply tracking system to adjust angle for diffuse light conditions

	CSP more vulnerable (cannot use	[26]
	diffuse light) [1]	Install/increase storage capacity
		[30-32]
EWEs		
Hot spells	Material damage for PV [17],	Cooling PV panels passively by
	reduced output for PV and CSP	natural ail flows [18] or actively by
		forced air or liquid coolants [19]
	CSP efficiency decreases by 3-9%	
	as ambient temperature increases	
	from 30 to 50°C and drops by 6%	
	(tower) to 18% (trough) during the	
	hottest 1% of time [27]	
Extreme cold periods	Reduced output from TH	TH: in cold regions anti-freeze
	Unglazed collectors: heat loss	chemicals can be applied, but the
	when ambient temperature lower	system needs heat exchanger and
	than that of liquid inside the plate	secondary cycle for clean water [2]
	collector, leading to reduced	
	A which the second output.	
	inlat fluid temperature decreases	
	afficiency by $> 50\%$ in flat plate	
	efficiency by $>30\%$ in flat plate	
	evacuated tube collectors [3, 4]	
 Wind storms	Material damage through wind	Strengthened mounting structure
wind storms	load for all	[33]
Wind and sand storms	Reduced power output due to sand	Cleaning tracking system to rotate
wind and said storins	and dust deposition [20] made	panels out of wind [21]: using
	worse by higher humidity [22]	elastomeric coatings instead of
	worse of ingrief narmally []	grass [23]
		CSP: thermal storage to continue
		operation during sand storms,
		turning the mirrors upside down
		(trough) or out of wind (tower),
		cleaning [28,29]
 Hail	Material damage to SH:	Flat plate collectors: using
	evacuated tube collectors are more	reinforced glass to withstand
	vulnerable than flat plate	hailstones of 35mm (all of 15) or
	collectors [1]	even 45 mm (10 of 15) [5]; only 1
		in 26 evacuated tube collectors
		withstood 45mm hailstones [5]
	Fracturing as glass plate cover,	Increase protection to current
	damage to photoactive material	standards [7,8] or beyond them
 	[1]	[9,10]
Lightning	Damage to inverter in PV [1]	Apply lightning protection [1]

Sources: [1] Patt et al. [2011] [2] Norton and Edmonds (1991) [3] Kalogirou (20040 [4] Norton (2006) [5] SPF (2009) [6] Honeyborne (2009) [7] Kurtz et al. (2009a) [8] Wohlgemuth et al. (2006) [9] Osterwald and McMahon (2009) [10] Speer et al. (2010) [11] Vick and Clark (2005) [12] Radziemska (2003) [13] Mohring et al (2004) [14] Makrides et al. (2009) [15] Carr and Prior (2003) [16] Gottschalg et al. (2004) [17] Kurtz et al. (2009b) [18] Tanagnostopoulos and Themelis (2010) [19] Royne et al. (2005) [20] Goossens and Van Kerschaever (1999) [21] Harder and Gibson (2011) [22] Mohandes et al. (2009) [23] Thornton (1992) [24] Nelson (2003) [25] Armstrong and Hurley (2010) [26] Kelly and Gibson (2009) [27] DOE (2007) [28] Bradsher (2009) [29] Jacobson and Delucchi (2010) [30] Khosla (2008) [31] Richter et al. (2009 [32] Trieb et al. (2009) [33] Deutsche Gesellschaft für Sonnenenergie (2008)

Table 10-5: Impacts of CC and EWEs on wind power.

