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Foreword

Cancer is a complex disease. In fact, it should be considered as a constellation of diseases 
that consist of various malfunctions of cellular systems that failed to maintain their coor-
dination capability. While striking progress has been made in past decades on identifica-
tion of genes that are involved in cancer outbreak and progression, only a handful of such 
discoveries resulted in effective clinical practices. The systems biology approach is essential 
in the battle against cancer because it emerges and survives through active modification of 
cellular and physiological host systems. A simple approach to interrupt one of molecules 
is limited in its successful applications. This reality has now been recognized and interest 
is growing.

This book is comprised of chapters that collectively discuss recent progress in the under-
standing of cancer systems biology, at a time when more and more researchers and phar-
maceutical companies are looking into a systems biology approach to find drugs that can 
effectively be used to treat cancer patients. These chapters will also help readers appreciate 
the breadth of subjects that are involved in the study of cancer systems biology. This is 
particularly important because it illustrates the fact that cancers are a complex phenomena 
and mobilize every possible biological process and mechanism to secure their survival and 
proliferation.

Cancer systems biology is a field of study that is still in its infancy. Nevertheless, I believe 
that it will eventually become an indispensible part of the effective future treatment of can-
cer, and this book on cancer biology and its therapeutic applications is an important step 
toward this goal.

I hope the readers of this book will find it useful, and will be encouraged by it to join us 
in the battle against cancer.

Hiroaki Kitano
President, The Systems Biology Institute, Tokyo, Japan

Director, Sony Computer Science Laboratories, Inc.
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Preface

The history of biology consists of “waves” that have profound impacts on thinking and 
advances in biological research. Biological research started from discovering, naming, 
classifying, and collecting specimens throughout the seventeenth and eighteenth cen-
turies. Carolus Linnaeus, who introduced scientific names for species, is a key figure in 
the activities. Obervations of and thinking about species nurtured Darwin’s theory of 
evolution in 1859, which has become the central event in the history of modern biology.

In the early nineteenth century, Theodor Schwann and Matthias Schleiden proposed the 
cell theory, which led to the cell being broken down into cellular components such as chro-
mosomes, mitochondria, the nucleus, and so on. This is the reductionist approach, which 
is to break down a complex system into simpler or more fundamental parts. Reductionism 
proposes that the sum of these parts will explain the biological system. Since then the 
reductionist approach has dominated biology.

In the early twentieth century, Hans Krebs and Carl Cori led the movement of biochem-
istry. They worked out many of the central metabolic pathways, each of which contains a 
series of enzymes and linear reactions. Meanwhile, work on the fruitfly by Thomas Morgan 
recaptured the genetics of Gregor Mendel, who is recognized as the “father of modern 
genetics.” In 1943 Oswald Avery proposed that DNA but not protein was the genetic mate-
rial of the chromosome. Ten years later, James Watson and Francis Crick suggested that the 
structure of DNA was a double helix, the basis of molecular biology. Since then molecular 
biology has come to dominate every aspect of biology. In 1988 the Human Genome Project 
moved biology into the genome era.

The practices of functional genomics have led to the realization that the reduction-
ist approach can’t often capture the properties of the biological system. From the year 
2000 onward, a paradigm shift has begun, from the reductionist approach to the holistic 
approach, which proposes that not all the properties of a biological system can be deter-
mined or explained by its component parts alone. Instead, the biological system often has 
emergent properties, which are either predictable or unpredictable and occur from the 
intricate causal relations across different scales and feedbacks, or the interconnectivities 
between parts. Systems biology represents such a paradigm shift. Systems biology is pro-
posed to study the complex interplays between the biological components and how these 
interplays give rise to the emergent properties of that system. Furthermore, it seeks to inte-
grate different types of information to advance the understanding of the biological whole, 
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and develop models to uncover how biological systems change over time, such as with the 
onset of disease or in response to a perturbation.

Compared to other “waves,” the current systems biology wave will dramatically change 
the reductionism that has dominated biology for the past centuries. Furthermore, it is the 
first time in the history of biology that components of computational science are required 
in the field of biology. Computing is critical for analysis and modeling of the integrated 
data at the systems level, such as developing a model of a cancer cell in order to find the 
“weak spots” in its signaling networks.

So far, cancer is the problem that has been studied the most using the systems biology 
approach. This book tends to reflect these efforts. It contains three parts: (1) basic concepts 
and theories of systems biology and their applications in cancer research; (2) basic cancer 
biology and cutting-edge topics of cancer research for computational biologists; and (3) 
computational tools and data resources for experimental biologists.

Finally, I would like to thank Mathieu Cloutier, Cong Fu, Jie Li, Chabane Tibiche, and 
Naif Zaman for their help in editing this book.

Edwin Wang
Montreal, Canada
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C h a p t e r  1

A Roadmap of Cancer 
Systems Biology

Edwin Wang

1.1  CANCER SySTEMS BIOLOGy AND PERSONALIzED MEDICINE

1.1.1  Systems Biology Is Transforming Attitudes about Cancer Biology

When an accident occurs on a busy road during rush hour in a big city, such as Montreal or 
New York, traffic is blocked for a short time. Soon, however, drivers begin to turn around 
and use alternative roads to reach their destinations. A road map of a city is a web, a col-
lection of intertwined roads that allows for identification of alternative routes. Increasing 
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evidence (see Chapters 4 to 7) shows that, similar to roads, molecules in cells are also net-
worked. This structure suggests that biochemical pathways are interconnected, which may 
allow cancer to bypass the effects of a drug.

Traditional approaches to biological studies rely mainly on linear verbal logic and illus-
trative descriptions without mathematical explanations. These approaches are only sat-
isfactory for addressing mechanisms that involve a small number of elements or short 
chains of causality. Therefore, the approaches of traditional biology are unable to capture 
and unravel elaborate webs of molecular interactions. Most diseases, including cancer, 
involve a large number and variety of elements that interact via complex networks and, 
consequently, display highly nonlinear dynamics. Therefore, simply knocking out one tar-
get molecule in a biochemical pathway is not sufficient for treating a disease like cancer, 
because the cells often find alternative molecular routes to escape the blockage. This is 
one reason why current drug design strategies often fail. It is increasingly believed that a 
systems perspective, rather than the current gene-centric view, could solve these problems 
and open up entirely new options for cancer treatment.

The systems approach to biological studies combines empirical, mathematical, and com-
putational techniques to gain an understanding of complex biological and physiological 
phenomena. For example, hundreds of proteins might be involved in signaling processes 
that ensure proper functioning of a cell. If such a signaling network is disturbed or altered, 
a cancer phenotype could be generated. As is discussed in Chapters 4 and 5, systems biol-
ogy helps to shed light on these complex phenomena by generating detailed route maps of 
the various kinds of cellular networks and by developing sophisticated mathematical, sta-
tistical, and computational methods and tools to analyze these networks. Understanding 
the complex systems involved in cancer will make it possible to develop smarter therapeu-
tic strategies, for example, by disrupting two or three key interactions in a biochemical 
network at the same time. These approaches could lead to significant advances in the treat-
ment of cancer and help in transforming traditional reductionism-based approaches into 
unbiased systems-level approaches for drug discovery.

The birth and growth of the field of systems biology have been driven by technological 
innovation in high-throughput techniques targeted to life science applications. Over the 
past few years, high-throughput techniques, such as next generation genome sequencing, 
RNA-seq, chip-on-chip, large-scale immunoprecipitation (ChIP-seq), microarrays, and 
others, have been developed and used to measure gene expression and gene regulatory ele-
ments to identify genes that influence some interesting phenotype on a genome-wide scale. 
These technologies have triggered a dramatic change in the style of biological studies from 
a “one gene model” (i.e., focusing on the identification of individual genes and proteins 
and pinpointing their roles in the cell) to a “multiple gene model” (i.e., the belief that mol-
ecules almost never act alone and biological entities are systems—collections of interacting 
parts). These technologies have generated many “large-scale biology projects” and as they 
become more affordable and accessible, the implementation of large-scale biological proj-
ects is becoming more popular and routine.

With the emergence of systems biology, huge amounts of biological data have been pro-
duced and this trend is expected to continue in the future. The nature of high-throughput 
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data is more comprehensive and unbiased than one-on-one biological data. This high-
throughput approach to research has greatly altered the field of cancer research. Scientists 
have quickly realized that the combination of data management, interpretation, and our 
ability to obtain insights into these data are now the bottleneck in systems science, because 
“real signals” or molecular mechanisms and biological principles are buried in this flood 
of data.

The only way to deal with large amounts of data and the relationships within those 
datasets is through mathematical representation and computation. Systems biology tends 
to meet these challenges by integrating many types of -omic data and developing effec-
tive computational tools to decipher the complex systems. Network and graph theory have 
been developed to describe, analyze, and model the complexity of these biological systems 
using a mathematical language. As shown in Chapters 2, 4, 6, and 8, by applying network 
theory to biological systems, we are able to transform the biological language into a math-
ematical language, which is computable and can deal with the huge number of relations 
in a biological dataset. In fact, the fundamental framework of systems biology is network 
biology, which involves the use of networks to represent complexity, compute and model 
biological relationships, and seek to uncover biological principles and insights. A detailed 
discussion of network biology can be found in Chapter 2. Examples of cancer network 
studies can be found in Chapters 4 to 6 and 8.

This chapter illustrates strategies, procedures, and computational techniques for the 
study of cancer systems biology by focusing on network reconstruction, network analysis, 
and modeling. Meanwhile, to match the contents of these strategies and procedures, I will 
guide readers to the relevant chapters of this book. Finally, certain challenges and hurdles 
in cancer systems biology will also be discussed.

1.1.2  Systems Biology Is the Tool for Personalized Medicine

Recent studies have determined that many drugs work well for less than half of the 
patients for whom they are prescribed. Furthermore, nearly 3 million incorrect or ineffec-
tive prescriptions are written annually and more than 100,000 people in the United States 
die each year from drug-related adverse events (Kirk et al. 2008). These data strongly 
suggest that one-size-fits-all medicine and preventive care are not effective. Moreover, 
effective treatment of disease requires that the provider consider the effects of the patient’s 
personal genetic background. Personalized medicine is a proposed approach to develop 
treatment regimes that take into account each patient’s unique genetic profile, allowing 
the treatment to fit the specific needs of subpopulations of patients with different genetic 
backgrounds. Furthermore, this approach would help doctors to better evaluate the risk-
to-reward scenarios and prescribe appropriate pharmaceuticals for different subpopula-
tions of patients.

Over the past decade, cancer therapy has slowly begun to change from a one-size-fits-
all approach to a more personalized approach. In a personalized approach, patients are 
treated based on the specific genetic defects present in their tumor. However, cancer is an 
extremely complex, heterogeneous disease. It is believed that crucial breakthroughs in the 
treatment of cancer, in the framework of personalized medicine, rely on the achievements 
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of the powerful scientific approach of systems biology. Therefore, more efforts in “-omics” 
and systems biology have been made in the cancer research community. As a result, a 
tremendous amount of money has been poured into the field of cancer research over the 
past few years. Relatively speaking, more high-throughput data have been generated in 
cancer biology than in any other field of biology. However, the complexity of cancer is a 
major obstacle preventing a comprehensive understanding of the underlying molecular 
mechanisms of tumorigenesis. To crack the cancer code, network approaches have been 
developed and applied to cellular networks of cancer.

The examination of the entire genome of tumors (i.e., for the identification of cancer 
driver-mutating genes) and the global profiling of -omic data for cell signaling (i.e., gene 
expression, epigenetic and metabolomic profiles, and signaling data such as phospho-
proteomic profiles) will aid in the construction of patient-specific cancer signaling net-
works. Analysis of such tumor signaling networks could help in making individualized 
risk predictions and treatment decisions. The cost of sequencing an entire human genome 
is rapidly falling. The continual development of faster and cheaper DNA sequencing tech-
nologies (for example, the next generation of DNA sequencing, which aims to decode a 
human genome for $1,000) could provide the ability to identify cancer driver-mutating 
genes in individual patients. Furthermore, profiling of tumor gene expression is also acces-
sible and affordable.

Because these data can be generated in a routine clinical manner, it is possible to adopt 
a systems biology strategy for medical research and finally move forward into the era of 
personalized medicine. For example, construction and analysis of patient-specific tumor 
signaling maps will allow for the identification of key protein communication modules 
that are critical for development of a specific tumor. Modeling and simulation of such a 
patient-specific tumor signaling map will help to infer the molecular mechanisms respon-
sible for the cancer and will aid in pinpointing the key targets of the tumor. Furthermore, 
the use of computational modeling and simulation would lessen the risk of therapeutic 
failure at clinical stages. Therefore, it is predicted that network analysis and modeling 
will become a mainstream tool in both the pharmaceutical and the biotech industries 
(Figure 1.1).

Three major aspects of cancer biology are expected to benefit from the application of 
a systems biology approach: (1) identification of prognostic and drug-response biomark-
ers of tumors by using a systems approach to link genomic data and medical records, 
such as blood samples, lifestyle questionnaires, and patient survival (see Chapter 4); (2) 
an understanding of network-oriented molecular mechanisms by building networks and 
computational models of different stages of cancer progression; and (3) an understand-
ing of the network-based molecular mechanisms of metastasis and improved treatment 
of the later stages of tumors by comparative analysis of the networks of primary and 
metastatic tumors (see Chapter 5). Finally, cancer systems biology could provide new 
insights into the network-based molecular mechanisms that cause certain drugs to fail, 
thereby helping in the selection of multiple anticancer drugs and optimization of treat-
ment strategies.
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Network Modeling
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FIGURE 1.1 (See color insert following page 332.) The strategy and procedures for cancer systems 
biology research.
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1.2  STRATEGIES FOR CANCER SySTEMS BIOLOGy STUDy
Recent tumor genome sequencing efforts have shown that there may be thousands of can-
cer driver-mutating genes. Moreover, cancer driver-mutating genes are diverse and have 
little overlap between different tumors. This diversity is seen among different types of 
tumors and between tumors that originate from the same tissue. These observations sug-
gest that cancer is a phenotype that can be caused by a collection of many genetic paths. 
However, several functional modules, the hallmarks of cancer (details of cancer hallmarks 
are described in Chapter 12), have been uncovered and documented. In general, cancer 
driver-mutating genes reflect cancer hallmarks or functional modules. Each hallmark, or 
functional module, is composed of a set of functionally linked pathways. Therefore, it is 
possible to map the functional modules and the mutating genes onto network modules, 
each of which is a subnetwork that contains the functionally linked pathways on the net-
work. For example, an integrative analysis of the human signaling network and cancer 
driver-mutating genes has revealed network modules of this type (details of such modules 
are described in Chapter 5).

The systems approach to cancer studies must build realistic network models of tumors 
(network construction) and identify network modules, as well as the key genes and other 
network features in each module, from these networks (Pujana et al. 2007). Ultimately, 
the results derived from this systems biology approach must be experimentally validated 
in cancer cell lines and mouse models. Through this approach, cancer systems biology 
enables the integration of biological and clinical data at various levels and has the potential 
to provide insight into this complex disease (Figure 1.1).

Network construction focuses on reconstructing functional networks that reflect the 
relationships between genes and proteins under specific conditions, such as cancer gene 
signaling networks in metastasis. These networks can encode the links between the -omic 
data and the fundamental processes of cancer development and metastasis, that is, cancer 
hallmarks, cell cycle, apoptosis, and immunological response. Constructing a series of net-
works that incorporate time-course data may reveal the dynamics of biological processes 
such as tumor progression. Network approaches ease computational analysis, simplify and 
reduce complex interactions, and allow for the identification and quantification of relation-
ships between inputs and outputs. Furthermore, network analysis aids in uncovering the 
general principles that underlie systems. To reach these goals, network construction relies 
heavily on integrative approaches to combining -omic data and accumulated knowledge.

Network visualization is the process of providing tools to build intuition that is unsur-
passed by analysis tools. These intuitions may help in forming ideas regarding network 
exploration using analytical tools.

Network analysis focuses on computational analysis of the constructed networks using 
mathematical and statistical tools. Analysis may be performed on a single network to 
identify the important nodes, key network modules/subnetworks, and high-order rela-
tions between modules, such as collaboration, coexpression or coregulation of modules. 
Furthermore, functional principles of cancer can be inferred from this type of analysis. 
Therefore, hypotheses about mechanisms underlying cancer progression and metastasis 



A Roadmap of Cancer Systems Biology    ◾    9

can be generated through network analysis. Comparative analysis of time-course networks 
can highlight the dynamic nature of the functioning (or malfunctioning) of cells in the 
development and progression of diseases (i.e., cancer progression). Furthermore, compar-
ative analysis can aid in the identification of key network components and their causal 
relationships during developmental stages. These analyses would capture the dynamic 
interactions between large numbers of components across different time scales, as well as 
the nonlinear nature of the systems. In addition, network analysis may lead to the identi-
fication of gene signatures that could be used for prognosis and drug response prediction 
through integration of gene expression or protein abundance profiles and clinical informa-
tion about the cancer patients.

Network modeling involves the use of dynamic systems theory and mathematical tools 
to investigate complex biological systems in order to demonstrate nonlinear spatiotempo-
ral behavior. However, the generation of experimental data that are suitable to parameter-
ize, calibrate, and validate such models is often time consuming and expensive, or even 
impossible, with the technology available today. Regardless, the spatiotemporal dynamics 
of the system as a whole are of such complexity that understanding those dynamics chal-
lenges conventional approaches and makes mathematical modeling a necessity.

The behavior of complex cancer cell networks cannot be deduced by intuitive approaches. 
Instead, it requires sophisticated and elegant network models and computational analysis 
and simulation. Cancer cell network models will aid in the generation of experimentally 
testable hypotheses and discovery of the underlying mechanisms of tumorigenesis and 
metastasis. Network construction may provide insights into specifying the necessary com-
ponents of a biological process, a subject that is highly related to the explicit hypotheses of 
cancer development, progression, and metastasis. Both network analysis and modeling may 
improve our understanding of the cancer system and reveal hidden patterns or counterin-
tuitive mechanisms in cancer, uncovering critical points about which our understanding 
is still poor. Furthermore, both analysis and modeling may help generate hypotheses that, 
in turn, can be tested in a wet lab. Finally, network analysis may help identify biomarkers 
useful in the clinical practice of personalized medicine (Figure 1.1).

1.2.1  Requirements for Experimental Models to Perform Cancer Systems Biology

Before applying systems biology approaches, we should focus on the types or subtypes of 
cancer that have high clinical relevance and are well studied in terms of molecular pathol-
ogy (i.e., pathological features can be mapped onto gene signatures). Breast cancer is one 
example of this type of cancer. Gene microarray profiles can stratify breast cancer samples 
into four subtypes (Sotiriou and Pusztai 2009). In fact, mammary epithelial cells of differ-
ent origins can give rise to tumors with distinctly different phenotypes. Gene expression 
profiling of tumor types has shown that gene expression changes depend on the nature of 
the precursor cells (Ince et al. 2007). Therefore, it is important to know the clinical sub-
types of tumors when performing analyses.

For a particular type or subtype of cancer, it is essential to have high quality experimen-
tal mouse models (i.e., progression models for different cancer stages, for instance, prostate 
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cancer) and a set of targeted drugs available for treatment of the cancer type or subtype. In 
general, how closely the mouse models mimic human cancer types and subtypes will affect 
the usefulness of those models in understanding the molecular mechanisms and guiding 
therapeutic decisions. Therefore, it is desirable to have mouse models that mirror clinical 
outcomes in patients with specific types of cancer. Such models can be used to predict poor 
responses to chemotherapy in cancer patients and, therefore, might help in determining 
patient prognosis.

The selected cancer types or subtypes should have high quality cell line models that have 
been well characterized using genomic approaches. The breast cancer cell line MDA-MB-
231 is a good example of one of these models. The MDA-MB-231 line has several deriva-
tive lines, which display the features of organ-specific (lung, bone, or brain) metastases 
(Nguyen, Bos, and Massague 2009).

For experimental models, large-scale -omic data, such as genome-wide gene expression, 
phosphoproteomics, epigenetics, cancer driver-mutating genes (i.e., via tumor genome 
sequencing), and metabolomics, can be generated. To produce the best data for network 
construction, analysis, and modeling, experimental biologists should interact with com-
putational scientists to design experiments properly. Using this variety of data, construc-
tion, analysis, and modeling of tumor-specific networks can be conducted. The networks 
can also be applied to mathematical frameworks for modeling and simulation.

1.2.2  Data Integration and Cancer Gene Network Construction
1.2.2.1   Cancer Gene Network Construction
The major objective of cancer systems biology is to create dynamic models of biological 
processes closely related to cancer initiation, progression, and metastasis. Therefore, can-
cer networks should capture the important functional themes of cancer biology. Several 
fundamental biological processes play central roles in cancer. For example, the hallmarks 
of cancer are typical examples of these fundamental processes (detailed descriptions of 
cancer hallmarks can be read in Chapter 12). It should be noted that “new cancer hall-
marks” might be added as understanding of cancer biology, especially cancer systems 
biology, increases. Indeed, some groups have recently proposed that inflammation may 
be a “new hallmark” for cancer (Mantovani 2009). Cancer metastasis depends on both 
intrinsic properties of the tumor cells and factors in the tumor microenvironment. These 
factors provide tumors with blood vessels and an inflammatory environment, consisting 
of immune cells and their secretory products, which promote tumor growth (the tumor 
microenvironment and blood vessels are described in detail in Chapters 14 and 15).

Cell cycle and division, differentiation, apoptosis, angiogenesis, insensitivity to inhibi-
tors (robustness), tissue invasion and metastasis [i.e., epithelial to mesenchymal transi-
tion (EMT); more details about EMT are described in Chapter 13], and inflammation are 
among the important properties of tumors. All of these processes are associated with cell 
signaling. Integrative analysis of the human signaling network with data about cancer 
driver-mutating genes suggests that cell cycle and apoptotic signaling are essential in all 
types of cancers (Cui et al. 2007; see Chapter 5). Most of these biological themes should be 
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captured in cancer gene networks. Furthermore, the subnetworks of these themes should 
be viewed as a priority for systems biology research. Separation of these subnetworks will 
allow different cellular processes to be studied in a relatively isolated manner by network 
analysis and modeling. It should be noted that at least some of these processes are poten-
tially interlinked within the cell or the tumor microenvironment. Therefore, high-order 
relationships between these processes could be modeled after a careful and systematic 
study of each individual process.

There are three approaches for construction of cancer gene networks. The first approach 
is to infer or reverse engineer the cancer gene or signaling network using genome-wide data-
sets, such as gene expression profiles, RNAi knockout phenotype data, etc. For example, a 
gene regulatory network has been constructed using time course microarray profiles from 
a mouse epithelial breast cell line (BRI-JM01; Wang, Lenferink, and O’Connor-McCourt 
2007), which undergoes an EMT when treated with transforming growth factor (TGF)-β 
(Lenferink et al. 2004). Notably, clusterin, one of the genes that is upregulated at the middle 
and late time points, shows many regulatory links to other genes in the network. During 
the EMT process, clusterin is secreted by the BRI-JM01 cells. Interestingly, application of 
anti-clusterin antibodies to the TGF-β-treated BRI-JM01 cells blocks the TGF-β-induced 
EMT (Wang, Lenferink, and O’Connor-McCourt 2007). Chapter 3 describes additional 
computational methods and examples of reverse engineering of networks.

