
The Smart Card Detective:

a hand-held EMV interceptor

Omar S. Choudary

University of Cambridge

Computer Laboratory

Darwin College

June 2010

This dissertation is submitted for the degree of

Master of Philosophy in Advanced Computer Science

Declaration

I Omar Salim Choudary of Darwin College, being a candidate for the M.Phil in Advanced

Computer Science, hereby declare that this report and the work described in it are my

own work, unaided except as may be specified below, and that the report does not contain

material that has already been used to any substantial extent for a comparable purpose.

The word count, including footnotes, bibliography and appendices is 14 978.

Signed:

Date:

The Smart Card Detective: a hand-held EMV interceptor

Omar Choudary

Abstract

Several vulnerabilities have been found in the EMV system (also known as Chip and

PIN). Saar Drimer and Steven Murdoch have successfully implemented a relay attack

against EMV using a fake terminal. Recently the same authors have found a method to

successfully complete PIN transactions without actually entering the correct PIN. The

press has published this vulnerability but they reported such scenario as being hard to

execute in practice because it requires specialized and complex hardware.

As proposed by Ross Anderson and Mike Bond in 2006, I decided to create a miniature

man-in-the-middle device to defend smartcard users against relay attacks.

As a result of my MPhil project work I created a hand-held device, called Smart Card

Defender (SCD), which intercepts the communication between smartcard and terminal.

The device has been built using a low cost ATMEL AT90USB1287 microcontroller and

other readily available electronic components. The total cost of the SCD has been around

£100, but an industrial version could be produced for less than £20.

I implemented several applications using the SCD, including the defense against the relay

attack as well as the recently discovered vulnerability to complete a transaction without

using the correct PIN.

All the applications have been successfully tested on CAP readers and live terminals.

Even more, I have performed real tests using the SCD at several shops in town.

From the experiments using the SCD, I have noticed some particularities of the CAP

protocol compared to the EMV standard. I have also discovered that the smartcard does

not follow the physical transport protocol exactly. Such findings are presented in detail,

along with a discussion of the results.

Acknowledgments

I thank my supervisor, Markus Kuhn, for extensive guidance and valuable advice on

rigorous design and research.

I am grateful to Mike Bond and Steven Murdoch for many useful discussions on EMV.

Saar Drimer and Sergei Skorobogatov have been extremely helpful with hardware advice

and even hands-on support.

Thanks also to Frank Stajano for suggesting this very exciting project and to Ross An-

derson for the trust and advice.

Last I thank my wife Daniela, for all the moral support during hard times.

Thank you all for an extraordinary and challenging experience.

Contents

1 Introduction 7

2 Background 9

2.1 ISO 7816 . 11

2.1.1 ISO 7816-2: dimensions and locations of the contacts 11

2.1.2 ISO 7816-3: electronic signals and transmission protocols 11

2.2 EMV . 14

2.2.1 Transmission of commands and responses 14

2.2.2 Transaction flow . 16

3 Related work 18

4 SCD overview 20

4.1 Hand-held device . 20

4.2 Applications . 22

5 SCD implementation 23

5.1 Requirements and constraints . 23

5.2 Hardware . 24

5.2.1 ATMEL AT90USB1287 AVR microcontroller 25

5.2.2 Terminal and smartcard interface 26

5.2.3 Power sources . 27

5.2.4 Peripherals . 28

5.2.5 Prototype . 30

5.2.6 PCB . 32

CONTENTS CONTENTS

5.3 Software . 35

5.3.1 Architecture . 36

5.3.2 Initialization sequence . 38

5.3.3 Interrupts and power down modes 39

5.3.4 Memory . 40

5.3.5 Operation . 40

5.4 Terminal emulator . 42

6 Evaluation 44

6.1 Basic functionality . 44

6.2 Power consumption . 45

6.3 Functionality tests . 47

7 Conclusion 51

References 53

Appendix 55

A Source code for byte transmission 55

6

Chapter 1

Introduction

Many banks across Europe have introduced a new payment system, EMV, also known

as Chip and PIN in the UK. EMV is a complex standard that defines the protocol used

between a point of sale terminal and a smartcard. I provide a general understanding of

EMV and details of the parts related to my project in the next chapter.

In a normal payment scenario (e.g. purchasing food at a supermarket) the terminal is

owned by the supermarket and the smartcard is owned by the issuer bank. Thus the card

user has no control over the transaction entities. In this scenario it is possible for someone

to tamper with the terminal such that the amount shown on the display is higher than

the amount requested to the card. The user will confidently enter the PIN and authorize

the transaction.

Financial fraud in the UK has not decreased over the last years, even after Chip and PIN

has been introduced. According to APACS [3] the overall level of frauds has remained

relatively the same, even if the level of particular types of fraud has changed. Murdoch

et al. [22] suggest that EMV has simply moved fraud, but not eliminated it. Therefore

the discovery of vulnerabilities and the development of solutions against financial fraud

remains an important need.

It was the main goal of this project to create a man-in-the-middle device, called Smart

Card Detective (SCD), that would be able to prevent the attack described above. Such

a device would have to intercept the communication between a card and a terminal,

provide the user with the ability to observe the amount requested by the terminal, and

then continue or reject the transaction based on the user decision.

Another goal of this project was to build a device that is small enough to hold it in a

hand like you hold a mobile phone, and cheap enough for many users to actually afford.

The motivation for this was to prove that a miniature device, able to perform man-in-

the-middle EMV operations such as protecting users against fraud can be built.

After first creating a prototype board to prove the correctness of my design, I managed

7

CHAPTER 1. INTRODUCTION 8

Figure 1.1: The Smart Card Detective

to create a hand-held device that provides a trusted display for a transaction and allows

users to defend against relay attacks. In figure 1.1 you can see an image of the final device.

An overview of the SCD is presented in chapter 4 while the details of the implementation

are presented in chapter 5.

A recently discovered vulnerability allows the use of any card (possibly stolen) without

knowing its PIN. The French press has published news about the attack but they reported

the scenario as being hard to execute in practice because it required specialized and

complex hardware.

I have managed to implement this attack on the SCD quite easily as I already had a

robust framework in place which made the implementation straightforward. This proves

that a small and cheap device is able to tamper with a complex system such as EMV, but

also suggests that technically competent criminals may have already developed their own

devices.

The results of experiments using multiple cards and readers as well as some interesting

findings are presented in chapter 6.

Chapter 2

Background

Chip and PIN is the popular UK name for the payment system used in many countries

across Europe. In this system the banks (issuers) provide their clients (users) with a

smartcard that can be used to withdraw money from ATMs, make payment transactions

and even authenticate online transactions. In the remainder of this document I will discuss

only the last two scenarios.

A normal payment transaction requires the user to insert the smartcard (figure 2.1(a))

into a point of sale terminal (figure 2.1(b)) and enter a PIN number (usually 4 digits, but

possibly longer) to authorize the transaction. The PIN number is provided by the bank

but can usually be changed by the user at any time using an ATM.

(a) (b) (c)

Figure 2.1: Entities involved in the Chip and PIN payment system: smartcard (a), termi-

nal (b) and CAP reader (c)

The formal name of the protocol defining the rules for the communication between the

smartcard and the terminal is EMV. This stands for Europay, MasterCard and VISA,

9

CHAPTER 2. BACKGROUND 10

the organizations involved in the original design of the protocol.

EMV relies on the ISO-7816 standard [20] which defines the general characteristics of

Integrated Circuit(s) with Contacts (ICC - generally referred to as smartcard). However

EMV is a complex protocol, with a base specification that spans 4 books [12–15]. In

addition each country and bank has developed particular protocols on top of the reference

specification. This has led to some vulnerabilities in the overall solution, as shown by the

attacks presented in the next chapter.

Figure 2.2: Online authentication using CAP. Image from Steven Murdoch, used in Op-

timized to Fail: Card Readers for Online Banking

Some banks in the UK have implemented the Chip Authentication Program (CAP) [21],

to authenticate online transactions. A typical scenario requires the user to access a bank’s

web page, insert the smartcard into a CAP reader (see figure 2.1(c)), enter the PIN, and

get from the CAP reader a code that must be typed on the web page to complete the

authentication. An illustration of a general approach is provided in figure 2.2.

CAP uses EMV but adds its own functionality to the standard protocol. Together with

a proprietary implementation by each bank this adds to the overall complexity and the

risk of vulnerabilities.

Figure 2.3(a) illustrates the hierarchy of protocols used in the Chip and PIN system and

figure 2.3(b) shows the different layers of specifications used with EMV.

CHAPTER 2. BACKGROUND 11

ISO
7816

EMV

CAP

EMV
standard

Country
regulation

Bank
policy

(a) (b)

Figure 2.3: Main protocols used in Chip and PIN (a); EMV international hierarchy (b)

2.1 ISO 7816

The ISO 7816 standard is composed of ten parts that define physical characteristics,

electronic signals and prototocols. For the purpose of understanding the EMV protocol

and the work presented in this document only parts 2 and 3 are of interest and are

described below.

2.1.1 ISO 7816-2: dimensions and locations of the contacts

A smartcard has eight contacts, labeled C1 through C8. This part of the standard defines

the size and position of these contacts relative to the card.

The normal size of a card has a width of 85.6 mm and a height of 54 mm.

The position of the contacts is presented in figure 2.4. The meaning of each contact is

shown in table 2.1.

2.1.2 ISO 7816-3: electronic signals and transmission protocols

The third part of the ISO 7816 standard defines the voltage thresholds for each contact

as well as the protocols used to transmit data between the terminal and card.

The reference voltage is the supply voltage (VCC), given by the terminal. Under normal

conditions VCC should be between 4.75 and 5.25 V, and the maximum current ICC should

be limited to 200 mA.

CHAPTER 2. BACKGROUND 12

upper edge

left edge

C1 C5

C2 C6

C3 C7

C4 C8
10.25 max

12.25 min

17.87 max

19.87 min

Dimensions in millimetres

19.34 max

20.93 min

21.77 max

23.47 min

24.31 max

26.01 min

26.85 max

28.55 min

Figure 2.4: Location of the contacts as defined in ISO 7816-2

Table 2.1: Assignment of the contacts as defined in ISO 7816-2

Contact Assignment Contact Assignment

C1 VCC (Supply voltage) C5 GND (Ground)

C2 RST (Reset signal) C6 VPP (Variable supply voltage)

C3 CLK (Clock signal) C7 I/O (Data input/output)

C4 Reserved for future use C8 Reserved for future use

The communication between the card and the terminal is asynchronous, meaning that

only one of them can use the I/O line to transmit data at a given time, but not both.

The I/O line can be in two states: high (state Z - voltage above 2 V) or low (state A -

voltage below 0.8 V). When there is no communication, the I/O line should be held in

state Z. If one of the sides wants to transmit data, it will put the I/O line in state A.

In order to initiate the communication, the terminal must issue a reset to the card.

This procedure is as follows: first the voltage VCC is enabled (and optionally VPP), the

reset line is set to low, and then clock is applied. Within 200 clocks the I/O line is

CHAPTER 2. BACKGROUND 13

set to state Z. After 40000 clock cycles the reset line is set to high and the card should

reply with a sequence of bytes known as Answer to Reset (ATR). A reverse procedure,

called deactivation of contacts is used when the card is removed from the terminal or a

transaction is ended.

The characters returned by the ATR provide information about: the format of each

character, the transport protocol, the elementary time unit (ETU), the minimum and

maximum delay between characters, and optionally a check sum.