		1	1
Туре	Change in climatic or related attribute	Impact	Adaptation options
All	Windiness: total wind resource [1] (multi-	Change in wind power	Site selection
	year annual mean wind power densities);	potential [1]	
	likely to remain within $\pm 50\%$ of current	1 6 5	
	values in Europe and North America [2-6].		
	within $\pm 25\%$ of 1979-2000 historical values		
	in contiguous USA [7]		
A 11	In contiguous USA [7]	Timin f	December of the
All	Inter-annual, seasonal, diurnal variability [1,	I iming of power availability	Reserve capacity
	8-9]; changes unclear		
All	Precipitation, thermal regime, near-surface	Operation problems [11],	Passive: blade design;
	humidity [10] (little information) affect	reduced power output in	active: blade heating [11,
	icing frequency: decrease in northern	Finland [47] weak	14]
	Europe [12], within $\pm 40\%$ of historical	correlation between icing	
	values in North America [13], increasing in	and output in Norway [48]	
	Great Lakes region [13]	1	
All	Lower air density due to higher air	Reduced power production	-
	temperature [13]	1 1	
On	Dryer air causing more wind-blown dust	Dust deposition on blades	Turbine design and
OII	[15]	[16] reduced power output	coatings increased blade
	[15]	[10], ieudeed power output	maintananaa [42, 17]
0			
On	Higher temperatures causing permatrost	Access to affected region	Site selection
	melting	difficult (construction,	
		maintenance, repair) [18]	
Off	Sea-level rise [13]	Turbine foundations	Consider SLR in design
		inundated	
Off	Increasing sea salinity	Corrosion [19]	Material choice, corrosion
			protection
Off	Changes in wave activity and wind-wave	Structural damages and	Design specifications [35]
	coupling [34] (highly uncertain); increasing	failure	
	wave activity in Northeast Atlantic [38].		
	Baltic [32] but decreasing in Mediterranean		
	Sea [40]		
	Changes in sea-ice: declining [12, 42, 44]	Turbine foundation loading	Support structure [36]
	Changes in sea-ice. decining [12, 42, 44]		construction material [37]
	Extreme weather events		
A 11	Wind anord autromos [20, 22], aust	Stan stras lints guity fue	Turking design [20, 22]
All	wind speed extremes [20-23]: gust,	Structural integrity from	1 urbine design $[29-32]$,
	direction change, shear [13]; increasing in	nigh structural loads [27];	lidar-based protection [33]
	Germany [24], associated with deep	fatigue, damage to turbine	
	convective conditions in North America	components [13]; reduced	
	[25], southern Europe and southern Africa	output [28]	
	[26]		
All	Extreme low and high temperatures	Physical properties	Turbine selection, lubricant
		(expansion) of materials and	selection [13]
		fluids [13]	
All	Changing lightning frequency (direction	Damage to blades.	Lightning protection [45.
	unclear)	mechanical and electrical	46]
	· · · · · · · · · · · · · · · · · · ·	components [13]	

Notes: On=onshore; off=offshore

Sources: [1] Pryor and Barthelmie (2010) [2] Bloom et al. (2008) [3] Pryor and Schoof (2010) [4] Pryor et al. (2006) [5] Sailor et al. (2008) [6] Walter et al. (2006) [7] Pryor and Barthelmie (2011b) [8] Pryor and Barthelmie (2003) [9] Pryor and Ledolter (2010) [10] Farzaneh (2008) [11] Hochart et al. (2008) [12] Clausen et al. (2007) [13] Pryor and

Barthelmie (2011a) [14] Tammelin and Seifert (2001) [15] de Vries (2009) [16] Corten and Veldkamp (2001) [17] Dalili et al. (2009) [18] Cheng (2005) [19] DNV/Risø (2002) [20] Haugen and Iversen (2008) [21] Leckebusch et al. (2008) [22] Christensen et al. (2007) [23] Pryor et al. (2011) [24] Pinto et al. (2010) [25] Lombardo et al. (2009) [26] Kruger et al. (2010) [27] Hand and Balas (2007) [28] Walter et al. (2009) [29] Bossanyi (2003a) [30] Bossanyi (2003b) [31] Jelavic and Peric (2009) [32] Kanev and van Engelen (2010) [33] de Vries (2010) [34] Barthelmie et al. (1999) [35] Saigal et al. (2007) [36] Colwell and Basu (2009) [37] van der Temple (2009) [38] Wang et al. (2004) [39] Meier (2006) [40] Lionello et al. (2008) [41] Mróz et al. (2008) [42] Vihma and Haapala (2009) [43] Corten and Veldkamp (2011) [44] Assel et al. (2003) [45] Cotton et al. (2001) [46] Rakov and Rachidi (2009) [47] Laakso et al. (2003) [48] Homola et al. (2008)

Table 10-6: Impacts of CC and EWEs on pipelines.