The second network construction approach is to extend a protein interaction or signal-
ing network using high-throughput experimental approaches, such as protein interaction 
measurements (Chapter 19 describes an approach for extending the human signaling net-
work). This extension method also allows for the construction of gene regulatory networks 
using large-scale ChIP-seq or ChIP-on-chip data. This approach works especially well for 
the construction of gene regulatory networks. For example, the application of this type of 
approach has constructed a P53 regulatory network containing 98 novel direct target genes 
of P53 (Wei et al. 2006).

A cancer gene collaborative and mutually exclusive interaction network has been 
constructed by large-scale mutagenesis (i.e., retroviral insertional mutagenesis) to screen 
ARF- and P53-deficient as well as wild-type mice to identify genes that interact with one or 
the other of these tumor suppressors (Uren et al. 2008). For this kind of network, it should 
be noted that cancer gene collaboration has two levels: (1) a gene tends to collaborate with 
another gene; or (2) one gene may have distinct sets of collaborators, based on different 
mutations of that gene (i.e., Notch1).

The third approach to network construction is to integrate data from high-through-
put studies or manually curated literature databases onto current networks. For example, 
current signaling networks are largely constructed using manually curated data from the 
literature (Awan et al. 2007; Cui et al. 2007; Ma’ayan et al. 2005). This data integration 
approach is widely used in network construction because more high-throughput data are 
easily accessible. Integration of high-throughput data through computational approaches 
provides a powerful method to address and dissect the complexity of cancer at various lev-
els in a systems manner. Quality of data is very important in the data integration approach. 
The decision regarding particular data sources used for network construction must be 
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based on the questions to be addressed by the network analysis. A discussion of useful data 
sources for systems biology can be found in Chapters 16 to 18 and 20.

Directly mapping genes of interest (i.e., modulated genes between normal and cancer 
tissues) onto protein interaction networks and signaling networks will lead to the con-
struction of cancer-related subnetworks or network modules (i.e., modulated genes are 
connected together to form a subnetwork). Several such examples are described in Chapters 
4 to 7.

Alternatively, we can map the genes of interest onto a network (i.e., a human signaling 
network) and extract all of the shortest paths between any two genes of interest. These 
shortest paths can then be merged to construct a network. The genes of interest used for 
this type of approach may be cancer-modulated genes, cancer driver-mutating genes, or 
other groups.

We can examine which shortest paths of the entire network are important for a particu-
lar cellular condition using functional genomics data and collect these shortest paths to 
build networks. For example, we have constructed cancer cell line-specific signaling net-
works by collecting the shortest paths that are significantly enriched in the cell line gene 
expression profile of the human signaling network. Tumor gene coexpression networks 
can be constructed using different types or subtypes of tumors. Weighted gene coexpres-
sion networks have been constructed using gene microarray profiles from glioblastoma 
samples (Horvath et al. 2006). Analysis of such networks provides a blueprint for leverag-
ing genomic data to identify key control networks and molecular targets in cancer.

Cancer molecular networks can also be constructed by linking the information between 
genotypes and phenotypes. For example, Quigley and colleagues crossed mice of two spe-
cies, Mus spretus and M. musculus, which were either resistant (Mus spretus) or suscep-
tible (M. musculus) to skin tumor development. Following the cross, they combined gene 
expression profiling with linkage analysis to construct a “susceptibility network” of gene 
expression and regulation in normal skin (Quigley et al. 2009). This study highlights the 
power of a network approach for identifying genotype–phenotype relationships.

Cancer development and metastasis are dynamic processes with different timescales. 
Time series high-throughput data of cancer processes may be used to construct a series of 
networks that represent these scenarios, using the methods discussed above. To develop 
dynamic network models, we must clearly conceptualize the way time is encoded in net-
works. Analytically, time has two distinct forms: discrete and continuous. A discrete repre-
sentation of time often consists of a series of snapshots of the network. Hence, longitudinal 
analysis focuses on the change from one network state to another. In such cases, a process 
is generally inferred from the total change in the network across time. A continuous repre-
sentation of time consists of sequential events or interactions recorded with exact starting 
and ending times. Continuous representations of time enable the identification of overall 
network changes. However, most of the current experimental systems are only able to pro-
duce data for discrete representation of time in networks.

All of the approaches discussed can be used to build tumor sample or cell line-specific 
cancer networks. Construction of such networks simplifies and reduces complex interac-
tions. In other words, it removes the “noisy information” from the global network and 
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assembles various parts that are highly related in tumors. After constructing the cancer 
networks, it is necessary to check which cancer hallmarks have been captured. If none of 
the hallmarks can be found in the networks, it is worthwhile to check the data and network 
construction procedures.

1.2.2.2   Data Integration in Systems Biology Drives New 
Concepts for Bioinformatics Analysis

Bioinformatics provides essential tools for data integration for network construction, 
analysis, and modeling. Many bioinformatics methods and tools have been developed for 
large-scale data analysis. These methods and tools include statistical tests (i.e., for testing 
gene expression differences, genetic associations, and gene expression correlations), data 
extraction from literature and databases (i.e., text mining), and procedures for pattern 
recognition and machine learning (i.e., clustering analysis).

One trend in bioinformatics analysis is the movement away from consideration of genes 
and proteins in an isolated manner. In the early days of microarray analysis, genes studied 
in gene expression profiles were examined statistically in an individual manner. Currently, 
the statistical significance of gene expression changes is assessed in a gene set-dependent 
manner (i.e., taking into account pathway genes or a set of genes in a biological process 
such as a cell cycle). Indeed, these methods have led to new insights into cancer biology. 
For example, alteration of the expression correlations of protein network modules seems to 
be involved in cancer metastasis. Many methods following this trend have been developed 
and used, for example the Gene Set Enrichment Analysis (GSEA). More details on these 
methods are described in Chapter 18. However, there are still many challenges in develop-
ing systems-oriented bioinformatics methods. For example, the problem of how to dis-
sect the multivariable factors in systems, given the fact that biological variables are highly 
intertwined and correlated, remains to be solved.

1.2.3  Network Visualization

Networks represent complex systems. Although we have developed (and are continuing 
to develop) mathematical concepts and computational tools for network analysis (more 
details in the next section), we are still unable to fully decode complex systems. In certain 
contexts, the human brain is still more powerful than an analytical method in forming 
intuitions that can help guide network analysis.

Network visualization allows us to exploit the human mind’s capacity for building intu-
ition that is unsurpassed by analysis tools. Before conducting network visualization, we 
must carefully formalize questions that can be used to extract meaning and implication 
from cancer molecular networks.

The effectiveness of network visualization differs depending on network size. Thus, 
visualization has different objectives based on size. Visualization of small networks 
focuses on detailed elements of the graph structure, whereas that of larger networks 
mainly captures a more global picture. Visual analysis of small networks allows for the 
formation of insights into molecularly interacting relationships, whereas the analysis 
of larger networks allows for judgments about high-order relations (more abstractive) 
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between subnetworks (i.e., interplay between network modules or components such as 
cell cycle and cell death in cancer progression). It is possible to define network modules 
and subnetworks in large networks. The intrinsic structure and relationships in each net-
work module can be examined using network visualization tools. In turn, the nodes in a 
network module can be collapsed into token nodes and used to explore high-order rela-
tionships between modules.

Color coding of nodes or arcs based on molecular function, information flows, or other 
related features closely related to the problems addressed often helps in discovering net-
work patterns and forming hypotheses to guide in-depth analysis.

There are increasing efforts to produce network visualization beyond “static” represen-
tations of cellular states, toward a more dynamic model of cellular processes. These efforts 
strive to incorporate high-throughput and functional data, such as time-series gene expres-
sion data, gene ontology terms, and subcellular localization data. In this context, dynamic 
network visualization helps in capturing the dynamic features of a process, augmenting 
theoretical intuition and extracting meaningful patterns.

Two basic approaches to visualization have been developed. The first common visualiza-
tion approach encodes all changes and transitivity between developmental stages (Amato 
et al. 2006) into a single network. For example, a signaling network encodes all the modu-
lated genes from a time course dataset of cancer progression with different colors (i.e., 
representing different stages in cancer progression). Such a network consists of patterns 
of causal or collaborative gene relationships. However, it is necessary to identify the stages 
that substantively capture the nature of the relational events and the character of tempo-
rary cellular states that arise in the focal context. Changes in transitivity provide infor-
mation about a single dimension of a network’s structure. One might find that a network 
reaches a high or low transitivity level, suggesting the potential importance of some stages. 
The clusters and information flows obtained by mixing different colorful nodes and links 
might suggest new network modules. This approach is commonly used to evaluate cancer 
progression or identify causal relationships between network modules.

One of the most effective methods to implement dynamic network visualization is to 
present sparse networks in a way that shows how the network emerges over time (i.e., mod-
ulated genes in a time-series manner for cancer progression models) by adding and color 
coding nodes and relationships as they appear (i.e., different colors can be used for nodes 
and relationships in a time-dependent manner). It is important to organize the nodes 
and edges in the display plane based on the final stage of the network. The appearance of 
dynamic elements over time reveals key genes that play roles in different stages and sug-
gests regulatory relationships between network modules at different stages.

The second common approach to network visualization is to explore separate networks 
at each time point. However, these networks are often difficult to interpret using pure visu-
alization, because it is impossible to identify the sequential links between node positions 
from one network to the next. In this situation, comparative network analysis is a proper 
and powerful approach to these problems (see Section 1.2.4).

A number of network visualization tools, such as Cytoscape and VisANT, have been 
developed. VisANT has developed high-level abstraction of network relationships (more 
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details about VisANT are described in Chapter 17). Chapter 20 lists many network visual-
ization and analysis tools for systems biology studies.

1.2.4  Network Analysis

Genes and proteins are often used as nodes in networks, while relationships between them 
are usually represented by edges (undirected links) or arcs (directed links). A detailed 
description of network types is provided in Chapters 2 and 4. Reading Chapter 2 prior to 
this section is recommended to provide an understanding of basic concepts and terms in 
network biology.

1.2.4.1   Different Biological Properties Are Encoded in Different Network Types
Although a set of common questions can be asked of cancer molecular networks, different 
questions can be addressed using different types of molecular networks, in which different 
network characteristics and relationships are encoded. Moreover, different types of data 
are necessary to construct different types of networks.

In gene regulatory networks, the length of regulatory cascades is often short, normally 
three to five steps from the first layer to the last layer of the network (Wang and Purisima 
2005), reflecting the quick regulation response of these systems. Hubs in gene regula-
tory networks play a major role in responding to stimuli and coordinating the regulated 
genes. In agreement with this mechanism, the transcripts of the hub transcription factors 
often display the property of rapid decay (Wang and Purisima 2005). Local transcription 
factors often encode genes that take part in one or a few biological processes, whereas 
intermediate hub transcription factors encode the collaborative relationships (i.e., coex-
pression) between a few biological processes. The rapidly decaying transcripts of global 
hub transcription factors might encode “switch” functions, which are used under different 
conditions and stimuli. Most of the target genes of transcription factors are “workers,” 
which directly perform the tasks of biological processes and do not have regulatory roles. 
Collaborative relationships between transcription factors can be also found. Therefore, 
gene regulatory networks are useful for identifying key regulators, coexpression of genes, 
and sets of “workers” involved in cancer processes.

Nodes in the human signaling network are sparsely connected. The length of regula-
tory cascades in signaling networks (normally 7 to 14 steps from receptors to transcription 
factors; Cui, Purisima, and Wang 2009) is often longer than the length of cascades in gene 
regulatory networks. Along these signaling cascades in protein signaling networks, almost 
all of the nodes are “regulators.” Therefore, logical regulatory relationships are extensively 
encoded in signaling networks. Cell signaling information flow propagates from a recep-
tor to the nucleus. It is believed that a number of proteins scattered directly downstream 
of receptors are logical “organizers” that integrate signals. For example, hubs in signaling 
networks play a major role in integrating different signals and pathways. Therefore, signal-
ing networks are useful in identifying cancer causal genes and regulatory logic involved in 
cancer processes.

In a signaling network, paths represent signaling information flow and regulatory log-
ics. In a gene regulatory network, paths represent regulatory hierarchy. In contrast, paths 
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in a protein interaction network have no clear biological implications. Network paths also 
have different evolutionary features (Cui, Purisima, and Wang 2009). For example, in the 
case of directed shortest paths, the more distance between two proteins, the less chance 
they share similar evolutionary rates. However, such a correlation was not observed with 
respect to the neutral shortest path. It has been shown that the evolutionary rate of proteins 
decreases along the signaling information flow from the extracellular space (input layer) to 
the intracellular space to the nucleus (output layer) (Cui, Purisima, and Wang 2009).

The expression levels of major regulators (i.e., kinases) in signaling networks do not 
necessarily change dramatically during cancer progression and metastasis. The major 
regulatory reactions are modulated via protein modification (i.e., phosphorylation and 
dephosphorylation), not via modulation of gene expression. Therefore, direct functional 
consequences of cancer driver-mutating genes are difficult to address in gene regulatory 
networks. Most of the cancer driver-mutating genes are signaling genes. Furthermore, 
these mutating genes do not simply increase expression levels of their targets, but increase 
or decrease the activity of their targets (Cui et al. 2007). Monitoring the dynamics of phos-
phorylation and dephosphorylation is essential to decode signaling networks.

Network motifs in protein interaction networks represent protein complexes, whereas 
they represent information processing units and regulatory loops in signaling and gene 
regulatory networks. In protein interaction networks, network modules represent protein 
interaction communities associated with particular biological processes, whereas in sig-
naling networks, they represent blocks of regulatory logics and information processing.

Compared to the human signaling network, nodes in the human protein interaction 
network are densely connected. Regulatory logics are difficult to identify in protein inter-
action networks. However, network modules or network communities are encoded in pro-
tein interaction networks. Therefore, such networks are suitable for integration of gene 
expression profiles to determine subnetworks (teams of protein “workers”) that perform 
certain functions at different stages of cancer development, progression, and metastasis. 
Furthermore, such subnetworks could be used as biomarkers in a clinical setting.

Generally, signaling networks are sparse and full of logical codes of regulation, whereas 
protein interaction networks are dense and do not code for logic of regulation. Gene regu-
latory networks encode both regulatory logic and gene “workers.”

It should be noted that posttranscriptional and posttranslational regulation are both 
prevalent in cells. It is important to consider these aspects in terms of network construc-
tion, analysis, and modeling.

Ubiquitination is applicable to a wide range of human proteins (Yen et al. 2008; see 
Chapter 6). In the human signaling network, ubiquitin-mediated regulation is enriched in 
receptors and ligands, the signal initiating portion of the network (Fu, Li, and Wang 2009). 
Initiated signals can be immediately organized and processed in the upstream region of 
the network, which resides in intracellular space close to the cell membrane. This network 
region is enriched for many built-in negative feedback loops (Legewie et al. 2008). In con-
trast, MicroRNAs (miRNAs) regulation (negative regulation) focuses on the downstream 
regions of the network (Cui et al. 2006).
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Posttranscriptional and translational modifications of genes and their products provide 
feedback mechanisms in gene regulatory networks. miRNAs tend to posttranscriptionally 
regulate transcription factors. Nearly half of the human transcription factors are regulated 
by miRNAs (Cui et al. 2006). Furthermore, hub transcription factors tend to regulate more 
miRNAs (Chapter 7).

1.2.4.2   Network Analysis Using Network Biology Methods
Evolution is the central law of cancer cells. Similar to the laws of physics and chemistry, the 
design principles that constrain cancer biology are all amenable to discovery and modeling. 
“Core design principles” in biology must be modeled to express the mechanistic rules easily 
and efficiently. Abstraction is the most critical process required to uncover the design prin-
ciples of biological systems. A proper abstraction aids in data examination from different 
perspectives and helps to extract meaningful knowledge from the data. Graph theory allows 
for representation of the abstraction of biological relationships, analysis of the informa-
tion, and extraction of insights. Evidence shows that biological insights have been encoded 
in network properties (Wang, Lenferink, and O’Connor-McCourt 2007). Therefore, net-
work property analysis of integrated networks (i.e., signaling networks incorporated with 
cancer-related high-throughput -omic data) will provide new biological insights.

The core concepts of network analysis are nonlinear and network perspectives. Emergent 
biological properties may be discovered from nonlinear thinking. The results of linear 
thinking are often predictable and expected, whereas the results of network analyses are 
often nonlinear and unexpected. In theory, network analysis could lead to more unex-
pected and, therefore, exciting results.

Network properties range from local (i.e., single node or edge, network bottlenecks, network 
motifs, and modules) to global or network-wide (i.e., whether all nodes are connected, net-
work diameter, shortest path, density, average links, clustering coefficient, network centrality, 
degree centrality, closeness centrality, radiality, betweenness and pageRank, minimum span-
ning trees, and network flows). A detailed survey of network measurements and properties has 
been described by Costa et al. (http://arxiv.org/abs/cond-mat/0505185). Intrinsic relationships 
exist between local and global properties, such that sometimes a perturbation of a small num-
ber of linked nodes can result in widespread consequences. For example, a collection of protein 
network modules with gene coexpression alterations leads to breast cancer metastasis (Taylor et 
al. 2009). Further details about network biology concepts such as graph theory, network mea-
surements, and analysis are described in Chapters 2 and 4. The terms and concepts in Chapters 
2 and 4 will be used in the following examples to illustrate network analysis in cancer biology.

Based on the specific questions being addressed, different methods of network analysis 
can be applied. The architectural structure of cellular networks provides a framework to 
illustrate the logics and mechanisms of cancer biology. Regarding global network features, 
for example, the following cancer biology questions could be addressed: extracting a sub-
network of cancer signaling that reflects functionality of cancer development or metasta-
sis; uncovering the mechanisms by which genetic and epigenetic events affect cancer cell 
signaling and tumor progression; identifying central players (i.e., network hubs that are 
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cancer genes) in cancer cellular networks; identifying subnetworks that are functionally 
targeted cancer hallmarks, such as cell cycle and apoptosis. These analyses allow for the 
narrowing down of the scale of these complex networks. Further, they capture the com-
munications between the core molecular processes in cancer and uncover the molecular 
mechanisms responsible.

Many questions can also be addressed using local network features. For example, the 
enrichment of cancer driver-mutating genes (Futreal et al. 2004) in positive feedback sig-
naling loops (network motifs) suggests that oncogenes gain function due to mutation, 
whereas the enrichment of cancer methylated genes in negative regulatory signaling loops 
suggests that loss of function by gene methylation promotes tumorgenesis (Cui et al. 2007). 
The cancer signaling network, extracted from the human signaling network by integrat-
ing cancer driver-mutated genes and cancer methylated genes, has been decomposed into 
12 modules (network modules or communities). Furthermore, high-order collaborative 
relationships between these modules have been identified in different types of cancers (Cui 
et al. 2007).

Although cancer is considered a very heterogeneous disease, querying mutated genes 
in tumor samples using the network modules defined by a human cancer signaling map 
reveals that one common network module occurs in most tumor samples. Specifically, 
breast and lung cancers show more complex collaborative patterns of oncogenic signal-
ing modules than the other cancer types examined, highlighting their heterogeneous 
nature (Cui et al. 2007). These examples demonstrate that network biology is a powerful 
tool that elegantly provides new insights into biology. Moreover, most of these insights 
cannot be drawn from traditional biological approaches, which are dominated by linear 
thinking.

Network analysis also provides a powerful tool for generating testable hypotheses. 
For example, Fu and co-workers found that ubiquitin-mediated proteins are enriched in 
positive loops in the human signaling network (Fu, Li, and Wang 2009). Gene ontology 
enrichment analysis of the ubiquitin-mediated proteins in these positive loops suggests 
that the biological process apoptosis is enriched in this group of proteins. Furthermore, 
more than 85% of the ubiquitin-mediated apoptotic proteins in these positive loops are 
cancer-associated genes. These observations led to the hypothesis that the ubiquitination 
machinery, such as the 26S proteasome, could be more highly expressed in tumor cells 
than in normal cells (high expression of ubiquitination machinery genes will block apop-
tosis, an essential block in cancer signaling). Using microarray data from both tumor and 
normal samples, Fu, Li, and Wang (2009) provide evidence that this hypothesis is true. 
More examples of cancer network analyses are discussed extensively in Chapters 4 to 7.

1.2.4.3   Network Dynamics Analysis and Gene Markers for Diagnosis and Prognosis
Genetic variation and somatic mutations in human populations, and even in tumor sam-
ples from the same individual, make tumors a very heterogeneous tissue type. The hetero-
geneous nature of tumors leads to different responses from different patients with the same 
type of cancer to treatment with the same drug. To address this problem, personalized 
medicine proposes to identify molecular markers for drug responses.
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Another issue in cancer treatment is how to predict which patients with cancer should 
receive extra therapy after surgery. Currently, most cancer patients undergo surgery. If 
physicians knew which patients are in the earliest stages of cancer, they could better pre-
dict which patients might benefit from additional treatment. However, physicians cannot 
predict which patients with cancer should receive extra therapy after surgery. At present, 
it is very difficult to predict which patients will be cured by surgery alone, the single treat-
ment most patients receive, and which patients might benefit from the addition of chemo-
therapy. Therefore, it is critical to identify those genes that can be used as tools to predict 
survival after diagnosis of cancer and those genes that can guide how oncologists should 
treat the cancer to obtain the best outcome.

Practically, we are facing the challenge of identifying robust and highly accurate molec-
ular markers for drug response and survival prediction (prognosis). Enormous efforts have 
been made for more than 10 years to identify such biomarkers from gene microarray profiles. 
In fact, PubMed contains more than 3000 publications on this subject. However, no robust 
biomarkers have yet been identified for cancer. Specifically, the current so-called breast 
cancer biomarkers are ineffective when used in a different set of breast tumor samples.

It is expected that the use of a systems approach could extract more accurate and 
mechanism-based markers of patient response to drug treatment by capturing the system 
dynamics. This approach requires integration of cellular networks and the alterations of 
gene expression, genetic mutation, methylation, and protein modifications with clinical 
information such as drug response, patient outcomes, etc. These efforts will fundamentally 
change both the health care system and the management strategies for cancer patients.

Two recent studies demonstrated that the network biology approach offers promising 
results toward finding better markers for cancer prognosis. Mapping tumor-expressed 
genes onto a human protein interaction network allows for the identification of subnet-
works as cancer biomarkers. The resulting subnetwork markers are more reproducible 
than individual marker genes, which are selected without protein interaction information. 
These subnetwork markers also achieve higher accuracy in classification of metastatic ver-
sus nonmetastatic tumors (Chuang et al. 2007). Alteration of the coexpression of genes that 
are organized as protein network modules is associated with cancer metastasis, suggesting 
that dynamic rewiring of protein interaction modules is implicated in metastasis. Based 
on this discovery, network module markers have been shown to reach higher survival pre-
diction for breast cancer patients than other markers selected from gene clustering, an 
approach that does not consider genes as interacting modules (Taylor et al. 2009). We hope 
that network biology approaches will be applied to the discovery of drug response markers 
in the future.

1.2.5  Dynamic Network Modeling

Biology is currently experiencing a high level of interest in developing an understanding of 
system dynamics, specifically in studying systems made up of communicating parts and 
machines, information processing (cell signaling), and interconnected computational and 
functional units. In this perspective, organisms are viewed as information manipulators 
and processors.
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Network modeling uses methods from dynamical systems theory to model and simulate 
networks to decode the information processing machines and test hypotheses about the 
mechanisms that underlie the function of cancer cells. In network modeling, the behavior 
of cancer cells is represented in terms of quantitative changes in the levels of gene tran-
scripts or enzyme activities (i.e., kinase activity).