The ETU specifies the bit duration in terms of terminal clock cycles. The default value

is 372 clocks, but this can be changed by setting a different value in character TA1 of the

ATR. The sender should ensure a precise bit duration and the receiver should read the

bit value about mid-time of the ETU.

Start
bit 8 data bits

ba bb bc bd be bf bg bh bi Guardtime

Next
Start bit

I/O

Z

A

0 t1 tn t10
(n +/- 0.2) etu

Parity
bit

Figure 2.5: ISO 7816-3 character frame

Each character is transmitted as a series of 10 bits like in figure 2.5. The first bit (state

A) is called the start bit and is used to signal the start of a byte transmission. The next

8 bits (ba through bh) represent the contents of the data byte, and should be interpreted

according to the convention in use as described below. The last bit (bi) is called the parity

bit and is used to check that there is an even number of ONES (state A or B depending

on convention) in the 9 bits of data (ba through bi). If this test fails a parity error has

occurred. In such case the bad character will be retransmitted if the transport protocol

in use is T = 0. The protocol T = 1 has a different mechanism to detect errors by means

of block check sums.

The encoding of bytes can use either a direct or inverse convention, as specified in the

byte TS of the ATR. For direct convention, TS is AZZAZZZAAZ, a logic ONE is

represented by state Z and the most significant bit (msb) is bh. For inverse convention

TS is AZZAAAAAAZ, a logic ONE is represented by state A and the msb is ba.

CHAPTER 2. BACKGROUND 14

The transport protocol (T = 0 or T = 1) is determined by the bytes T0 and TD1 of

the ATR, and is used to exchange commands and responses. For the remaining of this

document I will refer only to protocol T = 0 as it is the most commonly used.

The commands are composed of a command header and optional data. The header is

represented by 5 bytes (CLA, INS, P1, P2 and P3), that uniquely define the command

and the length of command data or expected data. Upon reception of a command the

card should return a response under the control of procedure bytes (e.g. wait more time,

send command again, send another command or error). If no errors occur the response

should contain two status bytes (SW1 = 0x90 and SW2 = 0x00 if everything is fine) and

optional data as required by the command. The next section describes in more detail the

use of commands in the Chip and PIN system.

2.2 EMV

The EMV specification (version 4.2 at the time of writing this document) uses and extends

parts of the ISO 7816 standard. The is to keep the compatibility with the ISO standard

as much as possible while providing the necessary functionality.

The electrical characteristics are mostly the same as those specified in ISO 7816-2. The

major difference is the specification of different power classes (class A with VCC at 5V and

ICC min 55 mA, class B with VCC at 3V and ICC min 55 mA, and class C with VCC at

1.8V ICC min 35 mA) that should be supported by new terminals and cards. The purpose

is to introduce terminals that support only class B from January 2014 in order to reduce

power consumption.

Initialization of communication and transmission of characters is done according to the

ISO 7816-3 standard, as explained in the previous section.

2.2.1 Transmission of commands and responses

The communication between the terminal and the card is done by transferring commands

from terminal to card and responses from card to terminal. Some commands may have

command data, and a response may have associated data depending on the command.

The byte sequence composed of a command header and the optional data is called Com-

mand Application Protocol Data Unit (C-APDU), and the sequence composed of the

response bytes plus associated data is called Response Application Protocol Data Unit

(R-APDU).

The commands used by EMV are split in four cases depending on the existence of data

in the command and response. This is illustrated in table 2.2.

CHAPTER 2. BACKGROUND 15

Table 2.2: Command cases in EMV

Case Command Data Response Data

1 Absent Absent

2 Absent Present

3 Present Absent

4 Present Present

Table 2.3: Examples of data transmission. Information extracted from EMV version 4.2

Book 1, Annex A sections A5 and A6
Case 2 command Case 4 command

terminal card terminal card

[CLA INS P1 P2 00] => [CLA INS P1 P2 Lc] =>

<= 6C Licc <= [INS]

[CLA INS P1 P2 Licc] => [Data(Lc)] =>

<= 61 xx <= 61 xx

[00 C0 00 00 yy] => [00 C0 00 00 xx] =>

<= C0 [Data(yy)] 61 zz <= C0 [Data(xx)] 61 yy

[00 C0 00 00 zz] => [00 C0 00 00 yy] =>

<= C0 [Data(zz)] 90 00 <= C0 [Data(yy)] 90 00

A R-APDU of [Data(yy+zz)] 90 00 A R-APDU of [Data(xx+yy)] 90 00

is returned from card to terminal is returned from card to terminal

The byte P3 in the command header represents the length of the command data or the

length of the expected data depending on the command case.

For commands with data (cases 2 and 4), the command header must be sent, then the

card must reply with a procedure byte (equal to INS indicating that all data may be

sent or INS indicating that only the next byte should be sent) and only then the terminal

should send the command data.

For cases 3 and 4 (response data expected), after receiving the command header and

optionally the data (for case 4), the card will send the expected data under the control of

procedure bytes as described above. Other possible procedure bytes are: 0x60 requesting

the terminal for additional work time, 0x61 followed by 0xXX meaning that the terminal

should issue a GET RESPONSE command (CLA = 0x00, INS = 0xC0) with P3 =

0xXX, and 0x6C followed by 0xXX meaning that the terminal should resend the previous

command with P3 = 0xXX.

When a response (with or without data) is returned, the card will transmit two status

bytes SW1 and SW2. The common value for success is SW1 = 0x90 SW2 = 0x00, but

there are other possible values indicating a warning or error condition.

CHAPTER 2. BACKGROUND 16

Two examples of command-response transmissions for case 2 and case 4 commands are

shown in table 2.3. Next I describe a typical transaction flow and the commands involved.

2.2.2 Transaction flow

A transaction starts by selecting the desired application, which should be supported

by both the card and the terminal. The command used for this purpose is SELECT,

identified by CLA = 0x00 and INS = 0xA4. There are two ways to select an application:

select by name using 1PAY.SYS.DDF01, or select by Application Identifier (AID). The

former requires a further READ RECORD command (CLA = 0x00, INS = 0xB2)

to select the applications under the directory 1PAY.SYS.DDF01, while the latter can

select an application directly.

Following application selection, the terminal will issue a GET PROCESSING OPTS

command (CLA = 0x80, INS = 0xA8) which should retrieve the Application Interchange

Profile (AIP) and Application File Locator (AFL). The AIP contains information about

the type of authentication supported while the AFL tells the terminal which records (list

of objects) should be read from the card to perform the transaction.

Before moving on I mention that most of the information returned by the card is encoded

using a format called Basic Encoding Rules - Tag Length Value (BER-TLV). In short,

this format encapsulates each object in a triplet containing the tag of the object (1 or 2

bytes), the length (1 byte) and the value (a sequence of bytes representing the object).

The next step is to read the records specified in the AFL by using the READ RECORD

command. The most important objects are the Card Risk Management Data Object List

1 (CDOL1) and the Cardholder Verification Method (CVM) List. The CDOL1 specifies

which data should be included in the first GENERATE AC command, while the CVM

list enumerates the methods that can be used to authenticate the card user (e.g. PIN or

signature).

In the Chip and PIN system, as its name suggests, the most common CVM is the plain

text PIN (there is an option to encipher the PIN but this is not used in the UK). The

next step of the transaction is to get the PIN try counter by means of the GET DATA

command (CLA = 0x80, INS = 0xCA). The PIN try counter represents the number

of trials the card user has to correctly enter the PIN before the card becomes locked (it

can then be unlocked by the issuer bank). If the counter is greater than zero the user is

asked to enter the PIN number into the numerical pad of the terminal. At this point the

terminal can either verify the PIN online by requesting confirmation to the issuer bank,

or ask the card (offline) for confirmation. The most common method is the offline version.

Thus the next step is to send a VERIFY command (CLA = 0x00, INS = 0x20) to the

CHAPTER 2. BACKGROUND 17

Select application
(SELECT)

Get AIP and AFL
(GET PROCESSING OPTS)

Read records
(READ RECORD)

Get PIN try counter
(GET DATA)

Verify PIN
(VERIFY)

Request cryptogram
(GENERATE AC)

Figure 2.6: Flow of an EMV transaction

card with plain text PIN as the command data. If the PIN is correct the card simply

replies with a success status (SW1 = 0x90, SW2 = 0x00).

The last step of a transaction is to request an application cryptogram from the card using

the GENERATE AC command (CLA = 0x80, INS = 0xAE). This request may be for

an Application Authentication Cryptogram (AAC) which requests canceling a transaction,

an Authorization Request Cryptogram (ARQC) which request an online transaction (i.e.

confirmation from issuer bank) or a Transaction Certificate (TC) which requests an offline

transaction (i.e. no confirmation from the issuer bank). The terminal sends a list of objects

as specified by CDOL1 which generally includes the transaction amount, the Terminal

Verification Results (TVR - 5 bytes indicating the status of the transaction as seen from

the terminal perspective), the transaction date and an unpredictable number. The card

then uses its private key (only known by the card and the issuer bank) to compute a

Message Authentication Code (MAC) over a set of bytes that include the data sent with

the GENERATE AC command. If the card accepts the transaction it returns a MAC

of the same type (AAC, ARQC or TC) or at a lower level (where AAC = level 1, ARQC

= level 2 and TC = level 3). If the card decides to reject the transaction it will return a

MAC of type AAC.

In online transactions there may be a second GENERATE AC command issued by

the terminal where the command data is according to CDOL2 instead of CDOL1. An

illustration of the entire transaction flow is presented in figure 2.6.

In the next chapters I will discuss about particular implementations of EMV, where they

differ from the standard, the vulnerabilities discovered by others and my own findings

during the development of the SCD.

Chapter 3

Related work

Adida et al. [1] first described relay attacks against EMV. A relay attack against the

EMV system is done by forwarding the information from a genuine smartcard to another

fake card. For example Alice (genuine user) goes to a shop to pay for an item of 20

pounds. At the shop, one of the attackers has tampered with the terminal. Somewhere

else, at a jewelry shop, there is the attacker’s partner with a fake card that communicates

wirelessly with the fake terminal. When Alice enters her card and PIN number into the

fake terminal the information from the original card is sent to the fake card which is in

turn inserted into the original terminal at the jewelry shop.

Anderson and Bond have proposed a solution to the relay attack [2]. Their solution, called

the man-in-the-middle defense, is a trusted device with a display that sits between

the card and the terminal. This device should allow the user to verify information about

the transaction such as the requested amount. Then the user could accept or decline the

transaction. Building such a device has been the main target of my project.

In 2007 Drimer and Murdoch have taken a practical approach on the relay attack [9].

Using a small factor Xilinx Spartan 3 FPGA they modified a Chip and PIN terminal

such that they could control the communication to the card, the PIN entry pad and the

display. The modified terminal was connected to a laptop which communicated wirelessly

with another laptop that in turn was connected to a fake card. They successfully tested

the relay attack on a live Chip and PIN system and then proposed a solution to this attack

by using a distance bound protocol. Some could argue that the system created by Drimer

and Murdoch is similar to my project goals. However my goal was to create a cheap

hand-held device for the purpose of showing information about the current transaction.

While their system requires a terminal, an FPGA and a pair of communicating laptops, I

have developed a self-containing portable solution that costs overall less than the FPGA

only.