Туре	Change in climatic or related	Impact	Adaptation options
	Climate change		
	Melting permafrost	Destabilizing pillars, obstructing access	Adjust design code and
		for maintenance and repair [9]	planning criteria, install
			disaster mitigation plans,
	EWEs		
	Increasing high wind, storms,	Damage to offshore and onshore	Enhance design criteria,
	hurricanes	pipelines and related equipment, spills;	update disaster preparedness
		lift and blow heavy objects against	
		pipelines, damage equipment [1,3,7,10]	
	Increasing heavy rain		
	Increasing lightning	Piercing the pipeline, causing fire or	
	frequency	explosion [11	
	Extreme high temperatures		
	Extreme low temperatures,	Offshore subsea pipelines winterization,	
	ice	cold flow assurance, ice conditions [4-6]	
	Flooding caused by heavy	Damage to pipelines, spills [2,8]	Siting (exclude flood plains),
	rain, storm surge or sea-level		water proofing.
	rise		1 0
	Erosion, landslide or	Can expose and rupture underground	
	avalanche caused by heavy	pipelines, damage to valves, pumping	
	rain or snow	stations, river crossings, leading to	
		spills, ignition of spilt oil, fire and air	
		pollution [1-2]	
	Forest or bush fire caused by		
	drought		

Sources: [1] Cruz and Krausmann (2011) [2] Vlasova and Rakitina (2010) [3] EEA (2005) [4] DeGeer (2010) [5] Sildnes (2008) [6] Mork (2007) [7] Cruz and Krausmann (2008) [8] Pascal (2010) [9] ACIA (2004) [10] Cruz et al. (2001) [11] Krausmann et al. (2011) [12] Renni et al. (2010a) [13] Renni et al. (2010b)

Туре	Change in climatic or related attribute	Impact	Adaptation options
	Climate change		
	Increasing average temperature	Increased transmission line losses [1]	Include increasing temperature in the design calculation for maximum temperature/rating [1]
	EWEs		
All	Increasing high wind, storms, hurricanes	Direct mechanical damage to overhead lines, towers, poles, substations [1], flashover caused by live cables galloping and thus touching or getting too close to each other; indirect mechanical damage and short circuit by trees blown over or debris blown against overhead lines [2-5]	Adjust wind loading standards [1, 6], reroute lines alongside roads or across open fields [7], vegetation management [8-10], improved storm and hurricane forecasting [3, 11-13]
	Increasing heavy rain	Flashover faults across high voltage insulators [14]; short circuit in high voltage circuit breakers [1]	Improved design of insulators, siting and enhanced maintenance [1]
	Increasing lightning frequency	Flashover fault [5, 8, 10]	Add earth wire(s) above live conductors and to substations, fit spark gaps and surge arresters [6, 8, 15, 16]
	Extreme high temperatures	Lines and transformers may overheat and trip off; flashover to trees underneath expanding cable [6, 8]	Increase system capacity [8], increase tension in the line to reduce sag, add external coolers to transformers [6]
	Extreme low temperatures	Flashover caused by ice building up on insulators, switchgear or transformers	Improve insulator design [17- 19]
	Combination of low temperature, wind and rain, ice storm	Physical damage (including collapse) of overhead lines and towers caused by ice build-up on them	Enhance design standard to withstand larger ice and wind loading [6], reroute lines alongside roads or across open fields [7], improve forecasting of ice storms impacts on overhead lines [20] and on transmission circuits [21-24]
	Flooding caused by heavy rain, storm surge or sea-level rise	Damage to equipment at ground level (substations, transformers)	Improved insulator design, siting ground installations outside hazard zones [1]
	Landslide or avalanche based by heavy rain or snow	Damage to overhead line, underground cable, substation	Siting ground installations outside hazard zones [1]
	Forest or bush fire caused by drought	Damage to overhead line [5, 25, 26], flashover caused by smoke or combustion particles	Routing of transmission line, vegetation control [1]

Table 10-7: Impacts of CC and EWEs on the electricity grid.