Network modeling provides conceptual and computational tools with which to perform 
and iterate dry-lab experiments. Network modeling enables simulation-based research 
within a quantitative reference framework that connects in silico replica and real systems 
by means of quantitative conceptual and computational tools. In the long term, network 
modeling approaches could replace many time-intensive or expensive wet-lab experiments. 
In this context, the growing field of systems biology is expected to lead to fundamental 
breakthroughs in cancer biology.

Two basic approaches (qualitative and quantitative) to dynamic network modeling are 
often used. Qualitative network modeling considers the states (i.e., gene expression values, 
protein concentrations, active, or nonactive) of the network nodes in a finite number of 
values (i.e., ON and OFF, higher or lower than threshold, etc.), whereas quantitative net-
work modeling considers the states of nodes over a wide range of values. In addition, quan-
titative modeling also considers probabilistic, deterministic, or stochastic characteristics 
of the network.

Dynamic network models are composed of three basic elements: the cellular network 
(i.e., networks of gene regulation, protein interaction, or signaling in a given cellular con-
text), the initial state of each node, and the transfer functions that describe the state depen-
dencies of each node in terms of its regulators. Node states can be modeled in either a 
continuous or a discrete manner, whereas the transfer functions can be modeled in either a 
deterministic or a stochastic fashion. Therefore, there are four methods (continuous deter-
ministic model, continuous stochastic model, discrete deterministic model, and discrete 
stochastic model) for dynamic network modeling. A discrete state approach may “pre-
cisely” describe the system’s behavior, whereas continuous state equations describe the 
“average behavior” of the system

In theory, a continuous stochastic model describes the system more accurately and more 
closely reflects the real system. However, high-quality experimental data are required to 
apply this modeling method. The limited availability of high-quality quantitative data 
forms a major bottleneck for the application of continuous stochastic models. Compared 
with the continuous stochastic model, a continuous deterministic model describes the sys-
tem without taking into account the stochastic (noise) nature of the system. A discrete sto-
chastic model usually accounts for noise in the transfer functions (differential equations) 
and models the nodes with two or a few states.

A discrete deterministic model has a high level of abstraction of node states (i.e., node 
states are assigned into only a few categories, even two binary states such as ON and OFF). 
The transfer functions are encoded as logic functions, such as “and,” “or,” and “not.” Boolean 
models are one representative group of the discrete deterministic modeling method. This 
method requires relatively little detailed input information. Therefore, this method is more 
attractive and feasible, because the data generated from current experimental systems are 
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suitable for this modeling method. One of the disadvantages of this method is that the 
predictions are generally more macro-scale and less quantitative. A comprehensive survey 
of the methods and computational tools for dynamic network modeling can be found in 
Chapter 16. An application of Boolean models to cancer cell death signaling networks is 
documented in Chapter 8. Other modeling examples can be found in Chapters 9 to 11.

In summary, systems biology is leading to fundamental changes in cancer biology. In 
terms of dynamic network modeling, high-quality quantitative data (i.e., quantitative 
proteomic data for signaling networks) are still required. Current methods for producing 
high-quality data for modeling are still expensive and time consuming. Development of 
new methods for network analysis and modeling are also needed. Most important, more 
scientific investigators need to be trained to think in a network fashion, rather than in a 
traditional linear fashion.
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C h a p t e r  2

Network Biology, the 
Framework of Systems Biology

Jing-Dong Han

2.1  INTRODUCTION
Systems biology studies the nature of biological systems that allow gene products to be 
linked together in nonlethal and even useful combinations and to understand the spe-
cial properties that allow them to function together to generate different phenotypes 
(Kirschner 2005). In essence, network biology is the framework of systems biology. 
Full genome sequences have provided complete part lists for the molecular networks 
and have spurred the take-off of systems biology. The part lists allow construction 
of raw maps of the molecular networks at a genome-wide scale and in an unbiased 
way; these raw maps then form the backbone for further computational annotation 
and inference of the networks; both the experimentally and computationally derived 
networks then allow examination of the structural or topological properties of the 
networks, and their link to biological properties of the networks, such as the robust-
ness and modularity of the networks. Ultimately the dynamic networks under a cer-
tain biological condition or within a certain biological context can be identified and 
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studied to explain the biological responses and the steady states of the networks, which 
are ref lected as phenotypic traits of the system (Figure 2.1). The phenotypic traits of a 
network can be its normal biological function, such as cell differentiation, or a patho-
logical condition, such as cancer or diabetes mellitus (Han 2008). In this chapter, I will 
follow the hierarchical f low of information described above and discuss important 
concepts at each step of the f low.

2.2  CONSTRUCTION OF THE RAW MAPS OF 
THE MOLECULAR NETWORkS

The availability of the full gene list in an organism now enables high-throughput mapping 
of many types of networks.

Yeast two-hybrid (Y2H) screens and co-affinity purification followed by mass spec-
trometry identification (CoAP-MS) are two major approaches to mapping the protein–
protein interaction (PPI) networks, where proteins are connected by direct PPI. The Y2H 
screens are done in an ex vivo system of the yeast nuclei for often a foreign Orfeome 
(the collection of open reading frames in an organism); therefore, it identifies all pos-
sible interactions without a biological context. However, it is much more sensitive than 
CoAP and can identify not only stable but also transient interactions. When used cor-
rectly, its accuracy can be similar to or better than CoAP, sometimes better than liter-
ature annotation (H. Yu et al. 2008a). CoAP-MS results have been more reproducible 
across different laboratories (von Mering et al. 2002); the PPIs identified can be specific 
to the particular cell context used for the experiments. However, CoAP-MS is less sensi-
tive for detecting transient interactions than Y2H, and protein complexes identified by 
this approach do not necessarily represent direct PPIs between any two prey proteins 
(proteins identified by CoAP-MS), or even between the bait protein (a tagged protein used 
to pull down the protein complex) and its every prey protein. The edges (interactions) in 
the PPI networks identified by either Y2H or CoAP-MS are undirected, that is, they can 
only be detected as mutual binding or complex formation by these approaches. Directed 
enzyme–substrate interactions—for example, phosphorylation, dephosphorylation, 

Raw Maps

Inference
Annotation

Network Properties

Phenotypic Traits

FIGURE 2.1 Information flow of network biology. See text for details.
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ubiquitination, deubiquitination, methylation, and demethylation—can be represented as 
directed edges in PPI networks where the source nodes are enzymes and targets are sub-
strates. However, networks of these interactions are still largely based on computational 
predictions (Linding et al. 2007; see below).

Chromatin immunoprecipitation followed by microarray identification (ChIP-chip) or 
sequencing (ChIP-seq) and yeast one-hybrid (Y1H) screens are commonly used approaches 
to mapping regulatory networks, which consist of directed transcription factor (TF)–target 
gene relationships. Similar to Y2H, Y1H is not context specific, whereas both ChIP-chip 
and ChIP-seq identify TF–target relationships for a specific state of a specific cell line or 
tissue. Compared to ChIP-chip, ChIP-seq can generate sharper binding signals at higher 
resolutions (Barski et al. 2007), given enough depth of sequencing, which is now carried 
out at many-fold coverage of a genome using the next-generation short sequencing tech-
nologies such as Solexa or Solid.

High-throughput synthetic lethal screens have been used to map genetic interaction 
networks, where the nodes are genes and the edges are undirected synthetic interac-
tions. Directed networks of epistatic relationships have so far not been subjected to high-
throughput mapping experiments, although genetic screens for key genes mediating a 
biological pathway or phenotype are routinely carried out in model organisms, and the 
genetic relationships between some of the players have been solved one at a time by epi-
static analysis.

Similarly, small-scale biochemical and genetic experiments have delineated metabolic 
networks in great detail. These networks are well annotated in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database, and are represented by network graphs where 
nodes are metabolites or small chemical molecules, and the edges are the reactions cata-
lyzed by enzymes. High-throughput experiments are also becoming applicable to mapping 
small molecule-target networks and microRNA-target networks.

2.3  COMPUTATIONAL INFERENCE OF THE MOLECULAR NETWORkS
The large amount of high-throughput data has made it possible to computationally infer 
biological networks. Nondirectional networks can be inferred by correlations between 
nodes across many measurements, such as gene expression, evolution, or even literature 
citations. As correlation measurements, Pearson correlation coefficient (PCC), cosine cor-
relation coefficient, mutual information, Hamming distance, or any other distance can 
be used. The choice among these distance metrics is largely dependent on the type and 
number of data. For example, PCC is more suitable for large datasets of continuous val-
ues, whereas Hamming distance can be used for relatively small datasets of binary data 
values. However, these similarity or correlation metrics are often based on data of a single 
type, and sometimes due to the difficulty of normalization among datasets, they have to 
be calculated based on a single dataset. This greatly reduces the coverage and accuracy of 
the inference. To solve these problems, the naïve Byes model or linear regression model 
can be enlisted to integrate heterogeneous datasets to make the strengths of inference from 
various datasets comparable based on the same set of gold standard positive (GSP) and 
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gold standard negative (GSN) data (Xia, Dong, and Han 2006). Thus, multiple weak evi-
dences can be turned into a strong prediction. Furthermore, networks inferred through 
these models have edges weighted by their likelihood of being true positive versus true 
negative relationships, which allows quantitative evaluation of functional associations of 
nodes inside such networks.

However, networks inferred simply based on correlations are not only nondirectional, 
but also not strictly structural in that they contain many transitive relationships although 
some pruning can be used to minimize them. Bayesian networks (BN) is a framework 
suitable for inferring network structure and sometimes directed causal relationships 
among the nodes. Nodes in a BN represent a set of variables, and a BN is a network rep-
resentation of the joint probability distribution over the set of variables as a product of 
conditional probability distributions for each node. By evaluating conditional indepen-
dencies between sets of variables, a Bayesian network structural learning algorithm tries 
to find the network structure that encodes the factorization of the joint probability distri-
bution that best fits the data. The evaluation can be performed explicitly by testing various 
conditional independency relations or implicitly by using a scoring function to quantify 
the fitness of different networks with data. For real-world data, the latter approach typ-
ically yields better results by avoiding accumulating errors in multiple statistical test-
ing. The Bayesian information criterion (Tsong et al. 2006) is a frequently used scoring 
function which contains a term to evaluate the likelihood that the data was generated 
by the model and another term to penalize the complexity of the model (Needham et al. 
2006). To find the network with the highest score, current exact BN structural learning 
algorithms could scale up to 20–30 variables by using dynamic programming strategies, 
while heuristic search algorithms may scale up to hundreds of variables and yield close to 
optimal solutions.

The BN structure inferred is a directed acyclic graph (DAG), representing the con-
ditional independencies between variables, which states the target node is condition-
ally independent of its nondescendants given its parents (Needham et al. 2006). Due 
to this constraint, BN must be acyclic; that is, no loops are allowed, even though in the 
real network they may exist. Such feedback relationships sometimes can be inferred 
by dynamic BN, which is essentially a large BN unfolded by a template unit over time 
or other dimensions. The additional temporal information can be exploited to resolve 
causal feedback relationships without violating the acyclic constraint. It is possible to 
identify potential causal relationships by finding the consistently directed edges (irre-
versible edges) within the whole set of equivalent BN structures (Chickering 1995; Kim 
et al. 2006; H. Yu et al. 2008b). For example, the BN formation can be used to infer the 
causal relationships among histone modifications and chromatin-binding factors and 
toward gene expression, whereas the correlations among the modifications and factors 
only hint at functional relatedness (H. Yu et al. 2008b). Interventions of the nodes can 
provide more direct evidence and stronger signals for learning causal relationships. For 
example, a signaling network of 11 molecules can be rather accurately inferred through 
thousands of single-cell flow cytometry measurements of the level of the molecules 
upon activating or inhibiting each of them in human primary T cells (Sachs et al. 2005). 



Network Biology, the Framework of Systems Biology    ◾    27

Moreover, compared to networks derived from correlations, the conditional probability 
distribution for each node is able to identify both strong and weak, as well as linear and 
nonlinear dependencies.

However, due to the requirements of large amounts of incidences or data points for BN 
inference and noises in data, gene regulatory networks can only be robustly reverse engi-
neered when a large number of gene expression measurements for each node (gene) exists 
(usually >1000), and is often impossible to learn when the number of nodes is also large. 
Recent chromatin-immunoprecipitation followed by microarray (ChIP-chip) or by deep 
sequencing (ChIP-seq) technologies has generated enormous amounts of genomic DNA-
binding profiles for various regulatory factors, and made these data ideal for BN learning.

2.4  ANNOTATION OF THE RAW MAP AND COMPUTATIONALLy 
INFERRED NETWORkS By DATA INTEGRATION

Large-scale data and computational predictions contain many false positives. These can be 
technical or biological false positives. Data integration when used to filter the results accord-
ing to their confidence levels can minimize the technical false positives. To generate high 
confidence datasets, approaches from simple intersection analysis (Han et al. 2004; Said et al. 
2004; von Mering et al. 2002) to more quantitative probability-based scoring systems, such 
as the naïve Bayes classifier, can be used where interactions are ranked by their likelihood 
of being true positives versus true negatives (see above). To remove biological false positives, 
other context information related to a certain biological process (e.g., early embryogenesis; 
Gunsalus et al. 2005) or compartment (e.g., mitochondria; Pagliarini et al. 2008) can be used 
to filter the raw maps and reinforce the biological relevance of the interactions.

2.5  TOPOLOGICAL PROPERTIES OF THE MOLECULAR NETWORkS
The topological features of a network can be described by statistical metrics, and by their 
unique components, such as subgraphs in the network. Many statistical metrics have been 
developed to characterize network graphs in general, some of which are especially relevant 
to biological networks.

2.5.1  Statistical Metrics to Characterize the Networks and Their Biological Relevance

The shortest path length (SPL) is the smallest number of edges in a network required to 
connect two nodes. It measures how close the nodes are to each other. Two proteins hav-
ing shorter SPL in the PPI network are more likely to have similar phenotypes and gene 
expression profiles than those having longer SPL (Gunsalus et al. 2005). Characteristic path 
length (CPL) is the average SPL between any pair of nodes that are directly or indirectly 
connected in a network. It measures how tightly connected the whole network is. Nearly 
all biological networks have very short CPL, suggesting they are tightly connected. The 
importance of a node to the overall connectivity of a network can be reflected as the change 
of the network’s CPL upon simulated removal of the node.

Node degree (k) is the number of links a node makes. The proportions of nodes of dif-
ferent degrees (p(k)) within a network are collectively called the degree distribution of the 
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network. When log(p(k)) is linear to log(k), the network can be called scale-free, which 
approximately fits all the known biological networks. Such a distribution has been sug-
gested to maintain structural robustness of the networks (Albert et al. 2000). Hubs, or 
high degree nodes, in scale-free networks are more likely to be essential to the structural 
integrity of the network (Albert et al. 2000), and in yeast PPI networks, reflected as the 
essentiality to the survival of the yeast (Jeong et al. 2001).

Compared to this “degree centrality,” “betweenness centrality” has been shown to be 
even better correlated with the essentiality of the node (H. Yu et al. 2007). Betweenness of 
a node or an edge is quantified as the number of shortest paths passing through the node 
or the edge.

2.5.2  Network Motifs

Other than the quantitative metrics to describe a network and its nodes and edges, the 
presence of unique subgraphs in a network also distinguishes biomolecular networks from 
other types of networks. Network motifs are small subgraphs that are statistically over-
represented compared to random expectation. For example, feedback and feed-forward 
motifs are enriched in the regulatory networks (Milo et al. 2002), where negative feedback 
loops can stabilize the signal passing through it, or serve to terminate an input signal, and 
feed-forward loops suggest combinatorial effects or signal redundancy.

2.5.3  Modularity of the Networks

Modularity is another feature of biomolecular networks. A network module is a context-
coherent subnetwork with defined inputs and outputs, as well as conditionally comparable 
temporal and spatial profiles (Papin et al. 2005). However, depending on the data collec-
tion process, not all the input, output, temporal, and spatial parameters are available for a 
system. In practice, modules are often evaluated by their functional homogeneity as anno-
tated by benchmark standards 
 
 
and 
can be dissected from the whole network based on the coherency of the nodes or edges 
under one or more contexts, such as structural or dynamic contexts.

Structural modules are defined, based on network configurations alone without con-
sulting the temporal or spatial context, as subnetworks where nodes are more densely con-
nected within the subnetwork than toward the outside of the subnetwork, or more than 
random expectation. The modularity metric Q has been developed to quantitatively evalu-
ate this (Newman and Girvan 2004).

Network clusters or cliques are a typical type of structural module. The tightness of clus-
tering or the cliquishness of a cluster can be measured in many ways. The most frequently 
used is the average clustering coefficient (C(v)) among nodes in a subgraph. The C(v) of a 
node is the ratio of the number of observed edges over that of all possible edges among the 
interactors of a node (Watts and Strogatz 1998). In PPI networks, subgraphs that have high 
average C(v) often correspond to protein complexes (Bader and Hogue 2003). Larger struc-
tural modules can also be identified based on similarity of shortest distances between node 
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pairs (Rives and Galitski 2003), the enrichment or conservation of subgraphs compared 
to random expectation (Sharan et al. 2005), or the number and distance of interactions to 
reference genes (Kohler et al. 2008).

Other than structural coherence or connectivity density, edge type consistency has been 
used to find epistatic modules (Segre et al. 2005); the expression profile similarity and dis-
similarity have been used to find dynamic modules active during a biological process (Xue 
et al. 2007).

Modularity of the molecular networks is also reflected by the subnetworks that are asso-
ciated with disease development (Goh et al. 2007). This feature allows predicting potential 
disease-associated genes through the modular networks containing the known disease-as-
sociated genes. A breast cancer gene network has been dissected from an integrated func-
tional interaction network through coexpression with multiple known breast cancer genes. 
The network module has served as a template for ranking novel breast cancer related genes 
(Pujana et al. 2007). Based on direct PPIs (Lage et al. 2007), shortest distance in the PPI 
network (Wu et al. 2008), or interaction strength (Kohler et al. 2008) to already mapped 
Mendelian disease-associated genes, algorithms have been developed to narrow down the 
disease-associated genes within known disease-associated genomic loci, which each con-
tain many genes, sometimes over 100 genes.

Based on the coexpression levels of a hub with its interacting partners, hub proteins in 
the yeast PPI network can be categorized into “date” (intermodule) and “party” (intra-
module) hubs, with low and high coexpression levels, respectively. Functional modules are 
found to be organized around party hubs, and connected at a higher level by the date hubs 
through more dynamic interactions. This hierarchical structure implies dynamic modu-
larity in the yeast PPI network (Han et al. 2004). Interestingly, in the human PPI network 
the date, or intermodule, hubs that have low cross-tissue coexpression levels with their 
interactors are the best predictors for breast cancer prognosis, suggesting that the aggres-
siveness of breast cancer is associated with altered dynamic modular organization of the 
network in cancer cells (Taylor et al. 2009).

Although topological properties are important to the biological functions of the net-
works, they are not the only determinants of functions. The kinetic properties, for instance, 
are another important factor contributing to functions. In fact, some of the topological 
properties contribute to the biological functions through affecting the kinetic properties 
of the networks. For example, negative feedback loops have been shown to be required for 
ensuring the signal sensitivity and response fidelity of a pathway to its input signal concen-
trations (Bhalla, Ram, and Iyengar 2002; R.C. Yu et al. 2008).

2.6  EVOLUTION OF MOLECULAR NETWORkS
The nature of biological systems that allows gene products to be linked together in nonlethal 
and even useful combinations (Kirschner 2005) is achieved through evolution. Therefore, the 
ultimate explanation of the structure and dynamics of the network lies in the fitness of the 
organism to the environment and the selection pressures in an organism’s evolutionary history.
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When a protein complex or a pathway achieves an essential biological function, it is 
likely to be preserved through evolution and to experience negative selection pressures 
(Kirschner 2005; Sharan et al. 2005; Wuchty, Oltvai, and Barabasi 2003). However, the 
network motifs within different sets of paralogous genes in an organism are mostly not 
conserved (Conant and Wagner 2003; Teichmann and Babu 2004). Gene duplication has 
been a mechanism to generate new connectivity patterns in the new and old set of paralo-
gous genes by relieving the negative selection pressure on singleton genes, thereby achiev-
ing new functions. Network structure analysis has suggested that the two paralogous gene 
groups derived from the whole genome duplication in yeast generated separate functional 
subnetworks (Conant and Wolfe 2006). Even without gene duplication, network diversi-
fication can occur while maintaining its functions. The evolutionary history of the yeast 
hormonal response elements illustrates a step-wise adaptation toward functionally identi-
cal structural diversification through an intermediate state where both new and old regu-
latory elements function simultaneously (Tsong et al. 2006).

Given that the structures of the network motifs or connectivity configuration per se 
are not direct targets of evolutionary selection on molecular networks, what are the direct 
target(s)? The structures of genes and proteins seem to contribute directly to the com-
plexity of molecular networks, and are selected through evolution. Gene duplication, gen-
eration of gene and protein variants by alternative splicing, as well as thriving noncoding 
regulatory genes and elements all undoubtedly contribute to the increase in the number 
of nodes of molecular networks, and the temporally and spatially dynamic concentration 
of the nodes, and therefore linearly increase the complexity of the molecular networks in 
higher and more complex organisms.

However, increasing a node’s connectivity in the network can exponentially increase the 
complexity of the network by adding edges without an increase in the number of nodes, 
or the size of the proteome or genome. The average PPI domain coverage (the percent-
age of total length of a protein occupied by PPI domains) of proteins in an organism is 
highly correlated with the complexity of the organism as estimated by the number of cell 
types of the organism. Interestingly in both human and yeast PPI networks, a protein’s PPI 
domain coverage is also highly correlated with the protein’s interaction degrees, suggest-
ing an adaptation of the proteins toward higher compactness in domain structures occurs 
while organism and PPI network complexity increases through evolution (Figure  2.2A; 
Xia et al. 2008). The PPI domain organizations on a protein are also associated with the 
dynamics of the interactions. A protein containing a single PPI interface is likely a date hub 
and is involved in multiple dynamic interactions, whereas a protein containing multiple 
PPI interfaces tends to be a party hub and binds to its multiple interactors simultaneously 
(Kim et al. 2006; Figure 2.2B).

Therefore, the selection pressure on network evolution is reflected and preserved ver-
batim at the genome level through protein domain structures. In this sense, the genome 
sequences not only provide parts lists for network biology, when examined from the evolu-
tionary perspectives, they also reveal the evolutionary history and selection pressure expe-
rienced by the molecular networks at the systems and organism level.
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C h a p t e r  3

Reconstructing Gene 
Networks Using Gene 
Expression Profiles

Mario Lauria and Diego di Bernardo

3.1  INTRODUCTION
Gene expression microarrays, and more recently deep sequencing approaches, yield quan-
titative and semiquantitative data on cell status in a specific condition and time. Molecular 
biology is rapidly evolving into a quantitative science and, as such, it is relying increasingly 
on engineering and physics to make sense of high-throughput data. The aim is to infer, 
or reverse engineer, from gene expression data, the regulatory interactions among genes 
using computational algorithms. There are two broad classes of reverse-engineering algo-
rithms (Gardner et al. 2005): those based on the physical interaction approach that aim at 
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identifying interactions among transcription factors and their target genes (gene-to-se-
quence interaction), and those based on the influence interaction approach that try to relate 
the expression of a gene to the expression of the other genes in the cell (gene-to-gene inter-
action), rather than relating it to sequence motifs found in its promoter (gene-to-sequence). 
We will refer to the ensemble of these “influence interactions” as gene networks.