A trusted display for smartcards is already being produced by AVESO [6]. The P300

Inlay display is designed especially for smartcards. This display provides 6 digits via 7

18

CHAPTER 3. RELATED WORK 19

segment displays and a response time below 1s. However this technology has its limitations

as a solution for the man-in-the-middle defense. Firstly it needs to be built together with

the card. This means that banks need to invest money in creating new cards with display,

while my device could be separately purchased by interested users. Secondly it does not

allow the user to accept or cancel a transaction simply because it has no input mechanism.

The Emue card [11] may be a solution to this, as it provides a display and input buttons.

Another solution is to use the terminal. But using the terminal key pad to allow or cancel

a transaction is not possible because the transaction amount is sent after the user enters

the PIN. It is not feasible to change all existing terminals or make a change in the protocol

just for the sake of this application.

Murdoch et al. [22] have recently found an important vulnerability in the EMV implemen-

tation from many countries, including the UK. They have managed to complete a Chip

and PIN transaction without knowledge of the user’s PIN. This is a man-in-the-middle

attack, where the attacker communicates different things to the terminal and card. On

one side the middle-man tells the terminal that the PIN entered is correct, while on the

card side the middle-man removes the PIN verification (i.e. the VERIFY command is

never sent while the rest of the transaction remains unchanged). This works because the

card will believe that signature authentication has been used since no PIN verification

was requested. Both card and terminal keep some status bits that could be used to detect

this attack but because of the complexity of the EMV implementation this mismatch is

not checked. In my original MPhil project proposal submitted in January 2010, before

finding about the vulnerability discovered by Murdoch et al., I had mentioned the possi-

bility of removing the PIN verification from a transaction. Although at that time I did

not think of the consequences or success of this attack (as explained by Steven Murdoch

in his paper), this does not exclude that others may have found the vulnerability.

In the next chapters I describe the implementation of the SCD from a hardware and

software perspective, the applications developed including the recently discovered attack,

as well as some interesting details found while working on this project.

Chapter 4

SCD overview

In this chapter I present the Smart Card Detective, giving an overview of the components

involved, its functionality and the applications implemented so far. Details about the

implementation, the challenges encountered, and the decisions made, are described in the

next chapter.

4.1 Hand-held device

An illustration of the SCD with the main components highlighted is shown in figure 4.1.

(a) (b)

Figure 4.1: Image of the SCD, component side (a) and user interface side (b)

The user interface is composed of an LCD with 16 characters divided in two rows, 4

push-buttons, 4 low-power LEDs, and a power switch. The LCD can be placed in two

20

CHAPTER 4. SCD OVERVIEW 21

positions, differing by a 180 degrees rotation such that the LCD screen can be read in

different orientations of the SCD.

There are several power sources, which can be selected using the power switch in con-

junction with an external power jumper. When the power switch is in the BATTERY

position the SCD runs on battery power. When the switch is in the EXTERNAL posi-

tion the power source is determined by the jumper and is expected to be 5V. The available

sources then are: TERMINAL, which means that the SCD will be powered by the ter-

minal; USB, where power is given via the USB interface; and EXT, where power can be

given by an external source. The power switch also has a 3rd position in which no power

is selected and thus the SCD in turned off.

Programming and debugging can be done using the JTAG interface. Additionally the

SCD can be programmed via the USB interface using the In-System Programming

facility which allows application code stored in the flash memory to write data into another

part of the flash. The USB interface can also be used to connect the SCD to a computer

and transfer data using the USB controller available on the SCD.

Figure 4.2: Smartcard Interface PCB

The user smartcard is inserted into the card slot (user interface side), and the SCD is

connected to the terminal using a smartcard interface. For the smartcard interface I have

designed a special Printed Circuit Board (PCB) having the same dimensions as a bank

smartcard, which assures a reliable connection between the terminal and the SCD (see

figure 4.2).

A normal usage scenario is as follows: first the user inserts the smartcard in the SCD, then

switches on the device and selects the desired application. At this point the user inserts

CHAPTER 4. SCD OVERVIEW 22

the PCB card interface into the terminal and proceeds with the selected application. The

applications are presented below.

4.2 Applications

There are currently five applications implemented: Forward Commands, Store PIN,

Modify PIN, Filter Amount and No PIN.

The applications are selected from the boot menu. In order to access the boot menu

the button BB must be pressed while resetting the device (pressing the RST button on

the component side). Once the boot menu is accessed, the user can press BC to scroll

through the list of applications and then select the desired application by pressing BD.

Forward Commands shows live information about the transaction on the LCD and logs

the commands and responses without modifying or blocking the transaction. The log is

stored in the EEPROM of the device and can be retrieved via any programming interface.

The log mechanism can be used with all the applications presented below.

The Store PIN application as its name suggests is used to store a PIN into the EEPROM

memory. This PIN is used by the Modify PIN application to modify the PIN that is

transmitted in a transaction. In this way the user can make any transaction without ever

typing the real PIN. To store the PIN I currently extract the necessary information from

the VERIFY command. As a result the keypad of a terminal (including CAP readers)

can be used to type the desired stored PIN.

Filter Amount represents the main goal of this project. This application eavesdrops

on the communication between the card and the terminal until the terminal sends a

Generate AC command. At this point the SCD blocks the communication and shows

the requested amount to the user. The user can check the transaction amount by scrolling

through the menu displayed pressing BC. Then pressing BA will allow the transaction

to continue while pressing BD will terminate the transaction and restart the SCD.

Finally, the No PIN application is the implementation of the attack discovered recently

by Steven Murdoch. Using this application the user can make a Chip and PIN transaction

without knowing the PIN of a card even though the transaction receipt will read PIN

VERIFIED.

Details about the design and implementation of the SCD are presented in the next chapter.

An evaluation and analysis of the applications implemented as well as results from real

tests are presented in chapter 6.

Chapter 5

SCD implementation

In this chapter I present the requirements and implementation of the SCD, the chal-

lenges encountered, and the solutions developed. This information should provide a good

foundation to anyone willing to implement a similar device.

5.1 Requirements and constraints

Before choosing the hardware and software architecture I defined the specifications of the

desired device in terms of functionality, user interface, cost, size, power management and

software development platform.

The size was an important aspect of this project, as researchers in our department have

already implemented large and hard to transport solutions [9] with similar functionality

to the SCD. Thus I decided to make a portable hand-held device that any user could

carry without too much burden.

The next thing to consider was the price. Since I was trying to build a portable user

device the price needed to be low enough that many users could actually afford it.

The main desired functionality of the SCD was to protect the users from tampered ter-

minals such that they could see the details of the transaction before authorizing it. I

managed not only to achieve this functionality but also to implement other applications

as well as the recently discovered EMV vulnerability to use a smartcard without knowledge

of the PIN.

Based on the functionality requirements, I defined the basic requirements for the user

interface: at least two buttons (OK, CANCEL) and an LCD display. The aim has been

to keep the user interface as simple as possible while achieving the target functionality.

Power management has been a very important topic. The SCD should operate without

being connected to an external power source. In such a situation there are two possible

23

CHAPTER 5. SCD IMPLEMENTATION 24

power sources for the desired application: the power given by the terminal, or the power

from a battery. The EMV standard specifies that the smartcard should consume a max-

imum of 80 mA which means that terminals may limit the power that is given to the

SCD (which is being seen as a smartcard). Also the battery life is limited. Thus the SCD

should be designed to use the lowest possible power while having enough power for the

user smartcard, microcontroller and LCD.

Another two important constraints have been the frequency and maximum delay spec-

ifications of EMV. The terminal can provide a clock with any frequency in the range

1–5 MHz. Therefore the SCD can operate the user smartcard at any frequency in that

range. At the same time the microcontroller of the SCD might run at its own frequency.

This means that the SCD will need to ensure a correct communication with the card and

terminal while dealing with three different frequency domains.

There are two delay constraints imposed by EMV. Firstly, any character sent by the card

should be sent within a maximum delay called Work Waiting Time (WWT) from the

previous character sent either by the card or terminal. The default value of the WWT is

9600 ETUs. Secondly, the card should be able to receive two consecutive characters from

the terminal with a minimum delay of 11.8 + N ETUs (where N is given in byte TC1 of

ATR) between the start bits of the two characters. Also the terminal should be able to

receive two consecutive characters from the card with a minimum delay of 12 ETUs. Since

the SCD will act as a terminal in the communication with the user smartcard, and as a

card in the communication with the real terminal, it must satisfy all these constraints.

On the software side I targeted a solution that could be easily used and extended by

others. My aim has been to design a device that could be actually used in practice but

also by any researcher that needs an accessible open platform for EMV.

In the following sections I describe the implementation of the SCD, explaining in detail

the solutions to all the constraints mentioned above.

5.2 Hardware

I have considered five different technologies for the hardware platform: small form factor

FPGAs from Opal Kelly [24], powerful computer-on-module boards from Gumstix [18],

development boards from XMOS [29], and 8-bit AVR microcontroller from ATMEL [4].

The Opal Kelly boards start from £120 and feature a Spartan-3 FPGA that can be

clocked from 1 MHz up to 150 Mhz, an USB port, 4 push buttons, 8 LEDs, and 86 I/O

pins accessible through 0.1” headers.

The Gumstix boards feature a 600 MHz ARM CPU, Bluetooth and 802.11 wireless chips,

256 MB of memory, and many I/O pins for external connections at the price of £140.

CHAPTER 5. SCD IMPLEMENTATION 25

The XMOS development board starts from £80 and provides a proprietary hardware

multi-threaded CPU, input buttons, LEDs, USB, 4 MB of memory, and 64 I/O pins.

All the technologies described above provide a fast and powerful prototyping framework

but they are expensive even on large quantities and require additional expansion boards

for custom components such as the card interface and power management circuits.

Thus I decided to make my own design using the 8-bit AVR microcontrollers from ATMEL.

The AVR devices provide enough resources for my project needs, with most instructions

executing in one clock cycle, a large development community, and many development

tools available. This solution allows me to create a compact board with all the necessary

components at a cost well below the other possibilities.

5.2.1 ATMEL AT90USB1287 AVR microcontroller

The first choice of AVR microcontroller was the AT90SCR100. This features two USB

controllers (host and device), one smartcard interface (a hardware block dedicated to

the communication with smartcards, providing an interface to transfer bytes), an AES

hardware module, 64 KB of Flash and over 100 general purpose I/O pins. Unfortunately

I was not able to find this controller on the market. After several requests over e-mail

and phone I decided to choose another device, presented below.

The best alternative I found to the AT90SCR100 is the AT90USB1287 microcontroller.

This has many of the characteristics of the AT90SCR100 except for the smartcard interface

but is highly available. Also ATMEL provides an evaluation board for this microcontroller,

the AT90USBKey.

The most important characteristics of the AT90USB1287 for my project goals are: 128

KB of Flash (for executable code), 4 KB EEPROM (used for permanent data), 8 KB of

RAM (used to store runtime information about a transaction), 4 timers (used for syn-

chronized communication with smartcard and terminal), several sleep modes for reduced

power consumption, USB controller (used as programming interface but also allows nor-

mal transfer), 16 Millions of Instructions Per Second (MIPS) at 16 MHz, and [2.7-5.5] V

operation. I detail these features in the following paragraphs.

For better efficiency I decided to use a 16 MHz clock to drive the CPU. This requires a

higher working voltage and power consumption than using an 8 MHz clock but allows a

better sampling of the terminal clock as described below and also gives a larger processing

window between data transmissions.