Sources: [1] Ward (2011) [2] Davidson et al. (2003) [3] Winkler et al. (2010) [4] Reed (2008) [5]Hines et al (2010) [6] Baylis and Hardy (2007) [7] Martikainen et al. (2007) [8] Brown (2002) [9] IFC (2004) [10] EPRI (2006b) [11] Han et al. (2009) [12] Liu et al. (2008) [13] Bush (2008) [14] EPRI (2007) [15] EPRI (2006a) [16] EPRI (2004) [17] Gutman et al. (2002) [18] Berlijn et al. (2007a) [19] Berlijn et al. (2007b) [20] Musilek et al. (2009) [21] Broström and Söder (2005) [22] Broström and Söder (2007) [23] Broström et al. (2007) [24] Choinard & Erfani (2006) [25] Mitchell (2009) [26] Sunrise Powerlink Project (2008)

References

Table 10-8: Observed normalized insu	ured losses from	weather hazards.
Region / peril accounted for in	Observation	Trend
normalized insured losses	nariad	(aggregation mode)

normalized insured losses	period	(aggregation mode)	
Australia / aggregate of bushfire, flood, hailstorm, thunderstorm, tropical cyclone	1967 – 2006	No trend (annual aggregates)	[6]
USA / winter storms (ice storms, blizzards and snow storms)	1949 – 2003	Positive trend (pentade totals) Positive trend (average loss per state, pentade totals)	[2]
USA / all flood ("flood only" and floods specifically caused by convective storms, tropical cyclones, snow-melt)	1972 - 2006	Positive trend (annual aggregates)	[3]
USA / tropical cyclones	1949 - 2004	No statistical trend assessment. Observation: Increase (7-year totals)	[4]
USA / hail storm	1951 – 2006	No statistical trend assessment. Observation within top-ten major hail storm losses: Increase in frequency and loss in the 1992 – 2006 period as compared to 1951 – 1990	[5]
World / all weather-related USA / all weather-related USA / floods USA / convective events USA / winter storms USA / tropical cyclones USA / heat episodes USA / cold spells Germany / all weather-related Germany / floods Germany / convective events Germany / winter storms	1990 - 2008 $1973 - 2008$ $1973 - 2008$ $1973 - 2008$ $1973 - 2008$ $1973 - 2008$ $1973 - 2008$ $1973 - 2008$ $1973 - 2008$ $1980 - 2008$ $1980 - 2008$ $1980 - 2008$ $1980 - 2008$	No trend (annual aggregates) Positive trend (annual aggregates) No trend (annual aggregates) Positive trend (annual aggregates) No trend (annual aggregates) No trend (annual aggregates) No trend (annual aggregates) Positive trend (annual aggregates)	[1]

References: [1] Barthel and Neumayer, 2011; [2] Changnon, 2007; [3] Changnon, 2008; [4] Changnon, 2009a; [5] Changnon, 2009b; [6] Crompton and McAneney, 2008.

Table 10-9: Climate change projections of insured losses.

Hazard / insurance line	Region	2021-2050 (2050s) relative to current climate	End of 21st century relative to current climate	References
Extratropical storm, Homeowners' insurance	Portugal/Spain France Switzerland UK/Ireland Germany North Rhine-Westphalia Belgium/Netherlands Sweden/Norway Poland Europe in general	-4% to -2% A1B [1] +2% to +9% A1B [1] - +6% to +13% A1B [1] +5% to +18% A1B [1] - +4% to +7% A1B [1] - +2% to +12% A1B [1]	-10% to -5% A1B, A2 [1;3] +6% to +47% A1B, A2 [1;3;5] +19% A2 [5] +17% to +43% A1B, A2 [1;2;3;5;6] +15% to +114% A1B, A2 [1;2;3;5] +8% to +19% A1B, A2 [1;2;3;5] +8% to +80% A1B, A2 [1;5] +7% to +95% A1B, A2 [3;5] -23% to +12% A1B, A2 [1;5] +44% A2 [5]	 [1] Donat et al., 2011; [2] Leckebusch et al., 2007; [3] Pinto et al., 2007; [4] Pinto et al., 2009; [5] Schwierz et al., 2009; [6] ABI, 2009.
Hail storm, Agricultural insurances	Netherlands	+1°C (+2°C) global mean temperature by 2050s: Outdoor farming insurance: +25% to +29% (+49% to +58%) Greenhouse horticulture insurance: +116% to +134% (+219% to +269%)		Botzen et al., 2010
Flood, Property insurance	United Kingdom	+2° global mean temperature (approx. 2040s according to A1B or A2) Mean annual loss +8% 100-year loss +18% 200-year loss +14%	+4° global mean temperature (approx. 2070s according to A1FI) Mean annual loss +14% 100-year loss +30% 200-year loss +32%	ABI, 2009
Typhoon, Property insurance	China	+2° global mean temperature (approx. 2040s according to A1B or A2) Mean annual loss +20% 100-year loss +7% 200-year loss +14%	+4° global mean temperature (approx. 2070s according to A1FI) Mean annual loss +32% 100-year loss +9% 200-year loss +17%	ABI, 2009
Storms, pests, diseases driven by climate, Paddy rice insurance	Japan		Decrease in rice yield in central and western Japan, increase in northern Japan. Paddy rice insurance payouts will decrease by 13%, caused by changed standard yield.	Iizumi et al., 2008

Spatial distribution and damage susceptibility of insured values assumed to be unchanged over time.