The interaction between two genes in a gene network does not necessarily imply a physi-
cal interaction, but can also refer to an indirect regulation via proteins, metabolites, and 
ncRNA that have not been measured directly. Influence interactions include physical inter-
actions, if the two interacting partners are a transcription factor and its target, or two 
proteins in the same complex. Generally, however, the meaning of influence interactions is 
not well defined and depends on the mathematical formalism used to model the network. 
Nonetheless, influence networks do have practical utility for: (1) identifying functional 
modules, that is, identifying the subset of genes that regulate each other with multiple 
(indirect) interactions but have few regulations to other genes outside the subset; (2) pre-
dicting the behavior of the system following perturbations, that is, gene network models 
can be used to predict the response of a network to an external perturbation and to iden-
tify the genes directly “hit” by the perturbation (di Bernardo et al. 2005), a situation often 
encountered in the drug discovery process, where one needs to identify the genes that are 
directly interacting with a compound of interest; (3) identifying real physical interactions, 
by integrating the gene network with additional information from sequence data and other 
experimental data (i.e., chromatin immunoprecipitation, yeast two-hybrid assay, etc.).

In addition to reverse-engineering algorithms, network visualization tools are avail-
able online to display the network surrounding a gene of interest by extracting infor-
mation from literature and experimental datasets, such as Cytoscape (Shannon et al. 
2003; http://www.cytoscape.org/features.php) and Osprey (Breitkreutz, Stark, and Tyers 
2003; http://biodata.mshri.on.ca/osprey/servlet/Index).

Here we will focus on gene network inference algorithms (the influence approach). A 
description of other methods based on the physical approach and more details on compu-
tational aspects can be found in Ambesi and di Bernardo 2006; Beer and Tavazoie 2004; 
Foat, Morozov, and Bussemaker 2006; Gardner and Faith 2005; Prakash and Tompa 2005; 
Tadesse, Vannucci, and Lio 2004. We will also briefly describe two “improper” reverse-
engineering tools (MNI and TSNI), whose main focus is not inferring interactions among 
genes from gene expression data, but rather identification of the targets of the perturbation 
[point (2) above].

3.2  GENE NETWORk INFERENCE ALGORITHMS
In this section we will give an overview of different approaches to the inference of gene 
networks, and then we will describe in more detail the regression-based approach. The dia-
gram in Figure 3.1 illustrates the relationship between the different algorithms and their 
specific domains of application.

In the following we will indicate gene expression measurement of gene i with the vari-
able xi, the set of expression measurements for all the genes with X, and the interaction 
between genes i and j with aij. X may consist of time-series gene expression data of N genes 
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in M time points (i.e., gene expression changing dynamically with time), or measurements 
taken at steady state in M different conditions (i.e., gene expression levels in homeosta-
sis). Some inference algorithms can work on both kinds of data, whereas others have been 
designed specifically to analyze one or the other.

Depending on the inference algorithm used, the resulting gene network can be either 
an undirected graph, that is, the direction of the interaction is not specified (aij = aji), or a 
directed graph specifying the direction of the interaction, that is, gene j regulates gene i 
(and not vice versa; aij ≠ aji ). A directed graph can also be labeled with a sign and strength 
for each interaction, signed directed graph, where aij has a positive, zero, or negative value 
indicating activation, no interaction, and repression, respectively.

3.2.1  Coexpression Networks and Clustering Algorithms

Correlation networks were among the first attempts to infer metabolic networks start-
ing from time series measurements of species concentration (Arkin and Ross 1995). More 
advanced correlation-based methods were later developed and applied to the inference of 
genetic networks from high-throughput technologies (Rice, Tu, and Stolovitzky 2005; Ucar 
et al. 2007). Correlation among the expression profile of pairs of genes can be used alone 
to generate a network of interactions between genes, typically by setting a significance 
threshold to select meaningful interactions (Conant and Wolfe 2006), or it can be used 
as part of a clustering approach. Clustering, although not properly a network inference 
algorithm, is the current method of choice to visualize and analyze gene expression data. 
Clustering is based on the idea of grouping genes with similar expression profiles in clus-
ters (Eisen et al. 1998). The similarity is measured by a distance metric, as for example the 
correlation coefficient among pairs of genes. The number of clusters can be set either auto-
matically or by the user, depending on the clustering algorithm used (Amato et al. 2006; 
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Eisen et al. 1998). The rationale behind clustering is that coexpressed genes (i.e., genes in 
the same cluster) have a good probability of being functionally related (Eisen et al. 1998). 
This does not imply, however, that there is a direct interaction among coexpressed genes, 
since genes separated by one or more intermediaries (indirect relationships) may be highly 
coexpressed. It is therefore important to understand what can be gained by advanced gene 
network inference algorithms, whose aim is to infer direct interactions among genes, as 
compared to "simple" clustering for the purpose of gene network inference.

The most common clustering approach is hierarchical clustering (Eisen et al. 1998), 
where relationships among genes are represented by a tree whose branch lengths reflect the 
degree of similarity between genes, as assessed by a pairwise similarity function such as 
the Pearson correlation coefficient:
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For a set of n profiles all the pairwise correlation coefficient rij are computed; the high-
est value (representing the most similar pair of genes) is selected and a node in the tree 
is created for this gene pair with a new expression profile given by the average of the two 
profiles. The process is repeated by replacing the two genes with a single node, and all pair-
wise correlations among the n − 1 profiles (i.e., n – 2 profiles from single genes plus 1 of the 
gene pair) are computed. The process stops when only one element remains. Clusters are 
obtained by cutting the tree at a specified branch level.

3.2.2  Bayesian Networks

A Bayesian network is a graphical model for probabilistic relationships among a set of ran-
dom variables Xi, with i = 1 … n. These relationships are encoded in the structure of a 
directed acyclic graph G whose vertices (or nodes) are the random variables Xi. The rela-
tionships between variables are described by a joint probability distribution P(X1,… ,Xn) 
that is consistent with the independence assertions embedded in the graph G and has the 
form:
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where the p + 1 genes on which the probability is conditioned are called the parents of gene 
i and represent its regulators, and the joint probability density is expressed as a product 
of conditional probabilities by applying the chain rule of probabilities and independence. 
This rule is based on the Bayes theorem: P(A,B) = P(B|A)P(A) = P(A|B) P(B).

We observe that the JPD (joint probability distribution) can be decomposed as the prod-
uct of conditional probabilities as in Equation 3.2 only if the Markov assumption holds, that 
is, each variable Xi is independent of its nondescendants, given its parent in the directed 
acyclic graph G.
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In order to reverse engineer a Bayesian network model of a gene network we must find 
the directed acyclic graph G (i.e., the regulators of each transcript) that best describes the 
gene expression data X, where X is assumed to be a steady-state dataset. This is done by 
choosing a scoring function that evaluates each graph G (i.e., a possible network topology) 
with respect to the gene expression data X, and then searching for the graph G that maxi-
mizes the score.

The score can be defined using Bayes rule: P(G|X) = P(X|G)P(G)/P(X), where P(G) can 
either contain some a priori knowledge on network structure, if available, or can be a con-
stant noninformative prior, and P(X/G) is a function, to be chosen by the algorithm, that 
evaluates the probability that the data X has been generated by the graph G. The most pop-
ular scores are the Bayesian information criteria (Tsong et al. 2006) or Bayesian Dirichlet 
equivalence (BDe). Both scores incorporate a penalty for complexity to guard against 
overfitting of data.

Trying out all the possible combinations of interaction among genes, all the possible 
graphs of G, and choosing the G with the maximum Bayesian score is an NP-hard prob-
lem. Therefore, a heuristic search method is used, like the greedy-hill climbing approach, 
Markov chain Monte Carlo method, or simulated annealing.

In Bayesian networks, the learning problem is usually underdetermined and several 
high-scoring networks are found. To address this problem, one can use model averaging or 
bootstrapping to select the most probable regulatory interactions and to obtain confidence 
estimates for the interactions. For example, if a particular interaction between two tran-
scripts repeatedly occurs in high-scoring models, one gains confidence that this edge is a 
true dependency. Alternatively, one can augment an incomplete dataset with prior infor-
mation to help select the most likely model structure. Bayesian networks cannot contain 
cycles (i.e., no feedback loops). This restriction is the principal limitation of Bayesian net-
work models. Dynamic Bayesian networks overcome this limitation. Dynamic Bayesian 
networks are an extension of Bayesian networks able to infer interactions from a dataset 
D consisting of time-series data rather than steady-state data. We refer the reader to Yu et al. 
(2004).

A word of caution: Bayesian networks model probabilistic dependencies among vari-
ables and not causality, that is, the parents of a node are not necessarily also the direct 
causes of its behavior. However, we can interpret the edge as a causal link if we assume that 
the causal Markov condition holds. This can be stated simply as: a variable X is independent 
of every other variable (except the targets of X) conditional on all its direct causes. It is not 
known whether this assumption is a good approximation of what happens in real biologi-
cal networks.

For more information and a detailed study of Bayesian networks for gene network infer-
ence we refer the reader to Friedman et al. (2000).

Banjo is a gene network inference software that has been developed by the group of 
Hartemink (Yu et al. 2004). Banjo is based on the Bayesian networks formalism and imple-
ments both Bayesian and dynamic Bayesian networks; therefore, it can infer gene networks 
from steady-state gene expression data, or from time-series gene expression data. Banjo 
outputs a signed directed graph indicating regulation among genes. Banjo can analyze 
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both steady-state and time-series data. In the case of steady-state data, Banjo, as well as 
the other Bayesian networks algorithms, is not able to infer networks involving cycles (e.g., 
feedback or feed forward loops). Other Bayesian network inference algorithms for which 
software is available have been proposed (Friedman and Elidan 2000; Murphy 2001).

3.2.3  Information-Theoretic Approaches

Information-theoretic approaches use a generalization of the pair-wise correlation coeffi-
cient in Equation 3.1, called mutual information (MI), to compare expression profiles from 
a set of microarrays. For each pair of genes, their MIij is computed and the edge aij = aji is 
set to 0 or 1 depending on a significance threshold to which MIij is compared. MI can be 
used to measure the degree of independence between two genes. Mutual information MIij 
between gene i and gene j is computed as:

 MIij = Hi + Hj − Hij (3.3)

where, Hi and the joint entry Hij are defined as:
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The entropy Hk has many interesting properties; specifically it reaches a maximum for 
uniformly distributed variables, that is, the higher the entropy, the more randomly dis-
tributed are gene expression levels across the experiments. From the definition, it follows 
that MI becomes zero if the two variables xi and xj are statistically independent [P(xixj) = 
P(xi)P(xj)], since their joint entropy Hij = Hi + Hj. A higher MI indicates that the two genes 
are nonrandomly associated to each other. It can be easily shown that MI is symmetric, 
Mij = Mji; therefore, the network is described by an undirected graph G, thus differing from 
Bayesian networks (directed acyclic graph).

MI is more general than the Pearson correlation coefficient. This quantifies only lin-
ear dependencies between variables, and a vanishing Pearson correlation does not imply 
that two variables are statistically independent. In practical application, however, MI and 
Pearson correlation may yield almost identical results (Steuer et al. 2002).

The definition of MI in Equation 3.3 requires each data point, that is, each experiment, 
to be statistically independent from the others; thus information-theoretic approaches, as 
described here, can deal with steady-state gene expression datasets or with time-series data 
as long as the sampling time is long enough to assume that each point is independent of 
the previous points.

Edges in networks derived by information-theoretic approaches represent statistical depen-
dencies among gene expression profiles. As in the case of Bayesian networks, the edge does 
not represent a direct causal interaction between two genes, but only a statistical dependency. 
A “leap of faith” must be made in order to interpret the edge as a direct causal interaction.
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It is possible to derive the information-theoretic approach as a method to approximate 
the joint probability distribution (JPD) of gene expression profiles, as is done for Bayesian 
networks. We refer the interested reader to Margolin et al. (2006).

ARACNE (Basso et al. 2005; Margolin et al. 2006) belongs to the family of information-
theoretic approaches to gene network inference first proposed by Butte and Kohane (2000) 
with their relevance network algorithm. ARACNE computes MIij for all pairs of genes i 
and j in the dataset. Mij is estimated using the method of Gaussian kernel density (Steuer 
et al. 2002). Once Mij for all gene pairs has been computed, ARACNE excludes all the pairs 
for which the null hypothesis of mutually independent genes cannot be ruled out (H0 : MIij = 
0). A p-value for the null hypothesis, computed using Monte Carlo simulations, is associ-
ated to each value of the mutual information. The final step of this algorithm is a pruning 
step that tries to reduce the number of false positives (i.e., inferred interactions among 
two genes that are not direct causal interactions in the real biological pathway). They use 
the data processing inequality (DPI) principle that asserts that if both (i, j) and (j, k) are 
directly interacting, and (i, k) are indirectly interacting through j, then MIi,k ≤ min(MIij, 
MIjk). This condition is necessary but not sufficient, that is, the inequality can be satisfied 
even if (i, k) are directly interacting; therefore, the authors acknowledge that by applying 
this pruning step using DPI they may be discarding some direct interactions as well.

3.3  A MORE IN-DEPTH LOOk: ODE-BASED APPROACHES

3.3.1  Details of the ODE-Based Approach

In recent studies, algorithms based on Ordinary Differential Equations (ODE) have been 
developed that use a collection of steady-state RNA expression measurements (network 
identification by multiple regression, NIR; microarray network identifcation, MNI; sparse 
simultaneous equation model with Lasso, SSEMLasso), or time-series measurements (time-
series network identification, TSNI) following transcriptional perturbations, to reconstruct 
gene-gene interactions and to identify the mediators of the activity of a drug (Bansal, Gatta, 
and di Bernardo 2006; Cosgrove et al. 2008; di Bernardo et al. 2005; Gardner et al. 2003). 
Other algorithms based on ODEs have been proposed in the literature (Bonneau et al. 
2006; D’haeseleer et al. 1999; Tegner et al. 2003; van Someren et al. 2006).

In ODE-based approaches the gene network dynamics describing the time evolution 
of the mRNA concentration transcribed by each gene is modeled by a set of ordinary dif-
ferential equations:

 

dx
dt

f x u= ( , )  (3.5)

where x represents the mRNA concentrations of the genes in the network and u is a set of 
transcriptional perturbations. Assuming that the cell under investigation is at equilibrium 
near a stable steady-state point, we can apply a small perturbation to each of its genes. A 
perturbation is small if it does not drive the network out of the basin of attraction of its 
stable steady-state point and if the stable manifold in the neighborhood of the steady-state 



42    ◾    Mario Lauria and Diego di Bernardo

point is approximately linear. With these assumptions the set of nonlinear rate equations 
can be linearized near their stable steady-state point.

Thus, for each gene i, in a network of N genes, we can write the above equations in the 
form:

 

dx
dt

a x u a x u i N l Mil
ij

j

m

jl il i
T

l il= + = + = =
=

∑
1

1 1, , , , ,… …

 

 (3.6)

where xil is the mRNA concentration of gene i following the perturbation in experiment l; 
aij represents the influence of gene j on gene i; uil is an external perturbation to the expres-
sion of gene i in experiment l.

Identifying the gene interactions network means to derive the matrix A of the coefficient 
aij for each gene i in the model described above. This can be accomplished if we measure 
the mRNA concentration of all the N genes at steady state (i.e., x l = 0 ) in M experiments 
and then solve the system of equations:

 AX U= −  (3.7)

where X is an N × M matrix whose columns are the xl vectors and U is an N × M matrix whose 
columns are the ul vectors. This system can be solved only if M ≥ N; however, the recovered 
weights A will be extremely sensitive to noise both in the data and in the perturbations and 
thus unreliable unless we overdetermine the system (increasing the number of experiments 
or assuming the number of regulators of each gene, k, is much smaller than M).

Having described the underlying model, we now briefly outline the method used by NIR 
to infer A, given U and X. In order to estimate the coefficients of the gene interaction net-
work, NIR essentially solves a linear regression problem for each equation in (3.7) assuming 
an upper bound of k = 10 regressors for each predicted gene, that is, we assume that each 
gene can be regulated at most by 10 other genes (Figure 3.2). The value of 10 was found 
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FIGURE 3.2 (See color insert following page 332.) Network identification by multiple regression 
algorithm.
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empirically to be the best compromise between computational complexity and complete-
ness of the results. The set of variables comprising the regressor set was chosen according 
to the residual sum of square error (Bonneau et al. 2006) minimization criterion. Due to 
the infeasibility of exhaustively searching the best set of regressors in the space of all the 
possible n-ples (for each value of n), we used the forward/step-wise method (di Bernardo 
et al. 2004) to solve the variable selection problem, for each cardinality k of regressors. We 
used the Akaike’s final prediction error (FPE) to solve the model selection problem, that is, 
to select the final value of k within a range of values. In our experiments we used a range of 
(2, 10) unless specified otherwise.

The MNI algorithm (di Bernardo et al. 2005) is based on Equation 3.7 as well, and 
uses steady-state data like NIR, but importantly, each microarray experiment can result 
from any kind of perturbation, that is, we do not require knowledge of U. MNI is dif-
ferent from other inference methods since the inferred network is used not per se but to 
filter the gene expression profile following a treatment with a compound to determine 
pathways and genes directly targeted by the compound. This is achieved in two steps: in 
the first step the network A is estimated using a training set of expression data. In the 
second step, the regulatory network is used as a filter to determine the genes affected by 
the test condition; Equation 3.7) and to compute the values uil for each i, using the aij 
estimated in the previous step and X being the set of expression profiles obtained fol-
lowing the treatment. The uil different from 0 represent the genes that are directly hit by 
the compound. The output is a ranked list of genes; the genes at the top of the list are the 
most likely targets of the compound (i.e., the ones with the highest value of uil).

The network inferred by MNI could be used per se, and not only as a filter. However, 
if we do not have any knowledge about which genes have been perturbed directly in each 
perturbation experiment in dataset X (right-hand side in Equation 3.7), then, differently 
from NIR, the solution to Equation 3.7 is not unique, and we can only infer one out of 
many possible networks that can explain the data. What remains unique are the predic-
tions (Milo et al. 2002), that is, all the possible networks predict the same uil.

The TSNI (time series network identification) algorithm (Bansal, Gatta, and di Bernardo 
2006) identifies the gene network (aij) as well as the direct targets of the perturbations 
(Milo et al. 2002). TSNI is based on Equation 3.6 and is applied when the gene expression 
data are dynamic (Arkin and Ross 1995). To solve Equation 3.6, we need the values of 
x ti k( )  for each gene i and each time point k. This can be estimated directly from the time-

series of gene expression profiles. TSNI assumes that a single perturbation experiment is 
performed (e.g., treatment with a compound, gene overexpression, etc.) and M time points 
following the perturbation are measured (rather than M different conditions at steady state 
as for NIR and MNI). For small networks (tens of genes), it is able to correctly infer the 
network structure (i.e., aij ). For large networks (hundreds of genes) its performance is best 
for predicting the direct targets of a perturbation (i.e., uil) (for example, finding the direct 
targets of a transcription factor from gene expression time series following overexpression 
of the factor). TSNI is not described further here, but we refer the reader to Bansal, Gatta, 
and di Bernardo (2006).
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3.3.2  The ODE-Based Approach When Perturbation Information Is Not Available

The information on which genes were perturbed in each microarray is not always avail-
able. In these cases, the regression-based procedure illustrated above needs to be modified. 
The approach used in NIRest to infer the network is described by a two-step procedure 
depicted in Figure 3.3 (Lauria, Iorio, and di Bernardo 2009):

 1. Given X, infer the matrix Uest of the most likely set of gene perturbations (also called 
mode of action).

 2. Using X and Uest, infer the matrix A using NIR.

We have implemented these two steps in a tool called NIRest. We have tested a number 
of different methods to obtain an estimate of U, including, for example, MNI. Based on 
the results of our tests (not shown) in the end we selected an indirect approach, which 
consisted of obtaining a first rough estimate Aest of A with a fast statistical method, then 
deriving the perturbation matrix as Uest = − AestX.

Then for the second of the two steps we fed X and Uest to NIR to obtain a better estimate 
of A (Figure 3.3). In principle the newly found A could be used to compute a new estimate 
of U and the algorithm could be iterated one or more times. In practice we did not observe 
substantial improvements, due mainly to the accumulation of errors outweighing the ben-
efits of additional passes.

3.4  EVALUATING THE PERFORMANCE OF REVERSE-
ENGINEERING ALGORITHMS

3.4.1  Introduction

In this section we will describe how the different approaches to network inference are 
tested. Given the importance of the genetic network inference problem, many efforts have 
been devoted not only to devising new algorithms but also to evaluating their performance. 
The main issue in testing algorithms is the lack of suitable real networks to use as gold stan-
dards. Most biological networks are either completely determined but small, or large but 
incomplete. An example of the first type of network is a nine-transcript subnetwork of the 
SOS pathway in Escherichia coli often used as a test network and first adopted in Gardner 
et al. (2003), available at gardnerlab.bu.edu. Typically this is a subset of a well-known bio-
logical network, whose knowledge is the result of years of focused efforts by part of the 

X

Uest

A
U estimation NIR

FIGURE 3.3 Block diagram of NIRest. Input X is the gene expression data, output A is the inferred net-
work, and the internal variable Uest holds the estimate of the perturbation. The functional block labeled 
U estimation derives an estimate of the perturbations matrix U needed as second input to NIR.
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scientific community on a specific model organism and model pathway. An example of the 
second type of network is the set of interactions between 844 transcriptional factors and 
their targets in Saccharomyces cerevisiae published by Lee et al. (2002). In this case the set 
of interactions obviously represents only a subset of the set of all real interactions among 
genes in S. cerevisiae; these networks are usually the result of large-scale studies focusing 
on a single aspect of gene interaction.

Small networks are not an ideal gold standard because in general the complexity of 
recovering a network from a set of expression data grows more than proportionally with 
size, both in terms of accuracy of the results and in terms of computational effort. The dis-
advantage of the large but incomplete networks is that it is difficult to measure the accuracy 
of a network recovered from expression data if the gold standard is faulty in the first place. 
In view of the above limitations, it is not surprising to find a widespread use of synthetic 
data (“in silico” data), that is, gene expression data generated by a computer model of gene 
regulation assuming an artificial network of gene interactions. While less realistic, syn-
thetic data enables a performance comparison in a completely controlled testing environ-
ment that would not be possible with a breadth of scenarios and a level of detail that would 
be hardly feasible using real data. Unfortunately, there is no agreement on a standard set 
of test data, as is the case in other areas of computational biology (i.e., CASP for protein 
structure prediction); therefore direct comparison between new and existing approaches 
is often spotty. This situation is partially remedied by the recent introduction of a yearly 
competition called DREAM, described later in this section.

