
SMW CON FALL 2014, VIENNA 1

Semantic MediaWiki Model Development through
Object-oriented JSON Schema

Simon Heimler, University of Applied Sciences Augsburg

Abstract—The structure of a Semantic MediaWiki (SMW) can
become hard to develop and maintain as it increases in size and
complexity. In this paper an object oriented modeling approach
based on the JSON Schema format will be introduced. Instead
of creating SMW Attributes, Templates and Forms by hand in
wikitext, Fields, Models and Forms are defined through JSON
Files. Properties can be inherited and overwritten which keeps
the model DRY. A Node.js based toolset has been created that
validates, visualizes, converts and uploads the model in real-time.
While in early stages, this approach worked well for the specific
needs of the company that sponsored this project.

Keywords—MediaWiki, Semantic MediaWiki, Semantic Web,
JSON Schema.

I. INTRODUCTION

In Semantic MediaWikis[11] the data model is defined
through semantic attributes and the usage of templates. The
Semantic Forms Extension[13] builds on top of that and adds
the capability to define forms.

The Attributes, Templates and Forms are implemented as
Wiki Pages, using the wikitext syntax. Templates can be reused
in different Forms, but almost all the options how to generate
the forms are within the forms itself and cannot be shared.
Depending on the model this introduces a lot of duplicate
code that makes the maintenance and consistency of the model
difficult.

There is already a schema based extension available, called
Page Schemas[12] which embeds additional XML into the
Wiki sites and has a web based GUI. However this extension
supports no inheritance. Given the case that two or more forms
share the same model but require minor details to be different,
the template has to be duplicated and adjusted.

In the following sections an alternative approach based on
JSON Schema and Node.js will be introduced.

II. CONCEPT

A. General Concept
The developed toolset is collection of CLI scripts that work

as a MediaWiki Bot. Additionally it provides a rudimentary
web GUI. The toolset its not integrated into the MediaWiki
software in any way, it runs completely independent on the
developers computer. This is further explained through the next
sections.

B. JSON Schema
JSON Schema[7] is an Internet Engineering Task Force

(IETF) standard which is currently in draft state. It is somewhat

similar to the better known XML Schema[1] but relies on the
simpler JSON format instead of XML, which makes it easier
to use and to learn. JSON Schema can be easily extended
through custom attributes.

Using a schema in general provides several advantages: With
a single schema the user can define the expected structure of
the resulting data. Thus it can serve both for client-side and
server-side validation.

The schema can not just be used for the obvious validation
purposes. It is possible to auto-generate complete forms[6],
user documentation[3], random content[9] or UI elements just
from the schema information.

C. Excursus: OWL Ontologies

A much more powerful but also more complicated approach
to model development using schemas would be OWL. This was
even the initial approach to the problem, but there were a few
reasons to switch to JSON Schema instead.

The main reason: It is difficult to have hard constraints in
an OWL ontology. It is possible to extend OWL to support
those, but this would mean to further complicate a complicated
system to achieve simple matters.

JSON Schema proved to be sufficient flexible for this project
while being much easier to use. Given the case that the
more powerful features of ontologies are needed it may be
interesting to evaluate the possibility to enhance JSON Schema
with ontologies through JSON-LD[10]. That way simple things
stay simple with the option for a more complex layer above
that foundation.

D. Object oriented approach

To avoid duplicate code in the model it is useful to support
features like inheritance. JSON Schema already supports $ref
attributes that allow the aggregation of external JSON Schema
files. Depending on the implementation this does support
inheritance or not.

To avoid misconceptions and make this more obvious the
toolset implements its own JSON Schema interpreter which
introduces a few additional properties. In this case $extend is
introduced. It creates a deep copy of the current object/scope
it is in and merges the referenced object in. If an property
already exists, the referenced object will overwrite it with its
own property. This also implicitly defines the relationships
between the different objects. From those a graph oriented
database model is generated.