Challenges	Example / Explanation
that increase in the	
climate change context	
Failure to reflect	Following the devastating 2004 and 2005 hurricane seasons, the losses of Florida's
temporal changes in	homeowners' insurance accumulated since 1985 exceeded the cumulative direct
hazard condition in risk	premiums earned by 31%. Consequence of the upswing and peak in hurricane activity:
management	One insurer liquidated, two seized by regulation due to insolvency; reduced coverage
	availability in high-risk areas [9].
Misguided incentives	US National Flood Insurance Program (NFIP) could not prevent development of
additionally increasing	settlements in flood plains and suffers from non-risk-adequate premiums [1;6;7].
risk	Plausible exlanation [13]: NFIP incentive scheme may reward affluent flood-plain
	residents who, influenced by increasing flood experience, pressure local governments to
	undertake flood-mitigation activities. Result: improved NFIP ratings and premium
	discounts, attracting prospective homeowners and businesses into high-risk flood plains
	by reduced insurance rates [13].
Non-quantifiable	Ambiguity as to what degree climate change may modify regional weather hazards –
uncertainties increasing	model projections are not unequivocal [2;3]. Uncertainty about prospects of post-disaster
risk	regulatory/jurisdictional pressures, e.g. to extend claims payments beyond the original
	coverage [9].
Liability insurance	Chances for success of litigation in the U.S. where damages from greenhouse gas
impacted by new	emissions are sought seem small, due to legal obstacles [4;5;8;12]. But defence costs can
climate risk	be high and may be covered by liability insurance. As CO2 emissions were declared
	pollution (US Supreme Court/EPA), regulation on limits for CO2 emissions is ongoing
	and non-compliance could impose liability for CO2 emissions in the near future, which
	will be covered by liability insurance. This pending risk has not yet been adequately taken
	into account, as was the case with escalating environmental liability claims in the late
	twentieth century [10;11].

Table 10-10: Supply-side challenges and sensitivities.

References: [1] Burby, 2006; [2] Charpentier, 2008; [3] Collier et al., 2009; [4] Ebert, 2010; [5] Faure and Peeters, 2011; [6] GAO, 2010; [7] GAO, 2011; [8] Gerrard, 2007; [9] Grace and Klein, 2009; [10] Hecht, 2008; [11] Mills, 2009; [12] Steward and Willard, 2010; [13] Zahran et al., 2009

Table 10-11: Products and systems responding to changes in weather risks.