CHAPTER 5. SCD IMPLEMENTATION 26

5.2.2 Terminal and smartcard interface

Two 8-bit timers (T0, T2) and two 16-bit timers (T1, T3) are available (please refer

to figure 5.1 for the microcontroller pinout). Each timer can be configured to run from

the internal clock where a divider of factor 1/8, 1/64, 1/256 and 1/1024 is available, or

from an external clock. Also each timer has several comparator units that can be used

to trigger interrupts, change a flag or change some of the I/O pins at any value of the

timer. A special comparator unit (A) can be used to set the top value at which the timer

will reset. These features allow the communication with the terminal at any input clock

frequency and the communication with the smartcard at another independent frequency.

Figure 5.1: Pinout AT90USB1287. Image from ATMEL datasheet

To communicate with the terminal, the CLK signal is connected to the external input of

T3 and the I/O is connected to PC4 which is also one of the pins that can be changed

by T3 using the output comparator unit OC3C. In this way the timer T3 is incremented

CHAPTER 5. SCD IMPLEMENTATION 27

based on the terminal frequency. The requirements for a good sampling is that the

frequency of the CPU is higher than 2.5 times the external signal. Thus, using the 16

MHz crystal it is possible to sample correctly even at the maximum terminal frequency

of 5 MHz. Setting the 16-bit register OC3C to 372 (number of clocks in one ETU) it is

possible to correctly transmit data by toggling the PC4 pin high or low depending on the

bit that must be sent. Receiving data is done by reading the PC4 pin in the middle of

a bit, by first setting OC3C to 186 (half of the ETU) and then to 372 for remaining of

the bits to be received. The RST line is connected to PD0 which is also the external

interrupt INT0. This is useful because the CPU can wake up from sleep modes or can

execute an interrupt subroutine based on the terminal reset signal. The external interrupt

can be triggered on: any level change, low level (sustained for at least one cycle), falling

edge or raising edge). Finally the VCC line is connected to the external power jumper

JP1. More on this is described later under the power sources subsection. See also the

complete schematic in figure 5.3.

The smartcard communication is slightly different. The smartcard clock is provided by

the microcontroller using T0 and the output comparator unit OC0A (connected to PB7).

As the CPU runs at 16 MHz, setting the OC0A register to 1 and the option to toggle

the compare match output pin (PB7) will provide a frequency of 4MHz on that pin.

The I/O line is connected to PB6, the output comparator unit OC1B of T1. Thus, to

transmit a bit the OC1A register is set to 1488 (4 times ETU, since the CPU runs at a

frequency 4 times higher than the smartcard clock) and the OC1B pin is set to change

according to the bit transmitted when T1 reaches the OC1A value. Receiving a bit is

done similarly but instead of changing the OC1B pin we need to check the compare match

flag which should be set when T1 reaches the OC1A value. The reset signal is provided

using the I/O pin PD4. Finally VCC is given with power from the main circuit using

a MOSFET P-channel transistor activated by PD7. The I/O pins of the microcontroller

allow a maximum of 40 mA per pin, while the smartcard can require up to 80 mA, thus

power from the main circuit was required. The P-channel transistor was chosen because

it can be opened with a ground voltage while an N-channel MOSFET requires an opening

voltage larger than the output voltage (5V in this case).

5.2.3 Power sources

As described in the previous chapter there are several power sources, including battery,

USB and terminal power.

The battery is needed in most practical situations, as the power from the terminal may not

suffice for the entire circuit including the smartcard, or the application should run before or

after the terminal has provided power. Batteries have a variable output voltage depending

on the remaining life time and the current consumption. Thus a power regulator (U2 in

CHAPTER 5. SCD IMPLEMENTATION 28

figure 5.3) is needed to provide a constant voltage into the circuit. The output voltage

from the power regulator should be above 4.5 V for a correct operation of the SCD. In

the prototype version of the SCD I used a 9V battery which has a high capacity thus

providing a good voltage for a long time. However on the PCB version I decided to put

two 3V CR2430 cell batteries (for the convenience of space) which have a normal running

voltage around 5V. In this situation I had to use a very low drop out power regulator

combined with a good software power management. By inspecting a CAP reader from

Barclays I found that it uses a similar solution, with four 1.5 V cell coin batteries instead

of the two 3V batteries.

The USB is a good power source for development or research as it does not consume the

battery but requires the device to be connected to a power supply such as the computer.

The power from the USB is not regulated as it is assumed to be 5V, the standard bus

voltage. This also allows the use of a variable power supply in order to test the circuit

under different values of current and voltage.

For cases where neither USB nor battery power is available, the SCD can run with power

from the terminal. Most terminals should be able to provide enough power for the SCD

even though CAP readers are very limited. However the use of terminal power requires

a careful design of the software as the device will have to complete any initialization

routines within 80000 terminal clock cycles after which the terminal will stop the power

if the ATR is not received. This may seem enough but the startup of the AT90USB1287

by itself requires 16000 clocks at a terminal frequency of 4MHz.

A last power source option is given by the pins JPEXT1, JPEXT2. These pins can be

used to plug a source that provides 5V. Such power supply can be useful for development

where a connection of this type is more convenient.

5.2.4 Peripherals

There are several peripherals available in the SCD: JTAG interface, ISP, USB, terminal

connectors, smartcard interface, LEDs, an LCD and buttons.

The JTAG interface is used for programming and on-chip debug. There are several hard-

ware tools available from ATMEL for this purpose, including the JTAG ICE mkII, the

AVR ONE and the AVR Dragon. During the development of the SCD I have been

using the AVR Dragon [5], which provides the necessary functionality at a price of £30.

For programming purposes Tuxgraphics provides a cheap and efficient ISP programmer

[28] for which I included a connector in the SCD design. As well as the JTAG, the ISP

interface allows to change the settings of the fuses and lock bits. The fuses are special

programmable bits that control certain features of the hardware such as the initial clock

divider, startup time, CPU frequency or brown out detection level. The lock bits are

CHAPTER 5. SCD IMPLEMENTATION 29

similar to fuses but they control the ability to program the chip and the restrictions on

different areas of the memory.

The USB port allows a fast-speed bus connection between the SCD and a host such as

a PC. This connection can also be used to program the SCD by using a boot loader

application (also known as In-System Programming). The program memory (Flash)

in the AT90USB1287 is divided in two sections: Application and Boot. When the lock

bits allow it, code in the Boot section can modify the contents of the Application section.

Pressing HWB while resetting the device will make the CPU to run the code in the Boot

section (the boot loader) instead of the Application section.

Figure 5.2: Smartcard Interface Monitor by Markus Kuhn. Used as the card interface

during development of the SCD

In order to communicate with the terminal a card emulator board with contacts like the

one shown in figure 4.2 is needed. For the connection with the card emulator the SCD

has two interfaces available: an 8 pin connector (SV1) compatible with the Interface

Monitor V1.0 developed by Markus Kuhn (see figure 5.2), and a 6 pin connector (SV8).

The 6 pin connector does not provide connection to the C4 and C8 contacts but this

does not affect any current functionality as these contacts are not used in the payment

system applications.

The user card is connected through a smartcard interface. This interface (FCI in figure

5.3) provides a physical receptacle, contacts from the card, and a card insertion switch.

The card contacts are also exposed using an 8 pin connector (SV2), similar to the one

used for the terminal connector. The card insertion switch is connected between ground

CHAPTER 5. SCD IMPLEMENTATION 30

and pin PD1 which is also the external interrupt INT1. As long as the card is not

inserted PD1 is tied to ground. Inserting the card will leave that pin connection open

and by enabling the pull-up resistor of PD1 the voltage will be brought to the VCC level.

This can be used to trigger an interrupt each time the card is inserted or removed.

The LCD has been a fundamental requirement of the SCD. Based on their popularity I

decided to use Hitachi HD4478 [19] compatible LCDs. The two identical LCD interfaces

(SV4, SV6) are composed of 8 data pins (PA0 to PA7), 3 control pins (PC0 to PC2),

ground, VCC , and a contrast voltage. As explained in the previous chapter I used two iden-

tical mirrored interfaces to allow the placement of the LCD in two positions. The contrast

voltage should be given using a voltage divider with a variable resistor (potentiometer).

From experiments with two types of LCDs I observed that the required contrast voltage

for good visibility is different. The prototype board has a potentiometer which allowed

me to test different values of the contrast voltage. However in the PCB version I decided

to use a fixed voltage divider, targeting only the small version of the LCD, in order to

keep a low cost and size of the device. The fixed value has been chosen such that the

display is well readable for VCC in the range [4.2, 5.2] V.

For the purpose of generality I decided to use four input buttons instead of two, and to

add four LEDs that could be used to provide some information without the LCD (e.g.

power on, card inserted).

The prototype and PCB versions of the SCD are presented in the next subsections.

5.2.5 Prototype

The first step in building the SCD was to create a complete schematic design that included

all the components and connections in the circuit. I have used the free version of EAGLE

[10] for the schematic and board (see below) design. The schematic is shown in figure 5.3.

Starting from the schematic I created a board design in order to make an approxima-

tive placement of the components before soldering them into the prototype board. The

resulting board can be seen in figure 5.4.

The cost of all components (including two types of LCD and battery not shown in figure

5.4) was around £100. It required about three days of work to assemble the components

and wires into the prototype board.

After fixing some power connection mistakes (which led to replacing the microcontroller),

the hardware of the SCD prototype was operational.

The main problem encountered was the malfunction of the USB communication, which

was tested by trying to program the chip through the USB interface. Using an oscilloscope

HP 54645D that features two analog channels and 16 digital channels at 100 MHz I was