3.4.2  A Comparison of the Different Reverse-Engineering Approaches

A comparison of different mainstream algorithms for network inference is reported in 
Bansal et al. (2007). Here we report an excerpt from that work, integrated with results 
for NIRest from Lauria et al. (2009); for more details the reader is referred to the origi-
nal papers. The performance is reported in terms of positive predictive value (PPV; also 
known as precision and sensitivity or recall). PPV represents the accuracy of the inferred 
network and is defined as TP/(TP + FP). Sensitivity is defined as TP/(TP + FN), where 
TP is true positive, FP is false positive, and FN is false negative. The in-house datasets 
were obtained by taking five of the synthetic networks (Net1 to Net5) described in the 
review paper by Bansal et al. (2007) and multiplying their inverse by a matrix P describ-
ing the desired set of perturbations, according to the formula X A U= − −1 . Each network 
contained 100 genes with an average number of connections k to other genes of 10; 
100 different experiments were simulated for each dataset, generating gene expression 
datasets X of 100 genes × 100 experiments. Specifically, the presence of a perturbation 
to gene i  in experiment j was represented by setting to 1 the corresponding element of 
U, that is, Uii = 1. The single perturbation matrix U1 coincided with the identity matrix 
I; the multiple perturbation matrices Uk were obtained by repeated shift-down and addi-
tion to itself of I. In other words, in the pth experiment (pth column of Uk) the genes 
p p p k N, , ,( )mod+ +1… were perturbed (elements in row p p p k N, , , ( )mod+ +1… of Uk = 
were set to 1). Finally, noise was added to X as described in Bansal et al. (2007) to simu-
late experimental errors. Table 3.1 reports the results for synthetic datasets of size 10 × 10 
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and 100 × 100, and the E. coli dataset described before. Note that, as mentioned before, 
depending on the inference algorithm used, the resulting gene network can be either 
an undirected graph (the direction of the interaction is not specified), or a directed one 
(direction is specified). For algorithms like NIR that have the ability to recover both 
versions of the network the performance for both is reported [marked as (u) and (d), 
respectively].

3.4.3  The DREAM Competition

An annual competition called DREAM is organized with the purpose of assessing the 
current state of the art in genetic network inference. Every year a new set of synthetic and 
biological data is used to test the performance of the current version of the inference algo-
rithms proposed by the contenders. In the words of the organizers (DREAM2007, 2007),

DREAM is a Dialogue for Reverse Engineering Assessments and Methods. Its main 
objective is to catalyze the interaction between experiment and theory in the area of 
cellular network inference. The fundamental question for DREAM is simple: How 
can researchers assess how well they are describing the networks of interacting mol-
ecules that underlie biological systems? The answer is not so simple. Researchers 
have used a variety of algorithms to deduce the structure of very different biological 
and artificial networks, and evaluated their success using various metrics. What is 
still needed, and what DREAM aims to achieve, is a fair comparison of the strengths 
and weaknesses of the methods and a clear sense of the reliability of the network 
models they produce.

In the following we will describe the results of NIR using the 2007 DREAM2 challenge.
Since in the NIR model knowledge of the perturbation is required, we applied the NIR 

algorithm to the challenge number 4 of the DREAM competition (The In-Silico-Network 
Challenge). For this challenge, three networks were created by the organizers (InSilico1, 
InSilico2, and InSilico3) and they were endowed with dynamics that simulate biological 
interactions (DREAM2007 2007). Specifically, a nonlinear differential equations model 
with standard Hill kinetics was created reflecting the connections of each network; the 

TABLE 3.1 Performance Comparison of the Different Reverse-Engineering Approaches Using a Mix of 
Synthetic and Biological Datasets

ARACNE BANJO NIR NIRest Clustering Random
RecallDataset Recall Prec Recall Prec Recall Prec Recall Prec Recall Prec

10x10 (u) 0.53 0.61 0.41 0.50 0.63 0.96 0.39 0.38 0.36
10x10 (d) 0.25 0.18 0.57 0.93 0.20
100x100(u) 0.56 0.28 0.71 0.00 0.97 0.87 0.80 0.49 0.29 0.18 0.19
100x100(d) 0.42 0.00 0.96 0.86 0.47 0.43 0.10
E. coli (u) 0.69 0.34 0.78 0.44 0.80 0.88 0.8 0.63 0.71
E. coli (d) 0.67 0.24 0.74 0.67 0.63

Source: Data from Bansal et al. (2007) and Lauria et al. (2009).
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data was then obtained by simulating the network with the COPASI software (Hoops et al. 
2006; Mendes 2007). The data from InSilico1 and InSilico2 correspond to mRNA levels of 
gene networks with qualitatively different topologies. InSilico3 corresponds to a full bio-
chemical network, including metabolites, proteins, and mRNA concentrations. The chal-
lenge consisted of predicting the connectivity and some of the properties of one or more of 
these three networks. Each of these datasets was provided in three different versions:

• Heterozygous: steady-state levels for the wild type and 50 heterozygous knock-down 
strains for each gene (+/−). Values of gene expression were provided for a standard 
condition (steady state).

• Null-mutants: steady-state levels for the wild type and 50 null mutant strains for each gene 
(−/−). Values of gene expression were provided for a standard condition (steady state).

• Trajectories: time courses of the network recovering from several external perturba-
tions. 23 different perturbations and 26 time points were available.

The predictions for the three datasets could be submitted in one or more of the follow-
ing categories: undirected-unsigned, undirected-signed, directed-unsigned, directed-signed 
(excitatory, inhibitory). The categories are self-explanatory; this flexibility in submitting 
the results was introduced to accommodate the different abilities of the various network 
prediction approaches to infer the direction and/or the sign of the relationship between 
each pair of genes. We submitted results for all the above categories.

The performance curves are shown in Figure  3.4. For the Undirected-Unsigned pre-
diction we obtained a network with 148 edges, with a PPV equal to 1 until the 33rd most 
reliable connection, and a PPV of 0.5 if considering the first 100 most reliable connections. 
For the Directed-Unsigned prediction the performance was essentially the same in terms 
of PPV, with 328 total connections inferred. For the Directed Signed version, the chal-
lenge rules required specifying separately the set of excitatory connections and the set of 
Inhibitory connections. The 12 most reliable excitatory connections we predicted were all 
correct, and the same was true for the 25 most reliable inhibitory connections. We have 
not investigated the reason for this asymmetry in the prediction accuracy of the excit-
atory versus inhibitory connections; one possibility is that some difference in the nonlinear 
equations describing inhibitory vs. excitatory regulation used to simulate the network and 
generate the data might make it slightly harder to detect inhibition.

3.4.4  Synthetic Biology Meets Systems Biology

A recent development was the construction of a synthetic genetic circuit in yeast and its 
application to the comparison of reverse-engineering algorithms (Cantone et al. 2009). 
The novelty of this project was that for the first time a genetic circuit was designed from 
the ground up and then implemented for the explicit purpose of evaluating computational 
biology tools, namely, transcriptional modeling and genetic network inference algorithms. 
Despite the small scale, the network includes several representative interactions found 
in natural gene networks, such as transcriptional chains, positive and negative feedback 
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FIGURE 3.4 NIR performance assessment obtained using the DREAM2 Challenge Scoring Methodology, adapted from Lauria et al. (2009). Precision Curve: value 
of Precision (PPV) obtained when retaining only the n most reliable network connections (ranked by absolute value of the corresponding A element), for increasingly 
larger values of n (from left to right). Precision/Recall Curve: each point represents a (Precision, Recall) value pair obtained for a certain classification threshold on 
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loops, and indirect regulation mediated by protein-protein interactions. Furthermore, the 
network can be controlled through a small molecule, galactose, so that the circuit can 
be activated or inactivated through an external agent. The network was engineered to 
achieve complete isolation from the natural regulatory network of the yeast. The combi-
nation of these features made possible the analysis of the circuit using the perturbation-
driven approach described in this chapter in a systematic and highly controlled manner. 
By combining the advantages of a realistic biological behavior of a living cell and detailed 
knowledge of the topology of the network of a synthetic model, this experiment pioneered 
a new approach to the study of genetic circuits and the computational tools employed to 
study them.

3.5  DISCUSSION
In this section we summarize the current state of the art, and the future directions for 
research. In silico analysis gives reliable guidelines on performance of algorithms in line 
with the results obtained on real datasets: ARACNE performs well for steady-state data 
and can be applied also when few experiments are available, as compared to the num-
ber of genes, but it is not suited for the analysis of short time-series data. This is to be 
expected due to the requirement of statistically independent experiments. BANJO is very 
accurate, but with a very low sensitivity, on steady-state data when more than 100 different 
perturbation experiments are available, independently of the number of genes, whereas 
it fails for time-series data. BANJO (and Bayesian networks in general) is a probabilistic 
algorithm requiring estimation of probability density distributions, a task that requires 
a large number of data points. NIR works very well for steady-state data, also when few 
experiments are available, but requires knowledge of the genes that have been perturbed 
directly in each perturbation experiment. NIR is a deterministic algorithm and if the noise 
on the data is small, it does not require large datasets, since it is based on linear regression. 
Clustering, although not a reverse-engineering algorithm, can give some information on 
the network structure when a large number of experiments is available, as confirmed by 
both in silico and experimental analysis, albeit with a much lower accuracy than the other 
reverse-engineering algorithms.

The different reverse-engineering methods considered here infer networks that over-
lap for about 10% of the edges for small networks, and even less for larger networks. 
Interestingly, if all algorithms agree on an interaction between two genes (an edge in the 
network), this interaction is not more likely to be true than the ones inferred by a single 
algorithm. Therefore, it is not a good idea to "trust" an interaction more just because more 
than one reverse-engineering algorithm finds it. Indeed, the different mathematical mod-
els used by the reverse-engineering algorithms have complementary abilities; for example, 
ARACNE may correctly infer an interaction that NIR does not find and vice versa. Hence 
in the intersection of the two algorithms, both edges will disappear, causing a drop in sen-
sitivity without any gain in accuracy (PPV). Taking the union of the interactions found by 
all of the algorithms is not a good option, since this will cause a large drop in accuracy.
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4.1  NETWORkS OF CANCER GENES

4.1.1  Genes Do Not Work in Isolation

About 24,000 protein-encoding genes are contained in the human genome, and cellular 
processes are achieved by interactions among these genes. Diseases such as cancer are 
driven by dynamic interactions among sets of proteins involved in altering various normal 
cell activities. Several studies have illustrated the importance of gene and protein interac-
tions in essential biological processes and cancer development.

Cell cycle activity is a hallmark of cancer. A recent study of the time dependence of pro-
tein complex assembly in the cell cycle showed that the whole picture of protein interactions 
is extremely dynamic and precisely controlled (de Lichtenberg et al. 2005). The authors con-
structed a protein interaction network and traced the pieces of each complex using public 
protein interaction data for yeast. After mapping diverse genome-wide cell cycle datasets 
(time course gene microarray data), they showed clear patterns in how the complexes are 
assembled: key components of the machines are assembled ahead of time, kept in stock, 
and prepared for use. When a new machine is needed, a few crucial pieces of the machine 
are produced and assembled to form the complete functional machine (Figure 4.1). This 
scenario suggests a few underlying principles: (1) cell cycle machines consist of two dif-
ferent subunits that are expressed both periodically and constitutively; (2) these subunits 
ensure that the machines can be built at the right times, which affords control of protein 
complex activity through “just-in-time assembly.” The study indicates that biological sys-
tems have dynamic behavior, and it demonstrates that proteins not only interact but also 
must be produced at the right times and places in the cell. This example clearly tells us that 
genes not only work together but also are governed by certain underlying rules.

4.1.2  Cellular Networks
4.1.2.1   Pathways and Networks
During the past few decades, the concept of biological pathways has been developed and 
used to study the relationships among genes or proteins. The linear relationship between 
genes is the core of biological pathways, but the components and boundaries of signaling 
pathways are not clearly defined. For example, different numbers of proteins and relation-
ships in the transforming growth factor (TGF-β) pathway are found in three public data-
bases: BioCarta (http://www.biocarta.com/), KEGG (http://www.genome.jp/kegg/pathway.
html), and Reactome (http://www.reactome.org/). Indeed, the linear relationships between 
proteins have been increasingly challenged by evidence for cross-talk between pathways, 
that is, evidence that many proteins are shared by multiple pathways (Wang, Lenferink, 
and O’Connor-McCourt 2007). It seems that cross-talk between pathways has become one 
of the underlying principles of evolution: fast-evolving proteins tend to form network com-
ponents with other signaling pathways (Cui, Purisima, and Wang 2009), suggesting that 
apoptotic signaling proteins have proliferated in humans, and a significant portion of them 
have been integrated into the signaling processes for normal physiological conditions. For 
example, apoptotic proteins such as caspases are involved in many nonapoptotic signaling 
processes in humans and mice (i.e., cell proliferation and differentiation; Cui, Purisima, 
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and Wang 2009; Kuida et al. 1998). In mice, caspase-9 is involved in both apoptosis and 
inner ear epithelium development (Cecconi et al. 2004), while caspase-8 is involved in crit-
ical signaling for cardiac and neural development during early embryogenesis (Sakamaki 
et al. 2002). Conversely, multiple normal signaling mechanisms have been recruited to cell 
death pathways either as backup or parallel mechanisms of apoptosis. Cytochrome c, a key 
electron carrier of mitochondrial complex III for respiration, is involved in apoptosis when 
mitochondria are damaged (Liu et al. 1996).

Pathway cross-talk and component sharing provide redundant and flexible mechanisms 
for cell signaling. Coevolution of the proteins from different pathways would enhance the 
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rapid information transfer between these signaling pathways, and it significantly promotes 
new functionalities (Cui, Purisima, and Wang 2009). These studies suggest that extensive 
communication exists between pathways, to the point that many pathways lose their iden-
tities and the pathway concept gets fuzzy. Therefore, the concept of the network emerges as 
a necessity for biological systems.

In fact, both pathways and networks are concepts that reflect the efforts of humans to 
explore the activities with cells via abstraction. Cells are full of molecules and reactions; it’s 
hard to say whether they really contain pathways or networks. In order to explore cellular 
activities, we must develop conceptual models and bring them closer to the real situation 
in cells. At the moment, a pathway may describe the real cellular situation in certain con-
trolled conditions, but in most situations a network is probably more accurate.

4.1.2.2   Types of Cellular Networks
Cellular networks have been used to describe protein interactions, metabolism, gene regu-
lation, signaling, genetic interactions, and gene co-expression (Wang et al. 2007). Each 
network can be placed into one of two categories—general or specific networks, based on 
whether it captures biological relationships on a genome-wide scale or only specific cellular 
activities such as metabolism or signaling.

A general cellular network encodes all the relationships among proteins or genes across 
all biological processes in a cell. The information in the network ranges from basic cellular 
machinery for DNA synthesis, metabolism, and transcription to protein complexes involved 
in cellular signaling. For example, a protein interaction network records all the physical 
interactions among proteins in a cell. To the category of general cellular networks, we 
can add gene regulation networks, which describe all the regulatory relationships between 
transcription factors and genes in a cell.

The second category of cellular networks is specific networks, which encompass met-
abolic networks, gene co-expression networks, and signaling networks. These networks 
describe relationships in specific cellular conditions or specific cellular activities such as 
signaling and metabolism. A signaling network encodes the flows of information and bio-
chemical reactions for signal transduction, while a metabolic network collects all the meta-
bolic reactions and metabolic flows. Co-expressed genes often represent a collection of 
genes that are involved in similar biological functions and activities.

4.2  BIOLOGICAL INSIGHTS INTO CANCER GENES IN 
THE PROTEIN INTERACTION NETWORk

4.2.1  Special Features of Cancer Genes in the Human Protein Interaction Network

During the past two decades, scientists have identified thousands of interactions among 
cellular proteins, and in the coming years they hope to comprehensively catalog all the 
interactions encoded in the human genome. Such information will be critical to under-
standing the basic mechanisms of cellular activities and how malfunctions in these activi-
ties contribute to cancer. As the high-throughput technologies for characterizing protein 
interactions have advanced, so has the feasibility of building large-scale protein interaction 
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networks via sophisticated computational tools. Therefore, network-based approaches 
have been introduced for representing complex biological systems. Cellular networks are 
complex systems that are inherently nonlinear in nature. In a nonlinear system, simple 
changes in one part of the system produce complex effects throughout. However, biolo-
gists often treat biological systems as linear (e.g., linear cascades of biochemical reactions 
or gene regulations). Because many biological properties are encoded in cellular networks 
(Wang, Lenferink, and O’Connor-McCourt 2007), it is necessary to develop tools to treat 
such complex systems as nonlinear in order to discover common principles governing 
their organization and function. In the past few years, mathematical, statistical, and com-
putational methods for characterizing and elucidating complex biological networks have 
been adopted from other fields, such as the social sciences. Network analysis methods have 
provided insights into many biological questions and have been applied to many types 
of biological networks, including transcriptional regulation, genetic interactions, protein 
interactions, expression correlation, and cell signaling (Wang, Lenferink, and O’Connor-
McCourt 2007). Network theory has also been employed to discover the patterns of gene 
mutations that drive cancer on the human protein interaction network. Cancer driver-
mutating genes promote cancer initiation, progression, or metastasis when mutated. There 
are two types of such genes: oncogenes and tumor suppressor genes. An oncogene, when 
mutated or expressed at high levels, helps turn a normal cell into a cancer cell, while a tumor 
suppressor gene protects a cell from progressing toward cancer. When a tumor suppressor 
gene is mutated to cause a loss or reduction of its function, the cell can progress to cancer, 
usually in combination with an oncogene’s genetic changes. Cancer driver-mutating genes 
can be identified by either traditional genetic approaches or the tumor genome sequencing 
approach (Sjoblom et al. 2006).

4.2.1.1   Cancer Genes Occur Less Often in Duplicable Genes
Analysis of the human genome shows that cancer driver-mutating genes are significantly 
enriched in singletons and less so in duplicable genes (83.7% and 16.3%, respectively), 
regardless of their molecular functions (Rambaldi et al. 2008), suggesting that these genes 
are intrinsically fragile. Furthermore, there is evidence that targeted design of oncogene 
inhibitors could be more effective to block the onco-signal that is produced from that 
oncogene. Indeed, many cancer drugs (e.g., Epidermal Growth Factor Regulator [EGFR] 
inhibitors) can effectively prolong the survival of patients whose cancer is caused by a spe-
cific mutation. However, we must keep in mind that cancer is induced not by one mutating 
gene, but by several. Designing an inhibitor to target only one cancer driver-mutating gene 
cannot cure cancer, but it may prolong the lives of some patients.

4.2.1.2   Cancer Genes Have More Interacting Partners 
and Higher Network Interconnectivity

The human protein interaction network can be built using the data from several human 
protein interaction databases such as the Human Protein Reference Database (HPRD, 
http://www.hprd.org/), which is manually curated. More information about data sources 
for building protein interaction networks is presented in Chapter 20. Analysis of the human 
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protein interaction network uncovered the fact that human duplicable proteins have sig-
nificantly more interacting partners than singletons but have lower clustering coefficients 
(Liang and Li 2007; Liao and Zhang 2007), that is, they are associated with less network 
interconnectivity. Rambaldi et al. mapped a set of cancer driver-mutating genes by merg-
ing a manually curated census of human cancer genes (Futreal et al. 2004) and a set of 
genes derived from sequencing of tumor genomes. They then overlaid this map on the 
human protein interaction network. They found that cancer driver-mutating genes have 
significantly more interacting partners and higher clustering coefficients than human pro-
teins (Rambaldi et al. 2008). Similar results have been shown in another study, which used 
another source of protein interaction data to characterize cancer driver-mutating genes 
(Jonsson and Bates 2006). In this study, Jonsson and Bates applied a computational method 
based on the principle of orthologous interactions (Jonsson et al. 2006) to build a human 
protein interaction network, and they mapped the human consensus cancer genes (Futreal 
et al. 2004) onto the network. The interesting point here is that the studies performed by 
both Rambaldi et al. and Jonsson and Bates used different datasets but obtained similar 
results, which suggests that cancer proteins form the backbone of the human proteome 
and become central interconnected hubs in the human protein interaction network. Their 
results led Rambaldi et al. to propose that cancer genes are intrinsically fragile and suscep-
tible to perturbations: gene dosage modifications of highly interconnected hubs are likely 
to produce simultaneous effects on several processes (Rambaldi et al. 2008). Indeed, we 
previously showed that mutated oncogenes activate cancer signaling, while mutated and 
methylated (i.e., silenced) tumor suppressor genes release signaling brakes, in both cases 
increasing the dosage for cancer signaling (Cui et al. 2007). More details are described in 
Chapter 5.

4.2.1.3   Network Hot Spots of Cancer Gene Mutations Demonstrate Hallmarks of Cancer
Jonsson and Bates showed that cancer driver-mutating genes tend to form network clusters 
or communities; that is, when a few genes on the network do something, their “friends” 
(genes in the same module) probably do something similar. Detailed annotations indi-
cate that these network clusters encode cancer hallmarks such as active cell cycles and 
immune systems. More information about cancer hallmarks and their associations with 
signaling pathways and genome science can be found in Chapter 12. Similarly, Rambaldi 
et al. showed that cancer genes are significantly enriched in network motifs (basic network 
building blocks) containing 3- and 4-connected proteins. Detailed information about net-
work motif concepts is described in different contexts in Chapters 2 and 5. Furthermore, 
cancer proteins tend to co-occur within the same network motif.

4.2.1.4   Special Features of Cancer Genes in Cell Signaling Regulatory Loops
Results similar to those mentioned above have been observed when analyzing cancer genes 
on a manually curated human signaling network (Awan et al. 2007), that is, cancer genes 
are significantly enriched in network hub proteins. Furthermore, there exist substantial 
numbers of hot spots—11 and 9 of the 3- and 4-node network motifs, respectively, in which 
all nodes are cancer genes. These hot spots are potential biomarker clusters or anticancer 
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drug target clusters. However, in the signaling network, there are more interesting observa-
tions that have not been uncovered in protein interaction networks. Downstream regions 
of the signaling network are significantly enriched in cancer genes (P < 2 × 10−4), that 
is, 7.9%, 9.2%, and 18.1% of ligand-receptor, intracellular components, and nuclear genes, 
respectively, in contrast to 8.6%, the average rate at which cancer genes occur among sig-
naling network proteins. These results suggest that the downstream regions of signaling 
pathways tend to be more perturbed in cancer signaling. Cancer genes are significantly 
enriched or depleted in some particular types of signaling network motifs; for example, 
they are enriched in positive feed-forward regulatory loops but depleted in bi-fan motifs.

A feed-forward regulatory loop consists of three proteins: A, B, and C. In the positive 
feed-forward loop, both A and B regulate C, while A also regulates B. This kind of loop 
could provide specific regulatory capacities and decode signal strength and process infor-
mation (Wang, Lenferink, and O’Connor-McCourt 2007). Mutation of oncogenes in posi-
tive feed-forward regulatory loops could amplify and enhance the regulatory signals and 
therefore promote cancer signaling. A bi-fan regulatory loop consists of four proteins: A, 
B, C, and D. A regulates C and D, while B also independently regulates C and D. Therefore, 
gene mutation in the bi-fan regulatory loop does not amplify the underlying signal, and 
it is reasonable that cancer genes are less enriched in bi-fan loops. These results suggest 
that certain types of signaling regulatory network motifs are critical for cancer develop-
ment and metastasis. Cancer genes are significantly enriched in the target nodes of most 
signaling motifs, especially the convergent target nodes that receive signal information 
consolidated from two or more source nodes. These findings indicate that the convergent 
nodes are critical and may be sufficient to activate other network nodes and induce cancer 
development. In signaling networks, multiple information flows could converge to produce 
a limited set of phenotypic responses (Prinz, Bucher, and Marder 2004) because conver-
gence provides redundant cellular functions and robustness. Critical signaling nodes fall 
into two categories in the network: those that preserve homeostasis during perturbation 
and those that evoke phenotypic changes. Taken together, the above observations suggest 
that convergent nodes in the cancer-gene-enriched motifs could be crucial for preserving 
homeostasis, and perturbation of these nodes could lead to loss of cellular homeostasis and 
induction of cancer (Awan et al. 2007).