List. 1 is a simple example of an abstract model:

SMW CON FALL 2014, VIENNA 2

1 {
2 "$schema": "http://json-schema.org/draft-04/schema#",
3

4 "title": "Shape",
5 "description": "Generic Shape",
6 "type": "object",
7

8 "properties": {
9 "x": {

10 "type": "integer"
11 },
12 "y": {
13 "type": "integer"
14 }
15 },
16 "required": ["x", "y"],
17

18 "abstract": true
19 }

Listing 1. /model/_Shape.json

The Circle model (List. 2) will inherit its properties and
extend them:

1 {
2 "$extend": "/model/_Shape.json",
3

4 "title": "Circle",
5 "type": "object",
6

7 "properties": {
8 "radius": { "$extend": "/field/radius.json" },
9 },

10 "required": ["x", "y", "radius"],
11

12 "abstract": false
13 }

Listing 2. /model/Circle.json

Note that the property “radius” is also inherited. The fol-
lowing JSON object (List. 3) just describes a single property.
That way properties can be shared between different models.

1 {
2 "title": "radius",
3 "description": "The radius of a shape",
4

5 "type": "number",
6 "minimum": 0,
7

8 "smw_form": {
9 "input type": "text with autocomplete"

10 }
11 }

Listing 3. /field/radius.json

E. Model structure
To meet the requirements of SMW the model orients itself

some along the SMW Structure of Attributes, Templates and
Forms. The development model consists of Fields, Models and
Forms. While those map roughly to their SMW counterparts,
there are differences: Since properties can be inherited from
bottom to top, a field can contain information how it should
be rendered and validated in the form. Those information are
inherited and can be overwritten through the model up to
the form (Fig. 1). In SMW Forms this has to be defined in
the form itself along with many other information. A SMW
attribute contains only the datatype, a template only the names
of attributes used and how they should be rendered in the final
document.

Fig. 1. Model inheritance through Forms, Models and Fields

III. DEVELOPED TOOLSET

A. Technology

The toolset is based on modern web technologies and tools.
It is written in JavaScript and uses Node.js[8]. It is a collection
of modules and CLI scripts. Automation is provided via the
Grunt Task Runner[2]. The user-interface provided through a
Node.js webserver as a HTML5 web app.

B. CLI Scripts

The toolset consists of CLI scripts that are run through the
Node.js interpreter. Behind those there are various Node.js
modules that can be used and shared between the scripts if
necessary.

The main script that handles the complete development
workflow works as follows:

1) Search the filesystem for JSON Schema files that define
the model. Those will be loaded and stored into an
internal registry.

2) Search the filesystem for files that contain the last
upload state

3) Use a recursive inheritance algorithm which first in-
cludes all fields into the models, then handles model to
model inheritance and then inherits the models into the
forms. While this is being done the toolset also builds
a graph structure (that can be imported to Gephi[4] and
viewed through the GUI) of the model and validates for
common errors.

4) After the model is complete it is converted from JSON
Schema to the final wikitext structure. This is done
through some preprocessing that handles specific logic
and the Handlebars.js[5] template engine. The resulting
wikitext with their according sitenames is stored into
the internal registry.

5) Calculate the difference between the new state and the
last uploaded state if availabe.

6) Use a bot account to log into an external wiki to upload
and delete the sites accordingly. A report of the bot
activity will be uploaded too.

Several options are available to configure the system, skip
specific steps or force others (like full upload).

If the Grunt taskrunner is used it will look for changes
in the filesystem and trigger the scripts accordingly in real-
time. If the developer changes the content of a field this will
automatically trigger the recalculation of the model and the

REFERENCES 3

upload of only those Wiki sites that are affected through this
change. See Fig. 2 as an example.

Fig. 2. CLI Script example

C. GUI
To gain some insight about the current state of the model

and preview its state in the browser the toolset also provides a
web GUI (Fig. 3). Node.js is used as a webserver to provide
the sites. The GUI lists and displays the completely calculated
and inherited fields, models and forms from the development
model. It also lists all generated Wiki sites in the resulting
wikitext format.

For a better overview there is an interactive graph view of
the model that also visualizes the connections within the model
(Fig. 4).

IV. CONCLUSION

Using JSON Schema for model development has proved to
be a simple but sufficient solution. The JSON Schema standard
had to be extended to meet some requirements, but it is de-
signed to be easily extensible. More difficult was the adaption
of the model to the structure and requirements of Semantic
MediaWiki and Semantic Forms. A few compromises had to
be made which leads to a slightly less elegant source model.
Especially the forms had to implement some rather specific
SMW subtleties.