CHAPTER 5. SCD IMPLEMENTATION 31

GND

VCC

VCC

G
N

D
G

N
D

G
N

D
G

N
D

GND

VCC

GND

VCC

GND

V
C

C

GND

G
N

D

GNDGND

GND

GND
VCC

GND

GND

GND

GND

GND

GNDGND

G
N

D

GND

GND

VCC

GND

GND

VCC

G
N

D

GND

AT90USB647

GND

G
S

O
T0

5

G
S

O
T0

5

1uF

1u
F

JTAG

TR
M

1

ICC

ISP_TUX

ADP338
1uF

BSP317P

22
22

10
K

4K
7

1K

1K 1K 1K 1K

47K

47
K

47
K

10
0n

F
10

0n
F

100nF 100nF

15
pF

15
pF

220nF

220nF

100nF

S
M

A
R

TC
A

R
D

C
E

LL
B

AT

CON_14_127

CON_14_127GND

V
C

C

G
N

D
TR

M
2

GND

LE
D

LE
D

LE
D

LE
D

S
W

2

S
W

2

S
W

2
S

W
2

S
W

2
S

W
2

C
R

YS
TA

L

SWP

JP1

22-27-2021-02

G
N

D

VCC VCC
GND GND GND

ADC0-PF0 61
ADC1-PF1 60
ADC2-PF2 59
ADC3-PF3 58

ADC4-PF4-TCK 57
ADC5-PF5-TMS 56
ADC6-PF6-TDO 55
ADC7-PF7-TDI 54

PE0-WR 33
PE1-RD 34

PE2-ALE-HWB 43

PE3-IUID9

INT4-PE4-TOSC1 18
INT5-PE5-TOSC2 19

INT6-PE6-AIN0 1
INT7-PE7-AIN1 2

PD7-T0 32

PD6-T1 31

PD5-XCK1 30

PD4-ICP1 29

PD3-INT3-TXD1 28

PD2-INT2-RXD1 27

PD1-INT1-OC2B 26

PD0-INT0-OC0B 25

PC7-CLKO42

PC6-OC.3A41

PC5-OC.3B40

PC4-OC3C39

A11-PC3-T338

A10-PC237

A9-PC136

A8-PC035

OC0A-OC1C-PB717
OC1B-PB616
OC1A-PB515
OC2A-PB414
MISO-PB313
MOSI-PB212
SCK-PB111
SS-PB010

AD6-PA645
AD7-PA744

AD5-PA546

AD4-PA447

AD3-PA348

AD2-PA249

AD1-PA150

AD0-PA051

AVCC 64
AREF 62

XTAL1 24
XTAL2 23

52 21

5322

VBUS8
UVCC3

UGND6

D+5

D-4

RESET 20

UCAP7

U1

GND

63

VCCD
2

D
1

C12

C
9

1
3
5

2
4
6

7
9

SV5

8
10

1 2 3 4 5 6 7 8

S
V

1

1
2
3
4
5
6
7
8

SV2

1
2
3
4
5

SV3

U2
GND

IN OUTC11

U3

R12
R1

R
2

R
5

R6

R
7

R
8

R
9

R
10

R11

R
4

R
3

C
2

C
3

C1 C8

C
4

C
5

C6

C7

C10

V
C

C

R
S

T

C
LKN
C

I/O

G
N

D

FC
I

N
C

N
C

C
1

C
2

C
3

C
4

C
8

C
7

C
6

C
5

S
2

S
1

+
-

6V

1
3
5

2
4
6

7
9

8
10

11
13

12
14

SV6

1
3
5

2
4
6

7
9

8
10

11
13

12
14

SV4

1 2 3 4 5

S
V

8

6

LE
D

1

LE
D

2

LE
D

3

LE
D

4

1
2
3
4
5

2
1

H
W

B

2
1

R
S

T

2
1

B
A

2
1

B
B

2
1

B
C

2
1

B
D

16
M

H
Z

2
3

1

5
6

4

SW_PWR
1 2

JP1

3 4
5 6

JPEXT-1

JPEXT-2

TP
1

TP
2

TP
3

TP
4

TP
5

VCC RST CLK C4 C8 C6I/O GNDVCC GND RST C6 CLK I/O

Figure 5.3: Complete schematic of the SCD

able to detect the problem. The USB data lines (D+ and D-) should be connected with

22 Ω resistors and optionally with data line protection diodes. In the prototype version I

added protection diodes for the USB data lines without considering the capacitive effect

of the selected diodes. With fast-speed USB communication (about 12 Mbps) the data

lines were not changing the voltage within the required time frame because of the high

capacity introduced by the protection diodes. Removing the diodes completely seems a

good approach in practice (as the data lines are still protected against high currents by

the resistors) and was the preferred solution for the PCB design.

With the hardware in place I started to work on the software side of the project, as

described in the next section. Using the oscilloscope to analyze signals and the AVR

Dragon debugger to check the internal state of the microcontroller, I was able to success-

fully transmit sequences of bytes between the SCD, card and terminal. This proved the

correctness of my design and its capability to correctly communicate with both card and

terminal. Next I describe the development of the PCB version.

CHAPTER 5. SCD IMPLEMENTATION 32

Figure 5.4: Prototype version of the SCD

5.2.6 PCB

Having verified the correctness of my design I started the work on the PCB version of the

device.

The main part of this process involved finding the available components that would per-

form the required functionality and creating the schematic and board library symbols for

the EAGLE board design. Most of the components have been chosen from Farnell [16] as

they provide a large selection and good delivery time. I should mention that finding the

right component is a matter of much experience even if it seems easy at a first glance.

Even though EAGLE provides a large library of components, most of those required in

my project were not already available or had different pinouts. Thus, for each component

not found in the library I had to analyze its data sheet, create a schematic symbol, then

create a package following the dimensions from the data sheet exactly (or else the device

would not fit in the final PCB), and finally add the component to the board design. An

illustration of this process can be seen in figure 5.5.

Once all the components have been placed on the board design, they must be connected

using wires. Initially EAGLE provides airwires that connect the components in straight

line. From this stage we must create non-intersecting paths which will become the visible

routes in the final PCB. This process is known as routing and can be partially done by

CHAPTER 5. SCD IMPLEMENTATION 33

1
2
3
4
5

Pas 0

Pas 0

Pas 0

Pas 0

Pas 0

Add=Next
Swap=0 >NAME

>VALUE

(a) (b) (c)

Figure 5.5: Process of component design in EAGLE: get component data sheet (a), create

schematic symbol (b), and create board package (c)

the EAGLE board editor using the autorouter utility. However in complex designs such

as the SCD, the autorouter is not able to do a proper routing. Thus I routed all the paths

manually.

A PCB can have multiple conductive layers, isolated from one another. This allows each

layer to have its own mesh of routes, which becomes necessary where many components

are connected within a small area. Some designs use two layers for the routes, and two

additional layers for the ground and power planes. For my design I have used two layers

with ground planes between components on both layers. This decision was partially

constrained by the free version of EAGLE which allows the use of maximum two layers

but also by the price of the PCB manufacture which is dependent on the number of layers

required. The final PCB design is shown in figures 5.6 and 5.7.

The next step was to send the PCB design for manufacturing. There are several companies

that can produce PCBs in small quantities. For the manufacture of the SCD I used PCB

Pool [26] and for the card interface I used PCB Train [27]. I decided to use PCB Pool

for the SCD even if they were more expensive that PCB Train, because they have a better

specification of the manufacturing process, complete details of what will be included in

the result (silkscreen, soldermask), a good process tracking service, and they accepted

the EAGLE board design directly. Generally a design is sent for manufacturing in a

standard format, known as Gerber. From a board design, EAGLE can easily produce

Gerber files but these must meet the manufacturer criteria in terms of wire width, space

between components, wires and drills, etc. As I did not have prior experience in PCB

manufacturing I preferred to send the board design. In the case of the card interface (see

figure 4.2) I needed a PCB less than 0.8 mm thick and PCB Pool does not produce this.

Thus I created the necessary Gerber files taking as guidelines the specifications from PCB

Pool and I sent the design to PCB Train which can produce 0.8 mm PCBs.

The price for one board of a similar size to the SCD, with two layers including silkscreen

CHAPTER 5. SCD IMPLEMENTATION 34

1

8

1

1

1 2
V
C
C

R
S
T
C
LK

C
4

C
8

I/O
C
6

G
N
D

AT90USB1287

U
1

D2
D1

C12

C
9

S
V
2

U2 C11 U3

R12

R1

R
2

R5

R6
R
7

R
8

R
9

R
10

R11

R4
R3

C2

C
3

C1

C8

C4

C5

C6

C7

C10

6V

SV6

SV4

U
S
B

H
W
B

R
S
T

16M
H
Z

JPEXT

Figure 5.6: PCB design top side

and soldermask on both sides is £60 at PCB Pool and £30 at PCB Train. The price

decreases with the number of boards ordered, down to £3 per PCB when 100 boards

are ordered at PCB Train. If the SCD is built in large quantities (more than 1000) the

expected price (including components) would be around £20.

The final step has been to solder the components on the board. Illustrations of the result

are shown in figure 4.1. A few things went wrong due to errors in the board design. The

most impacting error has been inversing the smartcard interface contacts in one of the

sides. The solution has been to cut the contacts and add wires in place as it can be

observed in figure 4.1. A second error was caused by an improper value of the voltage

divider used for the LCD contrast voltage which made the display invisible for voltages

close to 4.5V. This was corrected by a simple replacement of a resistor. Other minor

errors related to the bad alignment of the text which was caused by having used a smaller

font size than the one permitted by the manufacturing process.

In the following section I describe the software architecture of the SCD, while the evalu-

ation is presented in the next chapter.

CHAPTER 5. SCD IMPLEMENTATION 35

1

10

1

8

1

5

1
6

1 4

2
3

5
6

SW_PWR

SWP

1
2

3

O
m

ar
 C

ho
ud

ar
y

S
m

ar
tc

ar
d

D
ef

en
de

r v
1

VC
C

R
ST

C
LK

C
4

C
8

I/O
C

6
G

N
D

R
ST

C
LK

I/O
G

N
D

VC
C

C
6

G
N

D
SC

K
M

IS
O

M
O

SI
R

ST

TERMINAL

EXT

U
S

B

(BATTERY)

(EXT)

JTAG

LCD

1

1

O
m

ar
 C

ho
ud

ar
y

U
ni

ve
rs

ity
 o

f C
am

br
id

ge

S
C

D
 v

1

SV5

S
V

1

S
V

3

FC
I

S
V

8

LE
D

1

LE
D

2

LE
D

3

LED4

B
A

B
B

B
C

B
D

JP
1

TP
1

TP2
TP3

TP4

TP
5

Figure 5.7: PCB design bottom side

5.3 Software

Atmel provides a good free development environment (IDE), called AVR Studio. This

IDE provides the integration of a text editor, memory, registry and I/O viewer, chip

programmer, and C and assembler compiler. Combined with an on-chip-debugger, the

AVR Studio allows step by step execution and variable examination, either directly or

by means of the assembler code.

I decided to write the software mostly in C with some small parts written in assembler.

The C language offers a higher level of programming which facilitates code development,

verification and management, while the assembler allows a strict execution timing regard-

less of the compiler.

AVR-GCC [7] is a free C compiler for Atmel AVR microcontrollers. It is based on the

well-known GCC compiler but has the required extensions for the AVR instructions.

Most of the memory management including the heap allocator and malloc routines are

especially designed for microcontrollers with small memory (usually below 8KB SRAM).

The compiler is well maintained and there is a large community of users. The AVR-GCC

has become so popular that it has been included as the main C compiler of AVR Studio.

CHAPTER 5. SCD IMPLEMENTATION 36

5.3.1 Architecture

I have designed the software in a hierarchical manner so that only some low-level files need

to be rewritten for different microcontrollers. The overall structure is shown in figure 5.8

and is explained below.

- Main application entry
- SCD applications
- Interrupt Handling

SCD

- EMV application layer
- EMV structures
- EMV methods for
sending and receiving
commands and
responses

EMV

- access to LCD, LEDs
and buttons
- access to EEPROM
- hardware dependent

ScdIO

- hardware dependent
methods
- low-layer methods to
transfer bytes with card
and terminal
- activation and
deactivation sequence

halSCD

- custom methods
- extended functionality

Utils

Figure 5.8: Software architecture of the SCD

The halSCD is the hardware abstraction layer. This block contains the implementation of

the low level functions of the EMV protocol, such as activation and deactivation sequences,

send and receive bytes, parity checking and retransmission, and sending and receiving

the ATR. The halSCD.h file contains the definition of methods needed by higher level

functions (see below) while the halSCD.c file contains the actual implementation. Thus,

in order to use the software on another microcontroller only the C file has to be rewritten.

CHAPTER 5. SCD IMPLEMENTATION 37

The EMV block as it names suggests contains all the structures and functions needed

for the EMV protocol. The important structures defined are: CAPDU, RAPDU,

RECORD (for the list of BER-TLV objects returned in READ RECORD commands)

and TLV (a BER-TLV object). The functions defined are used for sending and receiving

commands and responses from card and terminal, and for parsing records in order to

identify important information such as the transaction amount. All the functions defined

in EMV.h and implemented in EMV.c rely only on the functions from halSCD and thus

can be safely used with any other platform as long as the halSCD methods are correctly

implemented for that platform.

All the peripherals access is done through the ScdIO. The methods defined in ScdIO.h

provide an easy access to the LCD, LEDs, buttons and EEPROM. As with the hardware

abstraction layer, the implementation provided in ScdIO.c is hardware dependent. Thus

for an implementation on another platform the C file needs to be rewritten.