4.2.2  Protein Interaction Networks for Interpreting Cancer Microarray Data
4.2.2.1   Cancer Microarray Data Are Extremely Noisy
Microarray technology has been applied extensively to tumor gene expression profiling 
during the past decade. As of April 2009, more than 10,000 papers on cancer microarray 
studies have been published. However, it is well known that gene expression profiles differ 
greatly among tumor samples, even for the same type of cancer. Moreover, gene expression 
profiles of tumors are more complex than those of other disease samples. These facts could 
be rooted in the mechanisms of cancer initiation, progression, and metastasis. Through an 
integrative analysis of a human signaling network and the output of large-scale sequenc-
ing of tumor genomes, we have shown that alterations of the tumor suppressor gene p53 
are essential to cancer development and progression (Cui et al. 2007). Mutation of tumor 
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suppressor genes often increases genome instability, which, in turn, induces many genomic 
alterations such as rearrangements, chromosomal fragment amplifications, and deletions 
(Wang, Lenferink, and O’Connor-McCourt 2007). Thus, tumor cells often have many 
more “passenger signals” than other cells. The variability of the gene expression profiles 
of individual tumors is very high, and the “real” cancer gene expression signatures could 
be buried in these highly varied profiles. Microarray data contain a large number of genes, 
which indicate complex changes in genetic programs (i.e., driver mutations) and suggest 
the intertwining of unknown mechanisms. Advances in technology have made data gener-
ation much easier, but interpreting these data is a major hurdle in science today. Clustering 
methods are the most popular approach to microarray data analysis, but these methods 
do not make it easy to pinpoint molecular mechanisms or even particular pathways. The 
extremely noisy nature of gene expression data from tumors makes it very challenging 
to extract meaningful information and to obtain biological insights into the molecular 
mechanisms of cancer.

4.2.2.2   Networks Are Useful for Filtering Out the Noise in Microarray Data
A group of genes working together has intrinsic relationships; for example, cancer genes 
often form network communities. Therefore, we propose that cellular networks provide 
a platform to help filter out “noise” or “passenger signals,” which are random signals 
unlikely to form any statistically significant patterns from tumor gene expression profiles. 
Furthermore, some lines of evidence suggest that tumorigenesis is rooted in coordinated 
reprogramming of molecular interactions in the context of highly connected and regu-
lated cellular networks. Therefore, statistically significant patterns or systems-level reor-
ganization of modulated genes during tumorigenesis observed in cellular networks could 
be interpreted as the “real signals” in tumor gene expression profiles. Several studies have 
applied cellular networks to interpret cancer microarray data, and novel biological insights 
have been drawn from these studies.

4.2.2.3   Properties and Organization of Cancer-Modulated Genes on Networks
Transformation of cells from normal to cancerous phenotypes requires dynamic changes 
in cancer signals within regulatory loops (i.e., sets of protein interactions), which could 
be modulated along with certain genes. To understand the systems-level properties and 
organization of cancer-modulated genes, Hernandez et al. (2007) performed an integrative 
analysis of the human protein network and the differentially expressed genes in tumors 
relative to healthy tissues. The genes differentially expressed in the presence of cancer were 
identified from microarray datasets of prostate, lung, and colorectal samples. Regardless 
of the tumor type, downregulated cancer genes have common properties: more interact-
ing proteins and high betweenness (a measure of the number of paths along which signals 
can pass), suggesting that these genes are involved in multiple biological processes. These 
results further suggest that both cancer driver-mutating genes and downregulated cancer 
genes share common features in protein interaction networks, in that both take part in 
multiple biological processes or pathways. However, it was noted that upregulated cancer 
genes have no such patterns on the network, suggesting that downregulated genes might 
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play major roles during tumorigenesis. Network analysis indicated that the dependence 
of a downregulated cancer gene node on its interacting neighbors is significantly lower, 
suggesting that cancer genes act independently and play dominant roles in information 
exchange and propagation within the network. Shortest-path analysis of the cancer-mod-
ulated genes suggests that downregulated genes or all modulated genes (including up- and 
downregulated genes) tend to form network clusters, which are involved in cancer-related 
processes. These results indicate that the coordinated downregulation of genes is involved 
in programmed cell death, cell adhesion, and cell communication processes, which could 
facilitate the metastatic behavior of cancer cells (Hernandez et al. 2007).

4.2.2.4   Dynamics of Network Rewiring and Functional Modules in Cancer Metastasis
4.2.2.4.1  Network Modules in Cancer Metastasis  Metastasis is a key process associated with 
cancer recurrence and the patient’s death. Metastatic cancer cells have the ability to break 
away from the primary tumor and move to different organs and therefore must have prop-
erties such as increased motility and invasiveness. Detailed information about metastasis 
can be found in Chapter 13. Chapters 12, 14, and 15 have more information about factors 
that might affect metastasis from tumor-surrounding cells.

In networks, a module consists of a subset of nodes within which connections are dense, 
whereas connections are sparser between modules (Wang, Lenferink, and O’Connor-McCourt 
2007). Modules are one of the higher-level topological properties of networks, and they con-
tain correlations between the degree of a node and the degrees of the nearest neighbors.

Jonsson et al. (2006) applied the concept of network modules to cancer metastasis. 
They identified metastatic protein communities (network modules) by analyzing a protein 
interaction network in conjunction with up- and down-regulated genes related to cancer 
metastasis. By applying the clustering method, Jonsson et al. identified 37 network mod-
ules of highly interconnected proteins containing 313 proteins involved in 1094 interac-
tions (Figure 4.2). Interestingly, most of the modules are associated with cancer metastasis, 
which indicates that key proteins are involved in metastasis.

The metastatic modules contain a high-order organization and include two modules 
representing TGF-β signaling and the cell cycle process. Both modules have been impli-
cated in cancer metastasis, but this work suggests how these two modules are functionally 
linked. Most interestingly, among the identified modules, 17 are linked in a chain-like 
manner. The most upstream module represents intracellular signaling cascades, while 
the downstream modules include actinin, laminin, cell cycle regulation, NF-κB, hypoxia, 
nuclear hormone receptors, and metalloproteinases, which have been implicated in cancer 
metastasis. The importance of this type of analysis is that it not only captures the func-
tional network modules but also suggests potential links between these modules and thus 
yields working hypotheses that can be tested experimentally.

4.2.2.4.2  Network  Rewiring  and  Module  Dynamics  in  Cancer  Metastasis  Intuitively, the 
importance and roles of a network node are determined not only by the number but also 
the quality of its neighbors. Motivated by this idea, Guimerà, Sales-Pardo, and Amaral 
(2007) proposed a general framework to classify network hubs into “provincial hubs” and 
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“connector hubs.” Provincial hubs’ neighbors tend to belong to the same module, while 
connector hubs efficiently link different modules. The provincial and connector hubs are 
similar to the concept of “party” and “date” hubs in protein interaction networks pro-
posed by Han et al. (2004). Party hubs interact with most of their partners simultaneously, 
whereas date hubs prefer to meet their partners one at a time under different external or 
internal conditions. More detailed information about party and date hubs can be found in 
Chapter 2.

The dynamics of protein network modules have been investigated by examining the co-
expression of hub proteins and their partners in the human protein interaction network 
(Taylor et al. 2009). Taylor and colleagues first classified the hub nodes as intermodular 
hubs (similar to party hubs or provincial hubs) and intramodular hubs (similar to date 
hubs or connector hubs), which display more highly correlated patterns of co-expression. 
In a functional network, the organization could be viewed as connecting network mod-
ules, which are comprised of intramodular hubs, via intermodular hubs.

Proteasome

Endore??

EGF-like domains

Tubulin

Mi?? spindle
checkpoint

Cell cycle
regulation

Laminin

Ac??

Transcription
regulation

Nucleocytoplasm
transport

Vascular endothelial
growth factors (VEGF)

Intracellular signaling
cascade

Breast cancer
anti-estrogen resistance JAK/STAT

cascade
Casein kinase

Myosin

??
docking complex

Matrix
??

NF-kappaB
regulation

Hypoxia inducable
factor

Nuclear hormone
receptors

ATP transporter
proteins

Peroxisomal
proteins

TGF-β

Cell cycle/cytokinesis

Serpins

FIGURE 4.2 (See color insert following page 332.) Protein communities of cancer metastasis. The 
communities were identified by k-clique analysis performed on the predicted genome-wide rat pro-
tein network. The communities are distinguished by different colors and labeled by the overall func-
tion or the dominating protein class. Note that proteins, particularly at community edges, can belong 
to more than two communities. (From Jonsson, P.F. et al. 2006. BMC Bioinformatics 7: 2.)



Understanding Cancer Progression in Protein Interaction Networks    ◾    63

To explore the relationships between network module dynamics and metastasis, Taylor 
et al. examined the co-expression correlation coefficients of hub proteins and their inter-
acting partners in patients who were disease-free after extended follow-up (the samples had 
no metastasis) and in patients who died of disease (the samples had metastasis). They found 
that a substantial number of hubs (256), most of which were intramodular, had signifi-
cantly altered co-expression correlation coefficients between metastatic and non-metastatic 
groups, but the hubs themselves were not significantly up- or downregulated between the 
two groups. For example, BRCA1, a protein that is mutated in a subset of familial breast 
cancers, was a hub in the network. The expression of BRCA1 was strongly correlated with 
the expression of its partners in tumors from non-metastatic patients, but it was not well 
correlated with their expression in tumors from metastatic patients.

These results suggest that gene expression reflects higher-level organization in the network; 
that is, network modules are altered during cancer metastasis. The alteration of gene co-
expression produces changes in network modules, or changes in dynamic network modularity 
indicate that rewiring a network plays an important role in producing phenotypic changes.

Interestingly, further analysis of the two inter- and intra-modular hubs via integrating 
information about cancer driver-mutating genes showed that intermodular hubs were associ-
ated with cancer phenotypes more frequently than intramodular hubs. Taken together, these 
studies suggest that genetic changes in intermodular hubs drive the dynamic gene expres-
sion changes within intramodular hubs, which in turn take part in cancer metastasis.

4.3  A NETWORk-BASED APPROACH FOR 
IDENTIFyING PROGNOSTIC MARkERS

Early detection of various types of cancer is an important goal for clinicians and laboratory 
scientists. Prognostic biomarkers may help predict whether someone’s cancer will come 
back after surgical removal. So far, several predictors, such as the intrinsic-subtype classi-
fier (Hu et al. 2006; Perou et al. 2000; Sorlie et al. 2001), 70-gene signature, wound-response 
gene-expression signature (van ‘t Veer et al. 2002; van de Vijver et al. 2002), and ratio of the 
expression levels of two genes (Ma et al. 2004), largely based on an unsupervised analysis 
of breast-tumor gene-expression profiles (Paik et al. 2004), have been developed for breast 
cancer. However, these predictors cannot be used in other patient cohorts. Therefore, these 
reportedly predictive gene signatures lack reliability and robustness for cancer prognosis.

Factors such as tumor heterogeneity, limitations of microarray platforms, statistical 
methods used for marker discovery, and data overfitting (i.e., using a small number of 
samples to identify genes associated with patient survival from thousands of genes that 
display altered expression) have been identified as challenges to discovering robust bio-
markers. However, statistical analysis of tumor microarray datasets suggests that the 
microarray platforms or the data analysis methods are not critical in marker discovery 
(Ein-Dor, Zuk, and Domany 2006). Our recent reanalysis of breast tumor microarray data-
sets by resampling tissues and genes suggests that data overfitting and tumor heterogeneity 
are the dominant barriers to marker discovery (Wang et al. 2009).
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In fact, as mentioned above, too many “passenger gene expression signals” are buried 
in tumor gene expression data. Normally, identification of cancer biomarkers involves 
searching for differentially expressed genes and applying clustering methods in which a 
subset of genes can discriminate between different cancer diagnoses. However, these tools 
cannot remove the passenger gene expression signals, which definitely crush the reliability 
and robustness of markers. As proposed above, networks could help in filtering out gene 
expression noise. Therefore, it is reasonable to integrate protein interaction networks with 
tumor microarray data to identify prognostic biomarkers.

Recently, Ideker and colleagues improved the prognostic predictive performance of 
gene expression signatures by analyzing tumor microarray data that incorporated pro-
tein interaction data (Chuang et al. 2007). They mapped microarray data of breast tumor 
samples onto the human protein interaction network and identified subnetworks in which 
the expression patterns of the genes are coherent. They then searched each subnetwork for 
gene expression patterns that were able to distinguish whether a patient developed distant 
metastasis. The identified subnetwork components (proteins) are now used as prognos-
tic markers for cancer metastasis and are more reproducible and accurate in classifying 
tumors as either metastatic or nonmetastatic.

Similarly, based on their analysis of tumor gene co-expression patterns in the human 
protein interaction network, Taylor et al. (2009) showed which genes had network neigh-
bors that become dysregulated, and they therefore sought network signatures as prognostic 
markers. Toward this end, they computed the relative expression levels of hubs with each 
of their interacting partners, determined for which hubs the levels changed significantly 
between metastatic versus nonmetastatic patients, and then employed a clustering method. 
The accuracy of the resulting network signature has been improved.

These two examples support our notion that networks can help in filtering out gene 
expression noise, and biomarkers might be improved by overlaying tumor microarray data 
onto networks. Furthermore, the resulting network signatures also provide insights into 
the molecular mechanisms underlying metastasis.

Although both studies have improved the accuracy of network markers, the robustness 
of the markers has still not been tested extensively. For example, both studies only tested 
the markers in one independent dataset, although several public breast cancer datasets are 
available. It would be interesting to know how these network markers perform in other 
breast cancer datasets.

In addition, while both studies are more mechanism-based (network-based), breast can-
cer has distinct subtypes, ER+ and ER- (Sotiriou and Pusztai 2009), which have distinct 
molecular mechanisms. Recently we developed an algorithm using breast cancer microar-
ray data and functional modules defined by Gene Ontology (Wang et al. 2009). Among 
the markers identified by applying the algorithm, there is a cell death-related gene signa-
ture (each containing 30 genes) for both ER+ and ER- patients, but no genes overlapping 
between the two signatures. These results suggest that ER+ and ER- cancers indeed have 
different molecular mechanisms. Along these lines, it is necessary to consider applying 
data from cancer subtypes to biological networks to identify subtype-specific markers, 
which might improve the performance of markers.
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4.4  CONCLUSIONS
It is becoming increasingly clear that genes and their products do not function in isolation; 
they interact to form complex cellular networks. Deciphering how these networks operate 
and are rewired in order to achieve a deeper understanding of cancer molecular mecha-
nisms requires integrative analysis of cellular networks and many types of -omic datasets 
from cancer studies. We have presented a series of examples of such studies and shown 
the power of network analysis and modeling to generate hypotheses for understanding the 
molecular mechanisms of cancer initiation, progression, and metastasis.

A global picture of a cancer protein network is emerging (Figure 4.3): (1) there are many 
small network modules containing intramodular hubs, and these modules are connected 
by intermodular hubs; (2) cancer driving-mutating genes are dominantly enriched in 
intermodular hubs; (3) their expression levels are not significantly changed between meta-
static and nonmetastatic tumors; and (4) the co-expression relationships between intra-
modular hubs and their interacting partners are significantly changed between metastatic 

FIGURE 4.3 (See color insert following page 332.) A global picture of the cancer protein network 
encodes the driver-mutating information, network rewiring, and module dynamics. The cancer 
protein network architecture contains many small network modules containing intramodular hubs 
which are connected by intermodular hubs in which cancer driver-mutating genes are dominantly 
enriched. The expression levels of the intramodular and intermodular hub genes are not signifi-
cantly changed between metastatic and nonmetastatic tumors; however, the coexpressions between 
intramodular hubs and their interacting partners are significantly changed between metastatic 
and nonmetastatic tumors. Nodes represent proteins while links represent physical interactions. 
Red, orange, and blue nodes represent intermodular and intramodular hubs, and nonhub nodes, 
respectively. Square nodes represent cancer driver-mutating genes while black links represent the 
co-expression changes between the two linked genes.
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and nonmetastatic tumors, suggesting that network rewiring and module dynamics play 
important roles during metastasis.

Future studies in this direction rely on (1) a comprehensive catalog of reliable and 
high-quality protein interactions in the human genome collected by high-throughput 
approaches; (2) a more detailed understanding of cancer biology that acknowledges 
that cancer has subtypes with distinct molecular mechanisms (Sorlie 2009, Sotiriou and 
Pusztai 2009); (3) identification of key network modules, which orchestrate the funda-
mental processes of cancer, and understanding the dynamics of these modules using 
time-series data from mouse models of cancer initiation, progression, and metastasis; and 
(4) exploration of higher-order relationships in networks, such as modularity (Guimera, 
Sales-Pardo, and Amaral 2007), hierarchy (Clauset, Moore, and Newman 2008), and 
others. For example, a network can be seen as a hierarchical organization, where nodes 
cluster together to form modules, which themselves cluster into larger modules. This 
arrangement is similar to the organization of scientists (a professor, postdocs, and gradu-
ate students) into teams, teams into scientific departments, and departments into uni-
versities. Newman and colleagues proposed a direct but flexible model of hierarchical 
structure from which they could predict which interactions might have been missed 
(Clauset, Moore, and Newman 2008).
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5.1  CANCER GENOME SEqUENCING
In recent years, the cost of genome sequencing technology has dropped rapidly, owing to 
the continual development of newer, faster, and cheaper DNA sequencing technologies. It is 
believed that within a few years, the cost of sequencing a human genome will fall to $1,000. 
Eventually, genome sequencing technology may allow doctors to decode the entire genetic 
code of any patient disease samples in a clinical setting. In this situation, it would be possible 
for governments to include the genome sequences of all individuals in healthcare systems.

At the root of all forms of cancer are genetic and epigenetic alterations, which are either 
inherited or acquired (i.e., mutated or methylated) during our lives. Somatic mutations are 
the major cause of cancer initiation, progression, and metastasis. Cancer genomes carry 
two classes of mutations: driver mutations, which are positively selected because they are 
essential for tumor growth and development, and passenger mutations, which are not sub-
ject to selection because they do not confer a growth advantage. Positive selection indica-
tive of driver mutations is evidenced by a higher ratio, compared with that determined 
by chance, of amino acid-changing nonsynonymous mutations to synonymous mutations 
that do not involve amino acid changes.

Advances in the genetic understanding of many forms of cancer have been made during 
the past decades. However, we are no closer to uncovering the molecular underpinnings 
of the disease. If we could catalog cancer driver-mutating genes, we would be able to link 
these genes to biological pathways, biological processes, and cellular networks.

5.1.1  Sequencing All Coding Genes in a Limited Number of Tumor Samples

Genome sequencing technology makes it possible to search for cancer driver-mutating 
genes on a genome-wide scale. Furthermore, profiling cancer driver mutations could 
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provide a molecular portrait of each individual tumor sample. Such a molecular portrait 
could help clinicians to improve their diagnosis and offer the most suitable therapy to 
each patient. In 2006, a team of researchers obtained a molecular portrait of individual 
tumors by completing an unbiased, large-scale sequencing study of protein-coding genes 
in tumors caused by breast and colorectal cancer (Sjoblom et al. 2006). The study found a 
surprising number of mutated genes, many of which have not been previously implicated 
in tumorigenesis. On average, each tumor had at least 14 to 15 protein-altering cancer 
driver-mutating genes.

The same team extended the genome sequencing to all of the genes in the Reference 
Sequence database in 11 breast and 11 colorectal tumor samples (Wood et al. 2007). They 
conducted a comprehensive assessment of the genomic landscapes of human breast and col-
orectal cancer. From this study, a global picture of the genomic landscape of cancer emerged. 
Only a few genes (i.e., P53) are repeatedly mutated in many tumors, and most of the cancer 
genes are mutated at relatively low frequencies, that is, in fewer than 5% of tumors.

These studies demonstrate that many of the cancer genes are important in a relatively 
small proportion of tumors. The studies suggest that low-frequency gene mutations are 
more relevant to directing tumorigenesis and survival than previously defined high-
frequency gene mutations. The research confirms the notion that cancer is caused by an 
accumulation of mutations. Further analyses of these mutating genes provide additional 
evidence that pathways, especially signaling pathways, rather than individual genes, gov-
ern the course of tumorigenesis.

For each individual tumor, these studies demonstrated that different tumors have differ-
ent profiles of gene mutations (i.e., different sets of mutated genes) or a unique signature of 
gene mutations. This observation raises interesting possibilities for developing biomarkers 
and novel, personalized treatment strategies.

Similar results related to genome-wide mutations in cancer have been obtained using the 
transposon-mediated forward genetic screen for colon cancer in mice (Starr et al. 2009). 
The screening method is adopted from the Sleeping Beauty transposon-based insertional 
mutagenesis system. Sleeping Beauty is able to insert itself into or near genes to either 
activate or deactivate a gene’s normal function. Compared to other methods, this method 
is faster, more accurate, and more efficient for identifying groups of genes associated with 
specific cancers. It also provides information about the specific combinatory patterns of 
gene mutations in each individual tumor sample. By comparing the identified mutated 
genes with the genes from the genome sequencing approach mentioned above, the authors 
concluded that there is significant overlap between the mouse candidate genes and human 
genes that are altered in colon cancer. These results confirm that tumor genome sequenc-
ing is a powerful approach for identifying cancer driver-mutating genes.

5.1.2  Sequencing of Selected Genes in a Large Number of Tumor Samples

Large-scale sequencing of preselected genes, that is, known cancer genes, in a large popula-
tion represents another approach to sequencing tumor genes. For example, 1000 samples 
derived from 17 different tumor types have been analyzed for mutations of 17 well-known 
oncogenes (Greenman et al. 2007; Thomas et al. 2007). They surveyed the number and 
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pattern of somatic mutations in coding regions of 518 kinase genes, which are among the 
most commonly mutated genes in cancer, in 210 tumor samples of different origins. These 
studies showed that mutational signatures of tumors are affected by tissue origin, DNA-
repair ability, and the chance of exposure to carcinogens. Lung cancer, for instance, has 
more mutations due to the direct exposure of lung cells to air.

5.1.3  Complete DNA Sequencing of a Human Cancer Genome

In the November 6 issue (2008) of the journal Nature, a report detailed the first sequencing 
of the entire genome of a patient with acute myeloid leukemia (AML), a woman in her 50s 
who died of the disease (Gridley 2003). The study identified cancer-related mutations spe-
cific to her cancer. The DNA for the reference genome was taken from a skin sample of the 
patient. The tumor and the reference samples were obtained before the patient received can-
cer treatment. By doing so, the mutations induced by anticancer agents could be avoided.