Response option	Example/Explanation
Risk-adjusted premiums	According to an investigation, prior to Germany's disastrous River Elbe flood in
convey the risk to the	2002, 48.5% of insured households had obtained information on flood mitigation or
insureds, encouraging them	were involved in emergency networks and 28.5% implemented one of several
to adaptive measures	mitigation measures compared with 33.9% and 20.5%, respectively, of uninsured
	households [35].
Conditions of insurance	Premium discounts for compliance with local building codes or other prevention
policies incentivizing	options [36]; long-term natural-hazard insurance tied to the property and linked to
vulnerability reduction	mortgages and loans granted for prevention measures [24;25]; share of the insured in
	claims payment payments by deductibles or upper coverage limits; exclusion of
	systematically affected property [1;6;7;8;9;12;18;35].
Coverage for buildings	Green residential policies covering new green buildings or upgrades to green
following so-called green	building standards, following losses or by way of normal renovation. Nevertheless,
standards	those standards' damage reducing feature remains uncertain [18;32].
Consideration of temporal	[11] presents an illustrative example on the recurrence period of US tornado losses in
changes in hazard condition	excess of US\$ 3bn, that dropped from almost 90 years in 1980 to almost 60 years in
(non-stationary behavior)	2000 (including effects from climate and increase in wealth); see also [21;34;37].
Amplifying factors in large	Evacuation and systemic economic catastrophe impacts, adversely affecting regional
disaster losses included in	workforce and repair capacity, or knock-on catastrophes following initial
risk models	catastrophes, e.g. long-term flooding following hurricane landfall [33].
Enhanced disaster resilience	USA: regulatory capital requirements for disaster risk are absent [16]; rating agencies
prescribed to insurers' risk	require insurers to reflect enhanced hurricane incidence since mid-1990s in
management in Europe and	catastrophe models and guarantee liquidity for more than one severe catastrophe per
USA	year, e.g. two 100-year hurricane losses [24]. Under upcoming Solvency II
	regulations in Europe, insurers have to guarantee liquidity for 200-year losses [31].
Insurance associations	[2;3;14] [PLACEHOLDER - there will be two publications from the GDV by 2012
driven merket wide lesses	Interning recommendations on adaptive strategies for insurers from projected future
Disconsificing lange discotor	IOSSES
biversitying large disaster	Following the nurricane disasters of 2004 and 2005, securitisation instruments, e.g.
morkets	and have been recovering agoin from the market break of the financial arisis [17]
markets	and have been recovering again from the market break of the mancial crisis [1/].
	that in the absence of a large catastrophe the investor receives an above market
	return. If a parametric trigger point is exceeded, e.g. an index based on observed gust
	wind speeds the (relinsurer's obligation to pay the interest and/or principal is
	waived The (re)insurer can use the funds to cover the corresponding losses. Weather
	derivatives are further instruments used to transfer risks to the capital markets
	[13:26:31].
Index-based weather crop	Index-based crop insurance is available in 40% of middle-income countries, with
insurance products	enlarged systems beyond pilot impelmentation only in India and Mexico [29:22].
F	There are schemes coupled with access to advanced technology [5:12:22:29].
	Various schemes exist – often in pilot form – or have been proposed for cumulative
	rainfall, cumulative temperature, vegetation index, livestock mortality per region, or
	cumulative reservoir inflow for irrigation purposes [5;26;28]. Pooling local schemes
	across climate regions can reduce risk capital requirements [10;30]. The disaster risk
	layer and high start-up costs (weather-data collection, risk modelling, education)
	necessitate subsidies from the state or donors [12;20].
Improvements to basis risk	Basis risk can be strongly reduced if the index scheme is applied to an area-yield
coupled to index-based	trigger in a region with homogeneous production potential and/or to the uppermost
weather insurance	disaster risk layer only. Further on, it can be absorbed if the index insurance works at

	aggregate level, e.g. to cover crop-credit portfolios or cooperatives, and if once satellite-based remote-sensing technology can be used to establish plot identification, vegetation status, yield estimation and loss assessment [19]
Sovereign insurance schemes	Economic theory about the public sector's risk neutrality argues (i) that risks borne publicly render the social cost of risk-bearing insignificant and (ii) that disaster loss is seen small in comparison with a government's portfolio of diversified assets [4]. This theory proved inadequate if applied to relatively vulnerable small-sized middle to low-income countries [15], thereby rehabilitating sovereign insurance. For the Caribbean scheme CCRIF, that pools states, the reduction in premium cost per country is estimated to be 45–50% [28]. Pooling natural catastrophe risks across an array of megacities has also been proposed, but not yet implemented [23].

References: [1] Aakre et al., 2010; [2] ABI, 2005; [3] ABI, 2009; [4] Arrow and Lind, 1970; [5] Barnett et al., 2008; [6] Botzen and van den Bergh, 2008; [7] Botzen and van den Bergh, 2009; [8] Botzen et al., 2009; [9] Botzen et al., 2010a; [10] Candel, 2007; [11] Charpentier, 2008; [12] Collier et al., 2009; [13] Cummins and Mahul, 2009; [14] [GDV, 2012]; [15] Ghesquiere and Mahul, 2007; [16] Grace and Klein, 2009; [17] Guy Carpenter, 2011; [18] Hecht, 2008; [19] Herbold, 2010; [20] [Herbold, 2011]; [21] Herweijer et al., 2009; [22] Hess and Hazell, 2009; [23] Hochrainer and Mechler, 2011; [24] Kunreuther et al., 2009; [25] Kunreuther and Michel-Kerjan, 2009; [26] Leiva and Skees, 2008; [27] Linnerooth-Bayer et al., 2009; [28] Linnerooth-Bayer and Mechler, 2009; [29] Mahul and Stutley, 2010; [30] Meze-Hausken et al., 2009; [31] Michel-Kerjan and Morlaye, 2008; [32] Mills, 2009; [33] Muir-Wood and Grossi, 2008; [34] [Sander et al., 2012]; [35] Thieken et al., 2006; [36] Ward et al., 2008; [37] Watson and Johnson, 2008.