The Utils block defines some general methods that are used frequently such as accessing

16 bit data in an atomic manner. The code in these methods should be portable across

all the AVR microcontrollers.

Finally the SCD is the core of the solution. It uses all the software components in

order to implement the applications described in the previous chapter. The SCD.h

defines important parameters such as application ID, and the applications available. The

implementation of those applications are found in the SCD.c file, which also handles

the interrupts and power management. Unfortunately as interrupts and sleep modes are

dependent on the microcontroller some parts of this file should be rewritten for a different

architecture, although most of the code for the applications will be the same.

In order to comment the code I decided to use Doxygen [8]. Doxygen provides a good

framework to document and publish source code. The only requirement to use Doxygen

is to write the comments of the source code in one of the three formats accepted. Using a

configuration file it is possible to specify which parts of the code should be made available

together with the documentation, what files to include in the documentation, and the

output desired: PDF, HTML or LATEX. The complete source code and documentation in

HTML format is available on my website [23]. However, this code is currently available

for evaluation purposes only. I do not give the right to use this code in any commercial

or non-commercial purposes.

Probably the most interesting parts of the software are the transmission of bytes to both

terminal and card as they use different operating frequencies, and the initialization of the

communication as the protocol requires the bytes in the ATR to be transmitted soon after

power is given from the terminal.

The basic concept behind byte transmission with both card and terminal has been ex-

plained in the previous section. I use the timers available to send data at the correct

CHAPTER 5. SCD IMPLEMENTATION 38

frequency. The code for sending and receiving bytes is shown in Appendix A.

5.3.2 Initialization sequence

time (in clocks at freq = fT)

T VCC

T RST

freq = fT ([1,5] MHz)T CLK

C VCC

T I/O
Hi-Z TS

C RST

freq = fC (given by SCD, currently 4MHz)C CLK

C I/O Hi-Z ATR

T0 = 0[-3500, -1000] 60000 - 42000 fT/fC
T1

[40000, 45000]
T2

50000
T3

60000
T4

Hi-Z

Hi-Z

[60000, 200000]
T5

remaining of ATR Hi-Z

200000
T6

(SCD to
terminal)

(ICC to
SCD)

Figure 5.9: SCD initialization phase

The initialization phase is shown in figure 5.9. I have designed this process to be inde-

pendent from the terminal frequency (works with any terminal frequency in the range

[1,5] MHz). The T signals refer to the terminal and the C signals refer to the card. The

X axis shows the time elapsed in terms of clock cycles at the terminal frequency. As

described in the background section, the initialization procedure has a strict timing. The

terminal provides the voltage and clock (at time T0 in the figure) after which it sets the

reset line to high, between 40000 and 50000 clock cycles (T2). Within 42000 clock cycles

from T2 the card must respond with the first byte of the ATR. It is important to notice

that only the first byte (TS) is required within the 42000 clock cycles to continue with

the transaction. Actually by intercepting the communication with a genuine card I have

noticed an important delay between this first byte and the remaining of the ATR. The

maximum delay between successive bytes (including those in the ATR) is 9600 ETUs

which is equivalent to 3571200 terminal clock cycles (or 890 ms at a terminal frequency

of 4 MHz).

The first thing to notice is that the SCD provides the voltage and clock to the card (at

time T1) depending on the fraction between the terminal clock frequency (fT) and the

card clock frequency (fC - provided by the SCD). T1 is chosen such that after 42000

clock cycles at fC (time T4) the reset line from the terminal has been already set to

high (at time T2) and the first byte of the ATR (TS) has been sent to the terminal (at

CHAPTER 5. SCD IMPLEMENTATION 39

Table 5.1: Initialization sequence for the communication between terminal, SCD and card

Time Action

T0 Terminal provides clock

T1 SCD provides clock to card

T2 Terminal changes reset line to high

T3 SCD sends byte TS of ATR to terminal

T4 SCD sets card reset line to high

T5 Card returns the ATR

T6 SCD sends remaining bytes of ATR to terminal

T3). Thus at T4 the SCD can correctly set the card reset line to high and expect the

ATR from the card at any moment (T5) between T4 and T4 + 45000 clock cycles at fC.

The communication between the terminal and SCD will remain in a correct active state

because the byte TS has already been sent, which gives a working window of 3571200

terminal clock cycles as mentioned above. After receiving the ATR from the card, the

SCD can send the rest of the ATR bytes to the terminal. At this point the SCD is ready

to receive the first command from the terminal and the card is ready to receive the first

command from the SCD. This procedure is summarized in table 5.1.

It is important to mention, that if the SCD requires more processing time between the

bytes sent by the terminal, this additional time can be requested during the initialization

procedure. The byte TC1 of the ATR tells the terminal the amount of extra time (in

ETUs) to be added between consecutive bytes sent. Normally a card would set this byte

to 0 in order to minimize the delay of a transaction but I successfully used different values

with CAP readers.

5.3.3 Interrupts and power down modes

The AT90USB1287 microcontroller has many internal and external interrupts. The in-

ternal interrupts are caused by internal events such as timer overflows, analog to digital

conversions, or watchdog overflow, while the external interrupts are caused by the change

in level of pins INT0,..,INT7 and PCINT0,..,PCINT7. The difference between the

INTX and PCINTX interrupts is that each of the former category has a dedicated in-

terrupt vector (and consequently a particular handling routine) while for the latter any

change in a pin PCINT0 through PCINT7 that has the interrupt enabled will trigger the

same interrupt (PCI0).

Any interrupt has an associated interrupt vector, and if a handling routine is defined this

CHAPTER 5. SCD IMPLEMENTATION 40

will be executed when the interrupt occurs. Interrupts are allowed by setting a global

interrupt flag in the status register (SREG) and each particular interrupt is enabled by

setting an interrupt enable bit. Interrupts can be used also to wake up the microcontroller

from a sleep mode. This is used in the SCD to wake up the microcontroller when the

terminal provides the clock. First the timer T3 (connected to the terminal clock) is set

to trigger an interrupt when a certain value is reached. Then the microcontroller is put

in sleep mode. Only when the terminal provides clock the SCD wakes up and initiates

the communication. This allows an important power saving.

There are 5 different sleep modes available in the AT90USB1287: idle, power down, power

save, standby, and extended standby. They differ in the parts of the hardware that remain

active during sleep and the time required to resume normal state. Power down consumes

the least energy but also requires the longest period to recover (more than 4 ms). On the

other side, idle provides a fair amount of energy saving while resuming activity in only

6 clock cycles. This is because power down stops the main PLL clock completely while

the idle mode only stops the CPU clock. I decided to use the idle mode also because it

is the only sleep mode that allows the use of timer overflow interrupts to wake up the

microcontroller, which is needed by the SCD operation.

5.3.4 Memory

The AT90USB1287 provides 3 types of memory: Flash, SRAM and EEPROM.

The Flash has 128 KBytes and is used to store the application code. As described previ-

ously this memory is divided in two sections, the application and the boot section. Both

can be used for executing code. In normal operation the execution will start from the

application section but the user can also select execution from the boot section.

The SRAM provides 8 KBytes of data space that can be accessed in two clock cycles.

Together with the memory allocator provided with AVR-GCC this space becomes very

useful for storing dynamic data such as transaction information in the case of the SCD.

Finally, the EEPROM provides 4 KBytes of permanent storage. This space is essen-

tial for storing data that must remain in memory even after the SCD is powered off or

restarted. In the SCD, the EEPROM is used mainly to store transaction logs, the selected

application, a transaction counter and a custom PIN.

5.3.5 Operation

Having defined the main characteristics of the SCD and the software architecture I will

now describe the overall operation of the device. All the methods referred below are

implemented in the file SCD.c.

CHAPTER 5. SCD IMPLEMENTATION 41

There are many applications implemented in the SCD, but the overall execution flow is

the same. The steps presented below assume that the SCD has just been powered up or

restarted.

First an initialization routine (InitSCD) is called in order to set up the pins correctly

(input/output, low/high), enable any necessary interrupts, and retrieve data from the

EEPROM.

Then the SCD checks if the BB button is pressed. If so, a menu is shown on the LCD,

that allows the user to select the desired application (see the previous section). If the

button is not pressed, the current application is selected based on the data from the

EEPROM. In the case of no application previously chosen (empty data in EEPROM), a

default application is used.

With the exception of the EraseEEPROM (which erases the EEPROM and then restarts

the SCD), all the applications involve communication with the card and the terminal.

Therefore, the next step is to put the SCD in sleep mode in order to save power and wait

for terminal clock.

Once the terminal is connected (by inserting the card interface into the terminal) and

has provided clock, the SCD wakes up. Before executing the selected application the

watchdog timer (WDT) is enabled. The WDT is used to reset the device after a given

time out to prevent dead locks or unexpected loop execution.

All the applications start by initializing the communication with the card and the terminal

as described previously. Hence the user’s card must to be inserted into the card slot

before starting the application. Then the external interrupt INT0, which corresponds to

the terminal reset line, is enabled. This is necessary in order to reset the SCD in case

the terminal issues a reset or ends the transaction (in both cases the reset line will toggle

from high to low).

The applications will have a loop where they transfer commands and responses between

the terminal and the card. As they do so, the applications call the wdr instruction used

to reset the WDT and avoid a system reset (which will happen if any application loops

indefinitely). The wdr instruction is called between commands or responses which ensures

that this instruction is only called when the device is transferring data correctly. It is

not a good idea to call the wdr at the end of a transaction because the WDT will most

probably timeout. This is because the maximum timeout is 4 s while a transaction can

have a much longer duration including PIN entry and any other user input.

The end of an application is expected from the terminal connection. That is, the SCD

expects the terminal reset line to go low and then execute the interrupt routine for INT0.

The reset line must go low at some point either because the transaction has ended or

because the card interface has been removed from the terminal.

CHAPTER 5. SCD IMPLEMENTATION 42

When the INT0 interrupt routine is executed the SCD saves any transaction data as

required and then restarts. Saving transaction data cannot be done after reset because

the contents of the SRAM memory will be erased. Thus the INT0 handling routine

provides a good place to save transaction data into the EEPROM.

After use the transaction information recorded in the EEPROM can be easily transferred

to a PC using any of the programming connections available: USB, ISP or JTAG. I have

designed the current software such that it will record transactions linearly, using memory

in an efficient manner.

In the current implementation the EEPROM can store information about up to three

transactions, each having 30 command-response pairs. However I have used simple but

inefficient command and response delimiters (stream CCCCCCCCCC for commands

and AAAAAAAAAA for responses). Using a more efficient coding might provide space

for saving an extra transaction.

5.4 Terminal emulator

During the development of the SCD I needed a terminal emulator device. CAP readers

provide a good interface but they are limited to the applications already installed in the

device (generally IDENTIFY and SIGN). Therefore I decided to build my own terminal

emulator.

Figure 5.10: GemTwin USB smartcard reader

In order to obtain a physical connection I used an USB smartcard reader from Gemalto [25]

(see figure 5.10). This provides the same interface as a real terminal but allows a PC to

act as the terminal software.

I have written the software for the terminal emulator in C#. The Windows platform

provides an API to communicate with USB smartcard readers. This API has been used

CHAPTER 5. SCD IMPLEMENTATION 43

in a C# application to extract data from SIM cards [17]. I built my own terminal emu-

lator on top of the available code, which provided an interface to communicate with the

Smartcard API but no EMV functionality. Thus I was able to transmit commands and

receive responses through the USB smartcard reader. In this way I could write my own

transaction flow, sending commands and analyzing responses as needed.