This study was the first to conduct a full genome comparison between normal cells 
and tumor cells from the same patient. Single base changes in the patient’s tumor 
genome compared with her normal genome were scanned. Almost 98% of the nucle-
otide variants in the patient’s tumor genome were identical to those from the patient’s 
skin sample. Ten mutations (including the two previously known genetic mutations 
that are common to AML) were identified. Among the eight novel mutations, three 
were in genes that normally act to suppress tumor growth, for example, a mutation 
in the PTPRT tyrosine phosphatase gene, which is frequently altered in colon cancer. 
Four other mutated genes were involved in molecular pathways that promote cancer 
growth. In the near future, the study’s authors may release more results on the muta-
tions of noncoding DNA regions, which would be the major contribution of the project. 
One of the advantages of the full genome sequencing of tumor samples is that it pro-
vides the mutation information for noncoding DNAs, which has not yet been explored 
in tumor genomes.

Tumor samples from 187 additional AML patients were scanned for the eight novel muta-
tions, but none of them were found. This result confirmed the conclusion of other tumor 
genome-sequencing studies: there is a tremendous amount of genetic diversity in cancer, 
even in one type or subtype of cancer. The unique nature of the mutation profiles for this 
patient strongly indicates the huge genetic complexity and diversity of cancer genomes.

It is likely that a full genome-sequencing approach will be applied to more samples and 
extended to other cancer types with the advance of the next generation of genome sequenc-
ing technology.

5.1.4  Genome Sequencing of Tumors in Different Developmental Stages

The tremendous amount of genetic diversity in cancer suggests that there are many ways 
to mutate a small number of genes to get the same result. Furthermore, it suggests that 
the mutations may occur sequentially. The first mutation gives the cell a slight tendency 
toward cancer, and subsequent mutations compound this tendency. The last mutation in a 
malignant tumor might represent a turning point at which the cancer cells become more 
dangerous and aggressive.
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One example of such a metastatic mutation is a constitutive activating mutation in the 
1 integrin subunit (T188I 1) associated with human squamous cell carcinoma. Transgenic 
cells with the T188I 1 mutation showed increased cell spreading; however, this did not affect 
epidermal proliferation, epidermal organization, or stem cell number. Further analysis sug-
gests that integrin mutations may play a part in cancer malignancy (Ferreira et al. 2009).

Cooperation of oncogenic mutations leads to synergistic changes in downstream signal-
ing pathways. Furthermore, a significant number of such synergistic changes are crucial 
for tumorigenesis (McMurray et al. 2008). These synergistic changes in gene expression 
profiles could be used as a metric to efficiently identify key players that function down-
stream of oncogenic mutations and might be viable therapeutic anticancer targets.

It is critical to pinpoint the driver mutations in different developmental stages of tumors 
so that malignant mutation and the cooperation between mutations can be identified. 
However, current efforts of tumor genome sequencing cannot distinguish the driver muta-
tions for cancer initiation, progression, or metastasis. In the future, it will be possible to 
explore the sequencing efforts for different developmental stages of tumors and catalog the 
mutations in these stages. These efforts will help sort out the relationships between driving 
mutations and their contribution to tumorigenesis.

It is also important to follow the patients whose tumors are sequenced to gather clinical 
data such as survival rates, tumor recurrence, and drug responses. Such clinical informa-
tion will help link certain mutations for the identification of gene markers and illustrate 
the molecular mechanisms associated with prognosis, diagnosis, and drug response.

5.2  FROM A CANCER GENOME SEqUENCING APPROACH TO A 
SySTEMATIC MULTIDIMENSIONAL GENOMIC APPROACH

The participants in the Cancer Genome Atlas (TCGA) project, which aims to discover 
and catalog major cancer-causing genomic alterations by assessing multiple human tumor 
samples, have proposed an integrated and multidimensional genomic approach to cancer 
genomic study. TCGA has a long-term goal of systematically exploring the universe of 
genomic changes involved in all types of human cancer and demonstrating the values of 
such efforts in advancing cancer research and improving patient care.

Recently, TCGA reported a comprehensive study of 206 samples of primary glioblastoma, 
including analysis of DNA methylation status and copy number aberrations, as well as cod-
ing and noncoding RNA expression and the sequencing of 601 preselected cancer genes 
(TCGA 2008). This is the first summary of data from the $100 million TCGA pilot project.

TCGA researchers also searched for mutations of 623 known cancer genes in 188 
lung adenocarcinoma patients by sequencing DNA from tumor samples and match-
ing noncancerous tissue from the patients (Ding et al. 2008). They identified 26 driver 
mutating genes. Most of these genes had not previously been associated with lung adeno-
carcinoma. Most interestingly, the authors found that the number of genetic mutations 
detected in tumor samples from smokers was significantly higher than that in tumors 
from people who had never smoked. Tumors from smokers contained as many as 49 
mutations, whereas none of the tumors from people who had never smoked had more 
than five mutations.
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A similar analysis has been applied to 22 human glioblastoma samples and 24 advanced 
pancreatic adenocarcinoma samples. For these samples, 20,661 protein-coding genes have 
been sequenced. Furthermore, genomic changes such as DNA methylation as well as gene 
expression changes have been analyzed. The genetic mutations in different cellular path-
ways have been mapped. For example, 12 core signaling pathways and processes have been 
linked to pancreatic cancer. The studies suggest that drugs that target a pathway rather 
than a gene are most likely to be more effective for the treatment of cancer (Parsons et al. 
2008).

All of these studies provide a comprehensive view of the complicated genomic land-
scape of cancer. Additionally, they clearly confirm that unbiased systematic and integrative 
approaches can lead to a more comprehensive understanding of the changes that occur 
during tumor development and treatment. These studies also illustrate how an unbiased 
and systematic cancer genome approach can lead to paradigm-shifting discoveries. For 
example, this research could reveal an important link between a methylation change in the 
glioblastoma cells and the drugs that should be used for treatment. Tumors containing the 
methylated MGMT gene are more susceptible to the cancer drug temozolomide.

5.3  DATA INTERPRETATION BECOMES INCREASINGLy CHALLENGING
All of the studies mentioned above point to an unexpected conclusion: tumor genomes are 
extremely complex in terms of the genetic alterations that drive tumorigenesis. There is a 
lot of diversity and little overlap in the different types of mutated genes. This diversity is 
seen among different types and subtypes of tumors and even between tumors that origi-
nate from the same tissue. The discoveries in these studies are only the tip of the iceberg. 
With the rapid development of high-throughput sequencing platforms, as well as other 
large data generation systems, we expect that more and more complex datasets for tracking 
all genetic/epigenetic and gene/noncoding-RNA expressional changes occurring within 
tumors, and even within a specific type of tumor, will be generated.

Future studies will eventually help to untangle the biological roots of cancer by applying 
advanced genomic tools to the complexities of cancer. If so, this information will acceler-
ate efforts by the worldwide scientific community to improve outcomes for cancer patients. 
For example, it may help guide the design of new drugs and other cancer therapies. It may 
also lead to an individualized approach to cancer treatment that maximizes efficacy by 
tailoring the course of therapy for each patient. However, the current challenge is to inte-
grate and interpret these datasets in a way that provides insight into the molecular basis 
of cancer.

Several of the cancer genome studies mentioned above tried to map genetic mutations 
onto signaling pathways. However, there are several limitations to such an approach. First, 
only a fraction of the mutated genes can be mapped onto the pathways. In this context, it is 
hard to say whether the “core pathways” identified using this approach are representative. 
Most importantly, the mutated genes derived from each study are far from comprehensive. 
Typically, only a couple of tumor samples were used to sequence all the coding genes, and 
such analyses reveal only a fraction of the mutating genes. In contrast, some studies used 
several hundred tumor samples, but only sequenced a limited number of genes (500 to 600). 
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These analyses cannot catalog a comprehensive list of mutated genes. Therefore, it leads to 
the question whether the so-called “core pathways” are representative.

To test whether we could obtain a set of “core pathways” of cancer signaling, we tried 
to map signaling pathways using a more comprehensive cancer mutated gene list from the 
COSMIC database, which collects data about the cancer driver-mutating genes from the lit-
erature and genome sequencing efforts. From this analysis, we found that most of the signal-
ing pathways can be mapped, even for the mutation genes coming from one type of cancer. 
These results suggest that the so-called “core pathways” become less defined when we have 
data compiled for more cancer driver-mutating genes. The final limitation is the unclear defi-
nition of signaling pathways. For example, the boundaries of individual signaling pathways 
differ from one database to another.

The cancer genome studies reveal that “real signals” or biological insights, molecular 
mechanisms, and biological principles are concealed by the abundance of extremely com-
plex data. These studies underscore the notion that in the “new biology” era, the bottleneck 
is no longer a lack of data but the lack of ingenuity and the computational means to extract 
biological insights and principles by integrating knowledge and high-throughput data.

5.4  THE SIGNALING NETWORk, AN EFFECTIVE FRAMEWORk 
FOR MODELING COMPLEx CANCER DATA

5.4.1  Biology Is a Science of Relationships

To develop effective computational tools, we must first understand what biology is. Biology 
deals with many kinds of relationships among genes, proteins, RNAs, cells, tissues, organs, 
and environmental factors. For example, biological relationships include those encompass-
ing gene regulation, protein interaction, activation, genetic interaction, inhibitory action, 
and so on. Biology is a science of relationships. Traditionally, biologists describe the rela-
tionships between a limited number of genes or proteins.

As shown in the cancer genome literature, high-throughput techniques have become 
more affordable and accessible, a driving force in modern biology. As a result of the huge 
amount of data produced by high-throughput techniques, biologists have to account for 
thousands of biological relationships in a single experiment. In this situation, the tra-
ditional ways of describing biological relationships are not sufficient. The only way to 
analyze a large number of relationships is through mathematical representation and 
computation.

One of the most important models used to describe biological relationships is a pathway 
in which a linear relationship between genes or proteins is established. From an abstract 
point of view, a pathway is a model that represents the efforts of human beings to explore, 
describe, and organize the biological relationships in cells. Such an effort is important 
because it allows us to further understand biological systems and predict cell behaviors. 
However, such goals have not been attained because of the crosstalk between pathways, 
which has been documented extensively in recent years. In this context, the network 
model, in which the interactions and relationships between genes or proteins are described 
in a nonlinear manner, has been proposed. It is important to note that both pathways and 
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networks are conceptual models. We are making projections of living cell molecules onto 
conceptual frameworks. Thus, we can study the models, which more closely mimic cellular 
reality.

5.4.2  Cancer and Cell Signaling

Cells use sophisticated communication between proteins to initiate and maintain basic 
functions such as growth, survival, proliferation, and development. Traditionally, cell 
signaling is described via linear diagrams and signaling pathways. As more crosstalk 
between signaling pathways has been identified (Natarajan et al. 2006), a network view of 
cell signaling has emerged: the signaling proteins rarely operate in isolation through linear 
pathways, but rather through a large and complex network. Because cell signaling plays 
a crucial role in cell responses like growth and survival, alterations of cellular signaling 
events, like those caused by mutations, can result in tumor development. Indeed, cancer is 
largely a genetic disease that is caused by the acquisition of genomic alterations in somatic 
cells. Alterations to the genes that encode key signaling proteins, such as RAS and PI3K, 
are commonly observed in many types of cancers. During tumor progression, it has been 
proposed that a malignant tumor arises from a single cell, which undergoes a series of 
evolutionary processes of genetic or epigenetic changes and selections. Thus, the cell can 
acquire additional selective advantages for cellular growth or survival within the popula-
tion, resulting in progressive clonal expansion (Nowell 1976).

Genetic mutations of the signaling proteins may over-activate key cell-signaling proper-
ties such as cell proliferation or survival, giving rise to a cell with selective advantages for 
uncontrolled growth and the promotion of tumor progression. In addition, mutations may 
also inhibit the function of tumor suppressor proteins, resulting in a relief from the nor-
mal constraints on growth. Furthermore, epigenetic alterations by promoter methylation, 
resulting in transcriptional repression of genes that control tumor malignancy, is another 
important mechanism for the loss of gene function that can provide a selective advantage 
to tumor cells.

The cancer phenotype is the result of the collaboration between a group of genes. This 
notion provides a structured network knowledge-based approach to analyzing genome-
wide data in the context of known functional interrelationships among genes, proteins, 
and phenotypes. Many lines of evidence suggest that biological relationships and complex-
ity are encoded in cellular networks (Cui et al. 2007a). Therefore, a network or systems-
level view of cellular events emerges as an important concept.

Signaling networks contain the most complicated relationships between proteins. For 
example, nodes can represent different functional proteins such as kinases, growth fac-
tors, ligands, receptors, adaptors, scaffolds, transcription factors, and so on, which all have 
different biochemical functions and are involved in many different types of biochemical 
reactions that characterize specific signal transduction machinery (Cui et al. 2007b). In 
signaling networks, hub proteins are the proteins most commonly used by multiple sig-
naling pathways. They become the information exchange and processing centers of the 
network (Cui et al. 2007a). Signaling network motifs are the smallest functional modules in 
signal processing, amplification, and noise buffering in cell signaling (Cui et al. 2007a).
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5.5  CANCER SIGNALING MAPS DERIVED FROM COMPLEx CANCER DATA

5.5.1  Addressing questions about Cancer Signaling Networks

Enormous efforts have been made over the past few decades to identify mutated genes 
that are causally implicated in human cancer. A genome-wide or large-scale sequencing 
of tumor samples across many kinds of cancers represents a largely unbiased overview of 
the spectrum of mutations in human cancers (see sections above). Similarly, genome-wide 
identification of epigenetic changes in cancer cells has recently been conducted (Ohm et al. 
2007; Schlesinger et al. 2007; Widschwendter et al. 2007). These studies showed that a sub-
stantial fraction of the cancer-associated mutated and methylated genes are involved in cell 
signaling. This information is consistent with the previous finding that the protein kinase 
domain is most commonly encoded by cancer genes.

Although there is a wealth of knowledge about molecular signaling in cancer, the com-
plexity of human cancer genomes prevents us from gaining an overall picture of the mech-
anisms by which these genetic and epigenetic events affect cancer cell signaling and tumor 
progression. Where are the oncogenic stimuli embedded in the network architecture? What 
are the principles by which genetic and epigenetic alterations trigger oncogenic signaling 
events? Because so many genes possess genetic and epigenetic aberrations in cancer signal-
ing, what is the architecture of cancer signaling? Do any tumor-driven signaling events 
represent “oncogenic dependence,” the phenomenon by which certain cancer cells become 
dependent on certain signaling cascades for growth or survival? What are the central play-
ers in oncogenic signaling? Are there any signaling partnerships that are generally used to 
generate tumor phenotypes? To answer these questions, we conducted a comprehensive 
analysis of cancer mutated and methylated genes in a human signaling network, focusing 
on network structural aspects and quantitative analysis of gene mutations in the network.

5.5.2  Where Are the Oncogenic Stimuli Embedded in the Network Architecture?

The architecture and relationships among the proteins of a signaling network play a sig-
nificant role in determining the sites at which oncogenic stimuli occur and through which 
oncogenic stimuli are transduced. Integration of the data about mutated and methylated 
cancer genes into the network could help identify critical sites involved in tumorigenesis 
and increase our understanding of the underlying mechanisms in cancer signaling.

Extensive signaling studies during recent decades have yielded an enormous amount 
of information regarding the regulation of signaling proteins for more than 200 signaling 
pathways, most of which have been assembled and collected in diagrams in public data-
bases. We manually curated the data on signaling proteins and their relationships (activa-
tion, inhibitory, and physical interactions) from the BioCarta database and the Cancer 
Cell Map database. We merged the curated data with another literature-mined signaling 
network that contains ~500 proteins (Ma’ayan et al. 2005). As a result, we have created a 
human signaling network containing 1634 nodes and 5089 links. We also collected the 
cancer driver-mutating genes from both the literature and the large-scale sequencing of 
tumor samples. Additionally, we isolated the cancer-methylated genes from the genome-
wide identification of the DNA methylated genes in cancer stem cells. Finally, 227 cancer 
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mutated genes and 93 DNA methylated genes were mapped onto the network. Among the 
227 cancer mutated genes, 218 (96%) and 55 (24%) genes were derived from the large-scale 
gene sequencing of tumors and the literature curation, respectively.

5.5.2.1   Cancer Mutated Genes Are Enriched in Signaling Hubs but Not in Neutral Hubs
Genes that result in tumorigenesis when mutated or silenced often lead to the aberrant 
activation of certain downstream signaling nodes, resulting in dysregulated growth, 
survival, and/or differentiation. The architecture of a signaling network plays an impor-
tant role in determining the site at which a genetic defect is involved in cancer. To dis-
cover where the critical tumor signaling stimuli occur in the network, we explored the 
network characteristics of the mutated and methylated genes. The signaling network 
is presented as a graph in which nodes represent proteins. Directed links are opera-
tionally defined to represent effector actions such as activation or inhibition, whereas 
undirected links represent physical protein interactions that are not characterized as 
either activating or inhibitory. For example, scaffold proteins do not directly activate 
or inhibit other proteins, but provide regional organization for activation or inhibition 
through protein-protein interactions. In this case, undirected links are used to repre-
sent the interactions between scaffold and other proteins. On the other hand, adaptor 
proteins are able to activate or inhibit other proteins through direct interactions. In this 
situation, directed links are used to represent these relationships. There are two kinds 
of directed links, incoming and outgoing. An incoming link represents a signal from 
another node, and the sum of the incoming links of a node is called the indegree of that 
node. An outgoing link represents a signal to another node; the sum of the outgoing 
links of a node is called the outdegree of that node. We refer to incoming and outgoing 
links as signal links, whereas the physical links are neutral links. We initially examined 
the characteristics of the nodes that represent mutated genes on the network. We com-
pared the average indegree of the mutated genes to that of the nodes in the network as 
a whole. We found that the average indegree and outdegree of the mutated nodes are 
significantly higher than the indegree and outdegree of the network nodes. In contrast, 
there is no difference in the average neutral degrees between the mutated nodes and 
other nodes in the network.

These results suggest that cancer mutations most likely occur in signaling proteins that 
act as signaling hubs (i.e., RAS), actively sending or receiving signals, rather than in nodes 
involved in passive physical interactions with other proteins. Because these hubs are focal 
nodes that are shared by and important to many signaling pathways, alterations of these 
nodes or signaling hubs may affect more signaling events, resulting in cancer or other 
diseases. In previous studies, we found that genes associated with cancer are enriched in 
hubs (Cui et al. 2007a). However, these results indicate that genes associated with cancer 
are enriched in signaling hubs but not neutral hubs.

Methylated gene nodes do not appear to differ significantly from the network nodes 
with regard to their indegree, outdegree, and neutral degree. These results suggest that 
cancer mutated genes and methylation-silenced genes have different regulatory mecha-
nisms in oncogenic signaling.
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5.5.2.2   The Output Layer of the Network Is Enriched with Mutating Genes
We hypothesized that the downstream genes of the network, especially the genes of the 
output layer of the network, would have a higher mutation frequency. To test this pos-
sibility, we compared the average gene mutation frequency of the nuclear proteins, which 
represent the members of the output layer of the network, with that of the other network 
genes. Indeed, the nuclear genes have a higher mutation frequency than others, which cor-
relates with our previous finding that cancer-associated genes are enriched in nuclear pro-
teins (Cui et al. 2007a). In contrast, the distributions of the methylated genes have no such 
preference, suggesting that DNA methylation does not tend to directly affect the output 
layer of the network. These results strongly suggest that the genes in the output layer of the 
network, which play direct and important roles in determining phenotypic outputs, are 
frequent targets for activating mutations. The importance of this output layer is reinforced 
by our previous observation that the expression of the output layer genes of the signaling 
network is heavily regulated by microRNAs (Cui et al. 2006) and is evolutionarily con-
served (Cui et al. 2009).

5.5.3  What Are the Principles by Which Genetic and Epigenetic 
Alterations Trigger Oncogenic Signaling Events?

The complex architecture of signaling networks can be seen as consisting of interacting 
network motifs, which are statistically overrepresented subgraphs that recur in networks. 
A signaling network motif, also known as a regulatory loop, is a group of interacting pro-
teins capable of signal processing. The proteins are characterized by specific regulatory 
properties and mechanisms (Babu et al. 2004; Wang and Purisima 2005). The structure 
and intrinsic properties of the frequently recurring network regulatory motifs provide a 
functional view of the organization of signaling networks. Thus, the study of the distribu-
tions of the mutated and methylated genes in the network motifs will provide insight into 
mechanisms that regulate cancer signaling.

5.5.3.1   Mutated and Methylated Genes Are Enriched in Positive 
and Negative Regulatory Loops, Respectively

We examined the mutated genes in all of the 3-node size network motifs. We classified 
the 3-node size network motifs into 4 subgroups (labeled 0 to 3) based on the number 
of nodes that represent mutated genes. We calculated the ratio (Ra) of positive (activat-
ing) links to the total directed (positive and negative) links in each subgroup and com-
pared it with the average Ra in all of the 3-node size network motifs, which is shown as 
a horizontal line in Figure 5.1a. As the number of mutated nodes rises, the Ra for the 
corresponding group increases to a maximum of ~0.93 (Figure 5.1a). We obtained simi-
lar results when we extended the same analysis to all of the 4-node size network motifs. 
These motifs show a clear positive correlation between the positive link ratio and the 
number of mutated genes in the motifs. These results suggest that cancer gene muta-
tions occur preferentially in positive regulatory motifs. In contrast, all of the 3-node and 
4-node size motifs show an obviously negative correlation between the positive link ratio 
and the number of methylated genes in the motifs (Figure 5.1b). These results suggest that 
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cancer gene methylation preferentially occurs in negative regulatory motifs. A similar 
trend was found among the 15 known tumor suppressors, which supports the notion that 
cancer-associated methylated genes act as tumor suppressors. Collectively, these facts 
suggest that mutated and methylated genes use different regulatory mechanisms in can-
cer signaling and support the notion that gene mutations and methylations are strongly 
selected in tumor samples.

5.5.3.2   Principles by Which Genetic and Epigenetic Alterations 
Trigger Oncogenic Signaling Events

Signaling information is propagated through a series of built-in regulatory motifs that 
contribute to cellular phenotypic functions (Ma’ayan et al. 2005). The transition from 
a normal cellular state into a long-term deregulated state such as cancer is often driven 
by prolonged activation of downstream proteins, which are regulated by upstream pro-
teins or regulatory motifs or circuits. Positive regulatory loops (Ferrell 2002) could 
amplify signals, promote the persistence of signals, serve as sites for information stor-
age, and evoke biological responses to generate phenotypes such as cancer. Cancer cells 
require constitutive activation of oncogenic signaling. The enrichment of gene muta-
tions in positive regulatory loops suggests that the mutants in the motifs must have 
gain of function. Alternatively, compared with wild-type genes, they may increase their 
biochemical activities in order to constitutively activate downstream proteins. Indeed, 
a recent study showed that 14 of the 15 PI3K mutants in tumors have gain of function 
(Gymnopoulos, Elsliger, and Vogt 2007). Gain-of-function mutants in a positive regu-
latory loop amplify weak input stimuli and serve as information storage sites, which 
extend the duration of the activation of the affected downstream proteins. This might 
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FIGURE 5.1 (See color insert following page 332.) Enrichment of mutated and methylation genes in 
network motifs. (a) Relations between the fractions of positive links in all 3-node size network motifs 
and the fractions of mutated genes in these motifs. (b) Relations between the fractions of positive 
links in all 3-node size network motifs and the fractions of methylated genes in these motifs. All 
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positive and negative links in all network motifs. (Adapted from Cui et al. 2007a.)
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allow the downstream signaling cascades to persistently hold and transfer information, 
leading to tumor phenotypes.