Structural element	Example/Explanation
Public-private partnerships	Systems with government intervention range from ex ante risk financing design,
involving government	such as public monopoly natural hazard insurance (e.g. Switzerland, with inter-
intervention on the non-	cantonal pool) or compulsory forms of coverage to maximize the pool of insureds
diversifiable disaster risk	(e.g. Spain, France, with unlimited state guarantee on top), to ex post financing
portion	design, such as taxation-based governmental relief funds (e.g. Austria, Netherlands).
	In between these boundaries rank predominantly private insurance markets, in
	several countries combined with governmental post-disaster ad hoc relief (e.g.
	Germany, Italy, UK, Poland, USA). For all of these systems, pros and cons are
	discussed [12;11;14;5;1;4].
Care for people who cannot	Either by funds outside the insurance system, e.g. insurance vouchers [7], or by
afford insurance (any more)	premium subsidies for the catastrophic risk portion [1;14].
Public-private partnership to	Insurance improve the farmers' creditworthiness, that in turn strengthens their
expedite agricultural	adaptive capacity. For instance, by means of loans farmers can step from low-yield
development	to higher-yield cropping systems [3;8;9].
Proposals for adaptation	Risk prevention and risk reduction is the starting point (AOSIS, Switzerland and
oriented climate change risk	MCII) that can absorb many of the smaller weather risks, and various forms of
management frameworks to	insurance are meant to cover all of the remaining risks [2;6;8;10;13].
UNFCCC	

Table 10-12: Governance, public-private partnerships, and insurance market regulation.

References: [1] Aakre et al., 2010; [2] AOSIS, 2008; [3] Barnett et al., 2008; [4] Botzen and van den Bergh, 2008; [5] Bruggeman et al., 2010; [6] Geneva Association, 2009; [7] Kunreuther et al., 2009; [8] Linnerooth-Bayer et al., 2009; [9] Mahul and Stutley, 2010; [10] MCII, 2008; [11] Schwarze et al., 2007; [12] Schwarze et al., 2011; [13] Swiss Confederation, 2008; [14] van den Bergh and Faure, 2006.
Figure 10-1: Demand.

Sources: [1] Hamlet et al. (2010) [2] Chen and Lie (2010) [3] Franco and Sanstad (2008) [4] Vine (2008) [5] Semmler et al. (2009) [6] Aaheim et al. (2009) [7] Lebassi et al. (2010) [8] Parkpoom and Harrison (2008) [9] Beccali et al. (2007) [10] Akpinar-Ferrand and Singh (2010) [11] De Lucena et al. (2010) [12] Mansur et al. (2008) [13] Dubus (2010) [14] Wong et al. (2010) [15] Delfani et al. (2010) [16] Scott and Huang (2007) [17] Christenson et al. (2006) [18] Wang et al. (2010) [19] Hayhoe et al. (2010) [20] Zachariadis (2010) [21] Amato et al. (2005) [22] Jenkins et al. (2008) [23] Miller et al. (2008) [24] Liu and Twumasi (2008) [25] Lam et al. (2010) [26] Wu and Pett (2006) [27] Eskeland et al. (2008) [28] Ruth and Lin (2006) [29] Frank (2005) [30] Pilli-Sihvola et al. (2010) [31] Aebischer et al. (2007) [32] Zmeureanu and Renaud (2008) [33] Mirasgedis et al. (2007) [34] Asadoorian et al. (2008) [35] Dolinar et al. (2010) [36] Wangpattarapong et al. (2008) [37] Eskeland and Mideksa (2009) [38] Thatcher (2007) [39] Chow and Levermore (2010) [40] Dergiades and Tsoulfidis (2008) [41] Psiloglou et al. (2009) [42] Ziser et al. (2010) [43] Collins et al. (2010) [44] Mirasgedis et al. (2006)