There are also some potential features which could not be
implemented: The schema based modeling approach would
allow for easy validation on both the front-end and back-end,
but neither is supported through SMW right now. Back-end
validation however gives a hint if a value doesn’t fit the native
SMW datatype.

Since there is no easy to use GUI to create and edit the
model (right now this is done through a text editor), the

Fig. 3. Web GUI for browsing the calculated model / result

Fig. 4. Interactive Graph View of the model

user has to familiarize himself with JSON Schema and the
additional extensions of it. This would only be rewarding if the
model is big enough to regain the time through the automations
of the toolset. It would be possible, but very time consuming
to create such a GUI.

Summarizing, this approach can be very time saving if the
model to develop is more complex. The additional toolset does
add to the learning curve however.

ACKNOWLEDGMENT

I would like to thank my advising professor Wolfgang
Kowarschick, and the company Computer Bauer for making
this research project possible with their support.

SMW CON FALL 2014, VIENNA 4

REFERENCES

[1] David Beech et al. W3C XML Schema Definition Lan-
guage (XSD) 1.1 Part 1: Structures. W3C Recommen-
dation. W3C, Apr. 2012. URL: http://www.w3.org/TR/
2012/REC-xmlschema11-1-20120405/.

[2] Bocoup. Grunt: The JavaScript Task Runner. URL: http:
//gruntjs.com/.

[3] Laurent Bovet. Docson. URL: https://github.com/lbovet/
docson.

[4] Gephi Consortium. Gephi. URL: https://gephi.github.io/.
[5] Kevin Decker. Handlebars.js: Minimal Templating on

Steroids. URL: http://handlebarsjs.com/.
[6] Jeremy Dorn. JSON Editor. URL: https://github.com/

jdorn/json-editor.
[7] Francis Galiegue, Gary Court. JSON Schema: core defi-

nitions and terminology. Tech. rep. Internet Engineering
Task Force, 2013. URL: http://json-schema.org/latest/
json-schema-core.html.

[8] Inc Joyent. Node.js. URL: http://nodejs.org/.
[9] Jonah Kagan. Schematic Ipsum. URL: http://schematic-

ipsum.herokuapp.com/.
[10] Markus Lanthaler, Manu Sporny, and Gregg

Kellogg. JSON-LD 1.0. W3C Recommendation.
http://www.w3.org/TR/2014/REC-json-ld-20140116/.
W3C, Jan. 2014.

[11] Semantic MediaWiki Community. Semantic MediaWiki.
16.09.2014. URL: https://semantic-mediawiki.org/.

[12] Yaron Koren, Ankit Garg. Extension:Page Schemas.
8.05.2014. URL: http: / /www.mediawiki .org/w/index.
php ? title = Extension : Page \ textunderscoreSchemas \
&oldid=999189.

[13] Yaron Koren, Stephan Gambke and others. Exten-
sion:Semantic Forms. 15.09.2014. URL: http : / / www.
mediawiki.org/w/index.php?title=Extension:Semantic\
textunderscoreForms\&oldid=1161499.

http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://gruntjs.com/
http://gruntjs.com/
https://github.com/lbovet/docson
https://github.com/lbovet/docson
https://gephi.github.io/
http://handlebarsjs.com/
https://github.com/jdorn/json-editor
https://github.com/jdorn/json-editor
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://nodejs.org/
http://schematic-ipsum.herokuapp.com/
http://schematic-ipsum.herokuapp.com/
https://semantic-mediawiki.org/
http://www.mediawiki.org/w/index.php?title=Extension:Page\textunderscore Schemas\&oldid=999189
http://www.mediawiki.org/w/index.php?title=Extension:Page\textunderscore Schemas\&oldid=999189
http://www.mediawiki.org/w/index.php?title=Extension:Page\textunderscore Schemas\&oldid=999189
http://www.mediawiki.org/w/index.php?title=Extension:Semantic\textunderscore Forms\&oldid=1161499
http://www.mediawiki.org/w/index.php?title=Extension:Semantic\textunderscore Forms\&oldid=1161499
http://www.mediawiki.org/w/index.php?title=Extension:Semantic\textunderscore Forms\&oldid=1161499

	Introduction
	Concept
	General Concept
	JSON Schema
	Excursus: OWL Ontologies
	Object oriented approach
	Model structure

	Developed Toolset
	Technology
	CLI Scripts
	GUI

	Conclusion