The complete software for the terminal emulator is available for evaluation.

In the next chapter I describe the evaluation of the SCD, analyzing the hardware and

software design, as well as the overall functionality.

Chapter 6

Evaluation

With the hardware and software in place it was time to perform an evaluation of the

SCD, in terms of hardware, software, and functionality. The results and observations are

presented below.

Most of the tests have contributed to progressively improve the device in terms of per-

formance and functionality. During the laboratory experiments I used the three analysis

tools presented earlier: the .NET debugger to trace commands and responses as seen by

the terminal emulator, the AVR dragon to check the state of the microcontroller (in terms

of memory, execution path and I/O levels), and the oscilloscope to trace the signals from

card and terminal (amplitude, frequency, bit duration).

6.1 Basic functionality

One of the first things to test was the correct functionality of the peripherals: the LCD,

buttons and LEDs. This was done in a method (TestHardware) that performs simple

I/O operations.

The next step was to verify the correct transmission of bytes between the terminal and

SCD. This was done first by means of the terminal emulator as I could create my own test

case and verify the results. Initially I verified that the ATR is correctly sent by the SCD,

and then I checked that sequences of commands are correctly received and responded

to. After that I created a reliability test case, where I wanted to verify the correct

transmission of a large number of bytes. For this scope I created a loop transaction flow

using the terminal emulator. A similar loop was used in the SCD. The SCD successfully

exchanged data uninterrupted for 30 min (approximately 10 MB of data at a terminal

frequency of 4 MHz, considering data is sent half of the time) before I ended the test.

Similar tests have been done to check the correct communication between the SCD and

card.

44

CHAPTER 6. EVALUATION 45

Once the SCD proved to work with the terminal emulator, I started the tests with CAP

readers, which provide a real test scenario. I have used three different CAP readers, from

Vasco, Natwest and Barclays. They execute a real transaction flow and have different

working characteristics. The Vasco reader operates at 1 MHz, while the Natwest and

Barclays readers run at 1.5 MHz. Also the Vasco reader starts a transaction but stops

the power and clock soon after receiving the ATR. The transaction is then restarted when

the user selects the desired application. The Natwest reader keeps the power and clock

from the moment the card is inserted until the transaction is over. Finally the Barclays

reader behaves similarly to the Vasco reader but sends an initial short restart signal before

actually starting operation. The diversity of operation provided by these three readers

provided a good input to improve the SCD functionality. The evaluation of the complete

SCD functionality including tests on CAP readers is discussed in section 6.3.

6.2 Power consumption

The main objective of the SCD was to be used as a hand-held device in real payment

scenarios. Thus power consumption is a critical factor as the battery may be exhausted

very quickly if good power management is not in place.

Using a variable power supply I tested the SCD operation with different voltage and

current intensity. I found several factors that make a big difference in the overall power

consumption, as presented below.

First of all, it is important the way in which the I/O line is set up for reception mode. The

pull-up resistor of the I/O pin (PB6 for the card) should be enabled instead of driving the

line high. When the line is driven high the power consumption of the ICC is much higher

(with spikes of about 30 mA difference) than when using the pull-up resistor. I have

noticed an important difference by changing the sequence of the following instructions,

which set the card I/O line to reception mode (state Z):

• Good way:

DDRB &= ˜(BV(PB6)) ;

PORTB |= BV(PB6) ;

• Bad way:

PORTB |= BV(PB6) ;

DDRB &= ˜(BV(PB6)) ;

There are six I/O ports (labeled A through F) available in the AT90USB1287. Most

of the ports have 8 pins. The direction (input or output) of each pin is controlled by

CHAPTER 6. EVALUATION 46

Table 6.1: Port pin configurations for AT90USB1287. Extracted from datahseet

DDRxn PORTxn I/O Pull-up Comment

0 0 Input No Tri-state (Hi-Z)

0 1 Input Yes Pxn will source current if ext. pulled low

1 0 Output No Output Low (Sink)

1 1 Output No Output High (Source)

the DDRx registers (where bit 3 of DDRB controls the pin PB3 of port B), while the

PORTx registers control the voltage on that pin (high or low). The possible states for

each port are shown in table 6.1.

Back to setting the I/O line correctly, what happens in the first case is that initially

PB6 is set as input with no pull-up (assuming PORTB6 was 0), and then PORTB6 is

set to 1 which enables the pull-up. This sequence will cause the voltage on the I/O line

to gradually increase from 0 to approximately 3.78 V which is given by the pull-ups of

the AT90USB1287 and ICC. In the second case, the I/O line is first set to high and then

DDRB6 is set to 0, changing the pin direction to input which enables the pull-up resistor.

In this case the voltage on the I/O line spikes to around 5 V and then decreases slowly

to the value of 3.78.

I also noticed that the ICC does not drive the I/O line correctly (after testing with several

cards). When the ICC transmits a ZERO bit to the SCD, it pulls the line low (ground)

correctly. However, when the card transmits a ONE bit, it first uses the pull-up resistor to

rise the voltage to around 4 V and then immediately switches the port to high impedance

such that the voltage drops to around 1.5 V. Thus, if the SCD uses the high impedance

mode on the I/O line as well, the communication ends. So the terminal (and implicitly

the SCD) must enable the pull-up resistor on the I/O line even when it is receiving a byte

from the ICC. Such functionality does not respect the EMV standard which states that

the voltage used by the card for a transmitted bit ONE should be [3.5, 5] V for VCC =

5V.

Another important power consumer is the LCD. The model I use (EVERBOUQUET

MC0802A-SGR) consumes between 10-30 mA during operation. There are other LCDs

with lower power consumption, but this was chosen based on its low cost (£5). In this

situation is very important to use the LCD only when needed. After many experiments I

realized that the best method to reduce the LCD power consumption is to delay sending

any commands to the LCD until the last possible moment. Although the HD4778 con-

troller (available in the MC0802A LCD) provides commands for turning the LCD on and

off, these do not change the power consumption. In fact, sending a power off command

(with or without prior initialization) to the LCD will increase the power consumption.

CHAPTER 6. EVALUATION 47

Resetting the SCD after using the LCD seems to be the best solution to keep a low power

consumption. This will restart the LCD controller, which will not start running (and thus

will not consume power) until a first command is sent.

With all the improvements in place, the total consumption of the SCD (including LCD

and card operation) is around 40 mA.

Vo
lta

ge
 [V

]

6.0

4.6

2

Time [min]
5 200

(a) (b)

Figure 6.1: Battery discharge for a CR2430 cell battery under low current consumption

(less than 2 mA) (a), and estimated discharge for two CR2430 batteries under higher

consumption (average of 30 mA)

The battery discharge in time for one of the 3V CR2430 cell batteries is shown in figure

6.1(a). As it can be seen, this type of batteries are designed for a load of at least 2.5 K Ω

(i.e. less than 2 mA at 5V). In full operation the SCD consumes up to 40 mA, while in

sleep mode it consumes less than 20 mA. Considering an average consumption of about

30 mA, and based on several measurements of the battery voltage during operation, I

approximated the discharge of two CR2430 batteries under continuous use of the SCD as

shown in figure 6.1(b) (the green area represents the time during which the two batteries

provide enough voltage for correct operation of the SCD).

6.3 Functionality tests

After checking (and fixing problems as necessary) the basic functionality and performance

of the SCD, I went on to verify the applications described in chapter 4.

The first series of tests have been done on CAP readers, as they perform a transaction with

all the necessary steps for testing my applications, including PIN verification (VERIFY

command) and amount authorization request (GENERATE AC command).

CHAPTER 6. EVALUATION 48

Table 6.2: Log of CAP transaction
Command Response Details

00A4040007 A0000002440010 SELECT

6A82 file not found

00A4040007 A0000000038002 SELECT

6A82 file not found

00A4040007 A0000000048002 SELECT

9000 + FCI data Selection OK

80A8000002 8300 GET PROCESSING OPTS

9000 + AIP + AFL OK

00B2010C00 READ RECORD

9000 + CDOL2 + CVM + CDOL1 Selection OK

80CA9F1700 GET Data (PIN try counter)

9000 9F170103 OK, 3 retries

0020008008 24XXXXFFFFFFFFFF VERIFY, PIN=XXXX

9000 OK

80AE80002B + data GENERATE AC (ARQC)

9000 + CID + ATC + cryptogram + IAD OK

80AE000011 + data GENERATE AC (AAC)

9000 + AAC data OK

The SCD successfully executes all applications (Forward Commands, Modify PIN,

Filter Amount, and No PIN) on the Vasco and Natwest CAP readers (see figure 6.2).

Using the log functionality with the Forward Commands application I captured the

information of a CAP-Identify transaction, where the user enters the PIN and gets a secure

code for online authentication. This transaction is shown in table 6.2, where non-essential

information that could be used for identification has been marked with X or omitted. The

transaction flow is the same for the Modify PIN and No PIN applications, while for

Filter Amount the transaction might end after the VERIFY command if the user does

not accept to continue.

Based on the log from the CAP transaction, I observed two important differences from

the standard EMV specification. Firstly, the CAP application does not use the traditional

SELECT 1PAY.SYS.DDF01 command to start the transaction, but the selection by

Application Identifier (AID). As can be seen from the log, the CAP reader issues multiple

SELECT commands (with different AIDs) before finding the correct CAP application on

the card (AID = A0000000048002 in this case). This suggests that the CAP reader has

several applications installed, possibly for different cards. Secondly, after using the AID

selection, the CAP reader does not issue a final SELECT command before continuing

with the transaction, as it is specified in the EMV standard.

The final test consisted in verifying the correct operation of the SCD with a real terminal,

completing an online transaction. For this purposes I have asked permission to use the

CHAPTER 6. EVALUATION 49

Figure 6.2: Forward Commands application tested on Natwest CAP reader. The SCD

has blocked the transaction after the PIN has been entered and is waiting for the user to

select if the transaction should continue (yes) or not (no)

SCD at the cafeteria in our department. After a few failed attempts, the SCD has

successfully executed the Filter Amount and No PIN applications. The unsuccessful

attempts were caused by an incorrect implementation of TLV object decoding. Using the

logs from the failed attempts I was able to replicate the live transaction on the terminal

emulator and thus find and correct the issue.

I was expecting the Filter Amount application to work correctly since I tested the

functionality on CAP readers and terminal emulator. However I was surprised to see that

the No PIN application succeeded, which shows the vulnerability has not been fixed yet.

Recently, a journalist from TAC Presse (France) has come to our department to make a

reportage about the vulnerabilities of Chip and PIN cards.

First Steven Murdoch has helped us in setting up the relay attack, where a fake terminal

CHAPTER 6. EVALUATION 50

shows a transaction for £5.00 but actually requests a payment authorization for £123.45.

Using the SCD between a real card and the fake terminal we were able to see the correct

amount (£123.45) on the display and cancel the transaction (see figure 6.3).

(a) (b)

Figure 6.3: SCD operating as trusted display in a relay attack scenario: demonstration

system (a), close up on fake terminal and SCD displays (b). Images offered by Steven

Murdoch

Then we have used the SCD to perform the No PIN attack at the local cafeteria and

even in some random shops in Cambridge. We have successfully bought books and DVDs

worth over £50 at one of the shops using the journalist’s card but typing PIN 0000. Even

more, we have performed the tests without warning and nobody has noticed the hidden

device or fake card (the card interface connected to the SCD). After the transaction we

have disclosed the attack to the shop manager who said that such attacks occur very often.

The manager mentioned that during busy periods like Christmas credit card frauds occur

at least once a week. Because shops cannot longer check the cards (as the current policy

is to let the customer handle the card insertion and removal) the criminals can use fake

cards and devices similar to the SCD to perform fraud.

Chapter 7

Conclusion

In this thesis I have presented my work for the MPhil project in Advanced Computer

Science. My work has involved many different tasks: designing the schematic and board

circuits, creating a prototype, sending the PCB to manufacturing and assembling com-

ponents, developing the entire software for the device, debugging hardware and software,

testing the entire solution with CAP readers and my own terminal emulator, tests with

live terminals within the department, and real tests with journalists in the city. I have

performed all the work and I managed to create a working device within the less than 5

months duration of the MPhil project.

I have built a hand-held device, called Smart Card Detective (SCD), that can protect

smartcard users from several attacks, but can also showcase vulnerabilities in the Chip and

PIN system. This device contains an ATMEL AVR AT90USB1287 microcontroller that

mediates the communication between a smartcard and a terminal, buttons, LEDs and an

LCD. The cost of the device has been around £100 (including PCB manufacturing), and

in large quantities the expected price is below £20.

Using the SCD I developed the Filter Amount application, which was the main goal of

the project. This application eavesdrops on a transaction and blocks a payment autho-

rization request until the user verifies the correctness of the transaction. The user is able

to check the transaction amount on the LCD and then decide if the transaction should

continue or not.

Additionally I have developed a Modify PIN application which replaces the PIN entered

on a terminal by a PIN stored in the SCD memory. The main utility of this application

is that users do not have to disclose the real PIN and thus can avoid situations where the

PIN is seen by criminals looking over the shoulder. There are important security issues

with this approach (if the device is stolen then the PIN is useless), but the objective here

was to test such functionality.

Steven Murdoch et al. have recently discovered an important vulnerability in the Chip

51

CHAPTER 7. CONCLUSION 52

and PIN system where a PIN transaction can succeed without entering the correct PIN

although the receipt will read PIN VERIFIED. I have implemented this No PIN attack

on the SCD with just minor modifications to the Modify PIN application, which shows

the flexibility and potential of the device that I created.

All the applications have been successfully tested on a terminal emulator, CAP readers and

live terminals. Steven Murdoch has kindly helped by preparing a relay attack scenario to

test the SCD. Using the Filter Amount application we correctly identified the amount

mismatch. Also, we have tested the No PIN attack on a live terminal at the local

cafeteria. Even more, I have conducted real tests at random shops in Cambridge and the

SCD was able to exploit the PIN vulnerability.

The commercial interest of such device is uncertain. Although such a device can be very

useful, carrying yet another gadget every time you go shopping is at least inconvenient.

Also the current version of the SCD requires a wired connection between the device itself

and the card interface that is inserted into the terminal. However, there are some practical

uses of such a device: a user attorney for making high-amount transactions such as buying

a car, a research platform for EMV, testing equipment for payment system developers to

verify the correct functionality of cards and terminals.

One of the future developments of the SCD might be to remove the wired interface between

the device and the card interface. One possibility is to add a wireless chip into the card

interface that would communicate with the SCD. An practical improvement might be to

create a styled plastic finish similar to the CAP readers, so that users could be more

tempted to use the device.

Some companies such as Emue already produce credit cards with an integrated LCD and

buttons. Such cards can also provide a trusted display for smartcard users. However they

are limited to one card per display. Thus the card issuer would need to invest in every

card, while a device like the SCD may be used with any of the existing cards and given

only to interested clients.

Based on the experiments described in this thesis we can observe that several vulnerabil-

ities remain in the payment system. Probably more will show up as banks introduce the

contactless and mobile payment solutions. Even though banks have the first call to fix

existing vulnerabilities or create better security devices, costs and reputation stand in the

way. In such scenario the device I have created, the SCD, can help users avoiding fraud,

and can also help to discover and fix any remaining vulnerabilities.

References

[1] Ben Adida, Mike Bond, Jolyon Clulow, Amerson Lin, Steven Murdoch, and Ron

Rivest. Phish and Chips (Traditional and New Recipes for Attacking EMV). In

Cambridge Security Protocols Workshop, 2006.

[2] Ross Anderson and Mike Bond. The Man-in-the-Middle Defence. In Cambridge

Security Protocols Workshop, 2006.

[3] APACS. 2008 fraud figures announced by APACS. http://www.ukpayments.org.

uk/media_centre/press_releases/-/page/685/.

[4] Atmel. 8-bit AVR MCUs. http://www.atmel.com.

[5] Atmel. AVR Dragon. http://support.atmel.no/knowledgebase/avrstudiohelp/

mergedProjects/AVRDragon/AVRDragon.htm.

[6] AVESO displays. http://www.avesodisplays.com.

[7] AVR Libc. GCC compiler for AVR microcontrollers. http://www.nongnu.org/

avr-libc/.

[8] Doxygen. http://www.doxygen.org/.

[9] Saar Drimer and Steven J. Murdoch. Keep your enemies close: distance bounding

against smartcard relay attacks. In SS’07: Proceedings of 16th USENIX Security

Symposium on USENIX Security Symposium, pages 1–16, Berkeley, CA, USA, 2007.

USENIX Association.

[10] EAGLE Layout Editor. https://www.cadsoft.de.

[11] Emue. Emue Card, a credit card with embedded keypad, display and microprocessor.

http://www.emue.com/site/home.htm.

[12] EMVCo. EMV Book 1: Application Independent ICC to Terminal Interface Require-

ments, Version 4.2, June 2008.

[13] EMVCo. EMV Book 2: Security and Key Management, Version 4.2, June 2008.

53

REFERENCES 54

[14] EMVCo. EMV Book 3: Application Specification, Version 4.2, June 2008.

[15] EMVCo. EMV Book 4: Cardholder, Attendant, and Acquirer Interface Requirements,

Version 4.2, June 2008.

[16] Farnell UK. http://www.farnell.co.uk.

[17] Gemalto. GemPC Twin. http://www.gemalto.com/readers/.

[18] Gumstix. Overo Air. http://www.gumstix.com.

[19] HITACHI. Dot Matrix Liquid Crystal Display Controller/Driver. http://www.

sparkfun.com/datasheets/LCD/HD44780.pdf.

[20] ISO/IEC 7816. Integrated circuit(s) with contacts.

[21] MasterCard International. Chip Authentication Program - Functional Architecture.

Available upon request.

[22] Steven J. Murdoch, Saar Drimer, Ross J. Anderson, and Mike Bond. Chip and pin

is broken. In IEEE Security and Privacy Symposium, 2010.

[23] Omar Choudary. Complete source code for the Smart Card Detective. http://www.

cl.cam.ac.uk/~osc22/scd/html/.

[24] Opal Kelly. Overo Air. http://www.opalkelly.com/.

[25] Orouit. A Smart Card Framework for .NET. http://www.codeproject.com/KB/

smart/smartcardapi.aspx.

[26] PCB Pool. http://www.pcb-pool.com/.

[27] PCB Train. http://www.pcbtrain.co.uk.

[28] Tuxgraphics. ISP Programmer. http://tuxgraphics.org/electronics/200901/

tuxgraphics-isp-header.shtml.

[29] XMOS. XC-1A development kit. https://www.xmos.com/products/

development-kits/xc-1a-development-kit.

Appendix A

Source code for byte transmission

/∗∗
∗ Sends a byte to the te rmina l without pa r i t y e r r o r

∗ r e t r a n s m i s s i o n

∗
∗ @param byte byte to be sent

∗ @param in v e r s e c o n v en t i o n d i f f e r e n t than 0 i f i n v e r s e

∗ convent ion i s to be used

∗
∗ The termina l c l o ck counter must be s t a r t e d be f o r e

∗ c a l l i n g t h i s f unc t i on

∗/
void SendByteTerminalNoParity (u i n t 8 t byte ,

u i n t 8 t i n v e r s e c o n v en t i o n)

{
u i n t 8 t b i tva l , i , pa r i t y ;

v o l a t i l e u i n t 8 t tmp ;

// check we have c l o ck from termina l to avoid damage

// assuming the counter i s s t a r t e d

i f (! GetTerminalFreq ())

re turn ;

// t h i s code i s needed to be sure that the I /O l i n e

// w i l l not t o g g l e to low when we s e t DDRC4 as output

TCCR3A = 0x0C ; // Set OC3C on compare

PORTC |= BV(PC4) ; // Put to high

55

APPENDIX A. SOURCE CODE FOR BYTE TRANSMISSION 56

DDRC |= BV(PC4) ; // Set PC4 (OC3C) as output

Wr i t e16b i tReg i s t e r (&OCR3A, ETU TERMINAL) ; // s e t ETU

Wri t e16b i tReg i s t e r (&TCNT3, 1) ; // TCNT3 = 1

TIFR3 |= BV(OCF3A) ; // Reset OCR3A compare f l a g

// send each b i t us ing OC3C (connected to the

// te rmina l I /O l i n e each TCCR3A value w i l l be v i s i b l e

// a f t e r the next compare match

// s t a r t b i t

TCCR3A = 0x08 ;

// whi l e sending the s t a r t b i t convert the byte i f

// nece s sa ry to match i n v e r s e conver s i on

i f (i n v e r s e c o n v en t i o n)

{
tmp = ˜ byte ;

byte = 0 ;

f o r (i = 0 ; i < 8 ; i++)

{
b i t v a l = tmp & BV((7− i)) ;

i f (b i t v a l) byte = byte | BV(i) ;

}
}

whi le (b i t i s c l e a r (TIFR3 , OCF3A)) ;

TIFR3 |= BV(OCF3A) ;

// byte va lue

pa r i t y = 0 ;

f o r (i = 0 ; i < 8 ; i++)

{
b i t v a l = (u i n t 8 t) (byte & (u i n t 8 t) (1 << i)) ;

i f (b i t v a l != 0)

{
TCCR3A = 0x0C ;

i f (! i nv e r s e c o n v en t i o n)

APPENDIX A. SOURCE CODE FOR BYTE TRANSMISSION 57

pa r i t y = par i t y ˆ 1 ;

}
e l s e

{
TCCR3A = 0x08 ;

i f (i n v e r s e c o n v en t i o n)

pa r i t y = par i t y ˆ 1 ;

}

whi le (b i t i s c l e a r (TIFR3 , OCF3A)) ;

TIFR3 |= BV(OCF3A) ;

}

// pa r i t y b i t

i f ((! i n v e r s e c o n v en t i o n && par i t y != 0) | |
(i n v e r s e c o n v en t i o n && par i t y == 0))

TCCR3A = 0x0C ;

e l s e

TCCR3A = 0x08 ;

// wait f o r the l a s t b i t to be sent (need to

// t o g g l e and keep f o r ETU TERMINAL c l o c k s)

whi l e (b i t i s c l e a r (TIFR3 , OCF3A)) ;

TIFR3 |= BV(OCF3A) ;

whi l e (b i t i s c l e a r (TIFR3 , OCF3A)) ;

TIFR3 |= BV(OCF3A) ;

// r e s e t OC3C and put I /O to high (input)

TCCR3A = 0x0C ; // s e t OC3C to 1

DDRC &= ˜(BV(PC4)) ;

PORTC |= BV(PC4) ;

}