Promoter gene methylation is a mechanism known to induce loss of function by inhibit-
ing the expression of genes (Ohm et al. 2007; Widschwendter et al. 2007). Negative regu-
latory loops controlled by tumor suppressor proteins repress positive signals and play an 
important role in maintaining cellular homeostasis and restraining the cellular state tran-
sitions (Ma’ayan et al. 2005). A loss of function of gene methylation in a negative regulatory 
loop could break the negative feedback, thereby releasing the restrained activation signals 
and promoting oncogenic state transitions. Homeostasis relies on the balance between 
positive and negative signals in crucial components of the network. Both the gain-of-func-
tion mutated genes in positive regulatory loops and the loss-of-function methylated genes 
in negative regulatory loops could break this delicate balance, thus promoting state transi-
tions and generating tumor phenotypes. Therefore, both mutated and methylated genes 
and their oncogenic regulatory loops are critical components of the network in which the 
oncogenic stimuli occur.

5.5.4  What Is the Architecture of Cancer Signaling?
5.5.4.1   The Overall Architecture of Cancer Signaling
Within a network, genes whose mutations or epigenetic silencing are crucial triggers for 
oncogenic signaling might link together as network components. Identification of these 
components will help us discover the relationship between and structural organization of 
the oncogenic proteins. To uncover the architecture of cancer signaling and gain insight 
into higher-order regulatory relationships among signaling proteins that govern oncogenic 
signal stimuli, we mapped all of the genetic mutations and epigenetically silenced genes 
onto the network. We found that most of these genes (67%) are linked, forming a giant net-
work component. To build an oncogenic map, we included other mutated and methylated 
genes not present in the composition of the component in the giant network component 
based on node connectivity. The resulting oncogenic signaling map consists of 326 nodes 
and 892 links (Figure 5.2).

The emerging oncogenic signaling map represents a “hot area” where extensive onco-
genic signaling events might occur. As a proof of concept, we found that the MAPK kinase 
and TGF-β pathways, well-known cancer signaling pathways, are embedded in the map. 
For example, 50 of 87 proteins in the MAPK kinase pathway and 22 of 52 proteins in the 
TGF-β pathway, respectively, are included in the map. More importantly, in addition to 
known oncogenic pathways, there are many other novel candidates for cancer signaling 
cascades present in the map. For a particular gene muation in a tumor, one could use this 
map to generate testable hypotheses to discover the underlying oncogenic signaling cas-
cades in that tumor.

As mentioned above, events dependent on oncogenic signaling, which we define as the 
interactions between the cancer mutated or methylated genes, are frequently found in 
tumor samples and represent various oncogenic driving events that could play more critical 
roles in generating tumor phenotypes. To systematically identify such events and discover 
how they are organized in the map, we charted the gene mutation frequency onto the map 
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and highlighted the signaling links between any two genes with high mutation frequencies. 
Most genes have mutation frequencies lower than 2%; however, a handful of genes have 
very high mutation frequencies, such as p53 (41%), PI3K (10%), and RAS (15%). Therefore, a 
gene mutation frequency equal to or greater than 2% was categorized as high. Interestingly, 
nearly 10% of the links in the map are dependent on oncogenic signaling. Certain signaling 
events, such as Pten-PI3K and RAS-PI3K in the map, are well-known oncogenic signaling-
dependent events/cascades that frequently act as triggers for various cancers.

5.5.4.2   Do Any Tumor-Driven Signaling Events Represent “Oncogenic Dependence”?
Oncogenic dependence is the phenomenon by which certain cancer cells become depen-
dent on certain signaling cascades for growth or survival. As shown in Figure 5.2, most 

p53 region Ras region TGFβ region

FIGURE 5.2 (See color insert following page 332.) Human oncogenic signaling map. The human 
cancer signaling map was extracted from the human signaling network, which was mapped with 
cancer mutated and methylated genes. The map shows three “oncogenic dependent regions” (back-
ground in light grey), in which genes of the two regions are also heavily methylated. Nodes represent 
genes, while the links with and without arrows represent signal and physical relations, respectively. 
Nodes in red, purple, brown, cyan, blue, and green represent the genes that are highly mutated 
but not methylated, both highly mutated and methylated, lowly mutated but not methylated, both 
lowly mutated and methylated, methylated but not mutated, and neither mutated nor methylated, 
respectively. (Adapted from Cui et al. 2007a.)
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oncogenic signaling-dependent events are connected, and three major regions that contain 
densely connected oncogenic signaling-dependent events emerge in the map. The first region 
(p53 region) primarily contains tumor suppressors such as p53, Rb, BRCA1, BRCA2, and 
p14 (CDKN2A). The second region, RAS, primarily contains well-known oncogenes such 
as RAS, EGFR, and PI3K. The third region, TGF-β, contains SMAD3, SMAD4, and a few 
other TGF-β signaling proteins. Interestingly, genes in the p53 and TGF-β regions are also 
heavily methylated in cancer stem cells, suggesting that these regions are involved in the 
early stage of oncogenesis. Other methylated genes are intertwined with the mutated genes 
in the map, suggesting that they share some oncogenic signaling cascades and might be 
regulated to cooperate in cancer signaling via gene mutation and/or methylation. Notably, 
it seems that in cancer stem cells, the TGF-β signaling pathway is shut down, supporting 
its known role as a tumor suppressor in the early stages of tumorigenesis (Hanahan and 
Weinberg 2000; Siegel and Massague 2003). These results suggest that the crucial players in 
oncogenic signaling tend to be closely clustered and regionalized. This map uncovers the 
architectural structure of the basic oncogenic signaling process and highlights the signal-
ing events that are involved in the generation of tumor phenotypes.

5.5.5  What Are the Central Players in Oncogenic Signaling?

The oncogenic signaling map can be broken down into several network communities, 
whereby each community contains a set of more closely linked nodes and ties to particular 
biological functions. To find such network communities in the map, we applied an algo-
rithm that detects network communities. As a result, 12 network communities, referred 
to as “oncogenic signaling modules” and ranging in size from 11 to 65 nodes, were found 
in the map. Structurally, the nodes within each module have more links and signaling 
regulatory relationships to each other than to other nodes. The genes in each module share 
similar biological functions like cell proliferation, development, and apoptosis.

5.5.5.1   Genes Are Exclusively Mutated in the Same Cancer Signaling Modules
We investigated whether the genes in each module could operate in a compensatory or con-
certed manner to govern a set of similar functions. We surveyed the gene mutations in tumor 
samples in which at least two genes were screened for mutations. As a result, the co-occur-
rence in tumor samples of 25 mutated gene pairs was found to be statistically significant. 
Importantly, only three collaborative gene pairs came from the same module, whereas other 
collaborative gene pairs came from two different modules. One of the pairs came from Module 
11 (defined as the p53 module), which contains p53, Rb, p14, BRCA1, BRCA2, and several 
other genes involved in the control of DNA damage repair and cell division. Collectively, 
these results suggest that the signaling genes from the same modules are exclusively mutated, 
but most likely work in a complementary way to generate tumor phenotypes.

5.5.5.2   p53-Apotopotic Signaling Module Plays a Central Role in Cancer Signaling
We surveyed the gene mutations in the tumor samples in which at least two gene muta-
tions have been found. In total, 592 tumor samples fit this criterion. Notably, we found 
that at least one gene mutation in the p53 module had occurred in the tumor samples 
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we examined, suggesting that the p53 module is involved in generating tumors for most 
cancers. This result suggests that the p53 module is a central oncogenic signaling player 
and plays an essential role in tumorigenesis. The p53 module is enriched with tumor sup-
pressors and biological processes such as apoptosis and cell cycle. This finding is further 
supported by the following observations:

 1. To become oncogenic, tumor suppressors require loss-of-function mutations, which 
occur more often than gain-of-function mutations (Gymnopoulos, Elsliger, and Vogt 
2007). Indeed, the average gene mutation frequency in the p53 module is higher than 
that of other signaling modules, including the RAS module.

 2. The methylation of genes in the cancer stem cells that result in long-term loss of 
expression represents the early stage of tumorigenesis. In fact, most of the members 
of the p53 module are methylated in cancer stem cells. These facts further support 
the possibility that the p53 module plays an important role in the earlier stages of 
oncogenesis.

 3. Gene methylation or inactivating mutations of the DNA damage checkpoint genes 
like p53 induce genome instability. Consequently, these phenomena increase the 
chances of mutations occurring in other genes, including the genes of other onco-
genic signaling modules that could functionally collaborate with the p53 module 
genes to generate tumor phenotypes.

5.5.5.3   Are There Any Signaling Partnerships That Often Generate Tumor Phenotypes?
We also investigated which oncogenic signaling modules work together to produce a 
tumor phenotype. To address this question, we used the 592 samples mentioned above to 
build a matrix (M) in which samples are rows and the signaling modules are columns. If 
a gene of a particular signaling module (b) is mutated in a tumor sample (s), we set Ms,b 
to 1; otherwise we set Ms,b to 0. A heat map was generated using the matrix (Figure 5.3a). 
As shown in Figure 5.3a, two of the signaling modules have a significantly greater num-
ber of gene mutations, suggesting that genes in these two signaling modules are predomi-
nantly used to generate tumor phenotypes. One oncogenic signaling module (Module 1, 
defined as the RAS module) contains genes like RAS, EGFR, and PI3K, which share similar 
biological functions such as cell proliferation, cell survival, and cell growth. The other 
oncogenic signaling module, the p53 module, shares similar biological functions such as 
cell cycle checkpoint control, apoptosis, and the ability to affect genomic instability. These 
two modules also represent the two oncogenic signaling-dependent regions (p53 and RAS 
regions) in Figure 5.2, respectively.

When a tumor sample has a mutation in a gene from the RAS signaling module, it is 
also more likely to contain a mutation in a gene from the p53 module (P < 2 × 10−4). To 
find out whether this phenomenon is primarily a result of the actions of a particular pair 
of genes, we calculated the likelihood of co-occurrence for each pair of the genes, in which 
one gene is mutated in one module and the other gene is mutated in the other module. 
We found that the P values for gene pairs always indicate greater significance compared 
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with the pair of modules RAS and p53. For example, the P value of co-occurrence of RAS 
(in module RAS) and p53 (in module p53) mutations is 0.01, which is greater than that of 
the two modules (P < 2 × 10−4). This indicates that these two oncogenic signaling modules 
collaborate to generate tumor phenotypes for most tumors. Experimental examples have 
shown similar gene collaboration in tumorigenesis: the activation of RAS (RAS module) 
and inactivation of p53 (p53 module) induce lung tumors (Meuwissen and Berns 2005), 
whereas the activation of RAS (RAS module) and inactivation of p16 (p53 module) induce 
pancreatic tumors (Obata et al. 1998). Generally, tumor cells exhibit either elevated cell 
proliferation or reduced differentiation or apoptosis when compared with normal cells. 
The oncogenic modules we have identified, especially the RAS and p53 modules, encode 
functions that are tumor related, such as cell cycle control, cell proliferation, and apoptosis. 
The activation of genes in the RAS module promotes cell proliferation, whereas the inac-
tivation of genes in the p53 module prevents apoptosis. Thus, a functional collaboration 
between the genes in these two modules would promote synergistic cancer signaling and 
foster tumorigenesis.
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FIGURE 5.3 (See color insert following page 332.) Heatmaps of the gene mutation distributions 
in oncogenic signaling blocks. Twelve topological regions or oncogenic signaling blocks have been 
identified based on the gene connectivity of the human oncogenic signaling map. A heatmap was 
generated from a matrix, which was built by querying the oncogenic signaling blocks using tumor 
samples, in which each sample has at least two mutated genes. If a gene of a particular signaling 
block (b) gets mutated in a tumor sample (s), we set Ms,b to 1; otherwise we set Ms,b to 0. (a) A heat-
map generated using the gene mutation data of the 592 tumor samples. (b) A heatmap generated 
using the gene mutation data of the NCI-60 cancer cell lines. (c) and (d) Heatmaps generated using 
the output from the genome-wide sequencing of breast and colon tumor samples, respectively. 
Rows represent samples, while columns represent oncogenic signaling blocks. Blocks with gene 
mutations are marked in red. (Adapted from Cui et al. 2007a.)
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Using the map as a framework, we benchmarked the mutated genes in the NCI-60 cell 
lines that represent a panel of well-characterized cancer cell lines and various cancer types. 
A systematic mutation analysis of 24 known cancer genes showed that most NCI-60 cell 
lines have at least two mutations among the cancer genes examined (Ikediobi et al. 2006). 
We built a matrix and constructed a heat map using these cell lines and their mutated 
genes, as described above (Figure 5.3b). Overall, the pattern obtained from the NCI-60 
panel resembles that of the 592-tumor panel, with both the RAS and the p53 modules 
enriched with gene mutations and exhibiting statistically significant collaborations in 
these cell lines. These data are consistent with the earlier observations.

We also benchmarked the mutated genes derived from a genome-wide sequencing of 
22 tumor samples (Sjoblom et al. 2006). Among these 22 samples, 10 breast and 10 colon 
tumor samples had at least two gene mutations in the map. As shown in Figure 5.3c-d, the 
p53 module is enriched with gene mutations. The 10 colon tumor samples reveal collabora-
tion between Module 6 and Module p53. The 10 breast tumors establish collaborative pat-
terns between multiple modules.

5.5.5.4   The Common Module Collaborates with Tumor Type-Specific Signaling Modules
To further examine the collaborative patterns of modules in individual tumor types at 
higher resolutions (Figure 5.3a), we extracted the sub-heat map from the heat map for sev-
eral of the tumor types that occur more frequently within the group of 592 tumor samples 
(Figure 5.4). As shown in Figure 5.4, signaling module collaborative patterns are tissue 
dependent. The mutations of the genes in the common module (p53) are frequently accom-
panied by mutations in one or two other signaling modules. Different tumor types appear 
to achieve tumorigenesis via distinct mechanisms like collaboration between different sig-
naling modules.

The signaling module collaborative patterns are classified into two groups. One group 
contains pancreatic, skin, central nervous system, and blood tumors that have simple mod-
ule collaborative patterns. In these tumors, signaling collaborations mainly occur between 
module p53 and module RAS, with some minor contributions from modules 5, 6, or 7. 
This suggests that they predominantly use these oncogenic signaling routes to generate 
tumors, resulting in relatively homogeneous cancer cell types. The other group contains 
breast and lung tumors, which also contain large proportions of mutations from the p53 
module but also reveal complex patterns of collaboration between assortments of multiple 
modules. This suggests that these tumors may have a larger variety of oncogenic signaling 
routes, which may explain, in part, the heterogeneous nature of the tumor subtypes in this 
category. These results might also explain why both lung and breast cancers are the most 
common types of human tumors.

In summary, the cancer signaling map allows complex mutations to be divided into a 
few common signaling modules, revealing the underlying logic of cancer signaling. Both 
common and tumor type-specific signaling modules are observed. The common module 
contains genes that are frequently mutated in most tumors, regardless of the tumor type. 
However, the common module is generally not sufficient for tumorigenesis, because muta-
tions of the genes in the common module are frequently accompanied by mutations in one 
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FIGURE 5.4 (See color insert following page 332.) Heatmaps of the gene mutation distributions in oncogenic signaling blocks for six representative 
cancer types. Twelve topological regions or oncogenic signaling blocks have been identified based on the gene connectivity of the human oncogenic 
signaling map. A heatmap was generated from a matrix, which was built by querying the oncogenic signaling blocks using tumor samples, in which 
each sample has at least two mutated genes. If a gene of a particular signaling block (b) gets mutated in a tumor sample (s), we set Ms,b  to 1; otherwise 
we set Ms,b  to 0. Heatmaps for (a) blood, (b) breast, (c) central nervous system, (d) lung, (e) pancreas, and (f) skin tumors were built using tumor 
samples of these cancer types, respectively. Rows represent samples, while columns represent oncogenic signaling blocks. Blocks with gene mutations 
are marked in red. (Figure is adapted from Cui et al. 2007a).  
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or two other signaling modules. Different tumor types appear to achieve tumorigenesis 
via distinct mechanisms like collaboration between different signaling modules. Taking a 
systems biology approach, this work presents a network view of the molecular mechanisms 
of cancer signaling that will shape our understanding of fundamental tumor cell biology.

5.5.6  Dissecting Dynamic Cancer Signaling Modules Using Gene Expression Profiles

Integrative analysis of signaling networks incorporating cancer driver-mutating genes 
leads to a static understanding of cancer, whereas integrative analysis of molecular net-
works using a combination of other-omic data such as gene expression profiles allows us to 
dissect dynamic signaling modules relevant to the individual tumor sample. One proposed 
approach has been to dissect oncogenic signaling networks into conditionally dependent 
signaling modules based on gene expression signatures. Furthermore, these modules have 
been shown to be useful for analyzing cancer patient outcomes and drug responses (Chang 
et al. 2009).

To dissect a Ras signaling module, Chang et al. mapped the proteins of a Ras pathway 
onto a human protein interaction network in order to collect the directly interacting pro-
teins of the pathway proteins, defined as a core gene set. Statistical analyses of the Ras 
pathway genes using gene expression profiles of the NCI-60 cell line dataset showed simi-
lar variation in their expression to the core genes. This led to the identification of 20 gene 
signatures linked to the Ras pathway. Comparative analysis has been performed of these 
signatures with the signatures of mutants (i.e., tumors having specific mutation genes) that 
selectively activate downstream effectors of Ras or to signatures from cells that are sensi-
tive to drugs that target specific pathway members or gene signatures for specific signaling 
effectors, such as Raf or phosphatidylinositol 3-kinase for Ras signaling. Such an approach 
allows us to define signaling modules used in a single tumor.

Chang et al. derived a set of 20 gene expression signatures for the EGFR signaling 
module based on the responses of cancer patients to an EGFR-specific drug, cetuximab. 
Further analysis of the gene signatures of the EGFR and Ras modules revealed that only 
the EGFR signatures could distinguish between the patients who are sensitive or resistant 
to cetuximab, indicating the specificity of each set of signatures for a particular oncogenic 
signaling module.

It is reasonable to expect that such an approach could be used for more accurate 
modeling of oncogenic information processing and transmission through the cancer sig-
naling maps. Thus, it may be possible to uncover the collaborations between the modules 
and the correlations between modules and cancer phenotypes, such as cancer initiation, 
progression, and metastasis.

5.6  SIGNALING MAPS FOR INDIVIDUAL TUMORS 
AND PERSONALIzED MEDICINE

Technological advances in genomic and proteomic signaling capacity will enable us to 
determine individually relevant gene mutations and signaling events. It is expected that 
future opportunities for cancer management will involve individual target assessment 
(i.e., identifying key signaling events and genes involved in tumorigenesis and metastasis) 



From Tumor Genome Sequencing to Cancer Signaling Maps    ◾    89

and matching of individual targets to target-based therapy like small molecule and RNAi 
treatment.

It is increasingly clear that key signaling events rather than individual genes or path-
ways appear to be particularly important for tumorigenesis. Such an observation raises 
interesting possibilities for developing biomarkers and personalized treatment strategies.

An individual tumor-signaling map can be constructed using the data generated 
from one tumor sample by using multidimensional genomic approaches. Comparative 
analysis of the individual tumor-signaling maps with the general signaling map of the 
same tumor type will lead to the identification of key signaling events for each individual 
tumor-signaling map. Further network modeling of the individual tumor-signaling maps 
with known key signaling events will lead to the identification of key drug targets for 
individual patients (a roadmap for such an analysis and modeling has been described in 
Chapter 1). Data from the efforts of RNAi knockout cancer cells and the profiling of small 
molecules in cancer cells will help us find appropriate drugs for the key signaling events 
and drug targets identified using signaling map analysis. Finally, these combinations of 
large-scale analyses will speed up the process of identifying individual targets and target-
based therapy.
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C h a p t e r  6

Ubiquitin-Mediated 
Regulation of Human 
Signaling Networks in 
Normal and Cancer Cells

Cong Fu, Jie Li, and Edwin Wang

6.1  INTRODUCTION
Recently, posttranscriptional regulation has been recognized as an important aspect of 
gene expression in mammalian genomes. For example, microRNAs (miRNA) have been 
shown to participate in many cellular activities. Similarly, ubiquitination has been shown 
to contribute to the regulation of a broad range of cellular processes, including cell divi-
sion, differentiation, and signal transduction. Aberrations in the ubiquitination system 
have been implicated in many kinds of diseases, including cancer.

Ubiquitination, which relies on the activity of the ubiquitin protein (Ub), is a revers-
ible posttranslational modification of cellular proteins. Ubiquitin is a highly conserved 
protein, which can covalently attach to lysine residues of target proteins. Protein-attached 
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Ub acts as a substrate for the attachment of additional Ub residues, leading to the forma-
tion of a polyubiquitin chain. The polyubiquitin chain directs proteins to the proteasome, 
where the Ub is recycled and the protein is degraded (Ghaemmaghami et al. 2003). In 
general, protein ubiquitination is catalyzed by a cascade of enzymes, including a ubiq-
uitin-activating enzyme E1, a ubiquitin-conjugating enzyme E2, and a ubiquitin ligase 
E3. E3 ubiquitin ligases are crucial for the selective recognition of target proteins and 
also function in subsequent protein degradation mediated by the 26S proteasome (Laney 
and Hochstrasser 1999). Protein ubiquitination, like protein phosphorylation, involves 
specific, diverse, and reversible modification of proteins. More than 600 Ubs are found 
in the human genome, suggesting that Ubs might potentially modify a large fraction of 
human proteins.

Many regulatory proteins, such as signaling proteins, are regulated or degraded in a 
temporally and spatially specific manner. These proteins are often tightly controlled by 
posttranslational modifications that are dependent on cell-signaling events. For example, 
ubiquitination is known to be involved in the internalization of signaling receptors and 
ligands. In fact, most regulated protein degradation in eukaryotes is controlled by the 
ubiquitin-proteasome system (Hershko and Ciechanover 1998; Hochstrasser 1996; Pickart 
and Eddins 2004).

Protein degradation occurs in either the lysosomal compartment or at the proteasome, 
which is the site of ubiquitin ligase-mediated protein degradation. Recently, Yen et al. (2008) 
conducted a survey of global protein stability (GPS) to identify the collective substrates 
of ubiquitin ligases. The GPS approach allows exploring the ubiquitin-proteasome system 
and identifying substrates of Ubs. Furthermore, the GPS method excludes the proteins 
that are functionally affected by modification of their enzymatic activity, cellular localiza-
tion, or ability to physically interact with other cellular constituents. The GPS approach 
first determines comprehensive protein turnover rates then seeks to identify the substrates 
of a particular Ub. More than 8000 distinct human proteins have been scanned using the 
GPS approach. Based on turnover rates, each protein was assigned a protein stability index 
value that was further categorized into four groups, which have short (S), medium (M), 
long (L), and extra long half-lives (XL). In total, 6528 proteins have been assigned to these 
groups. In general, those proteins with short and medium half-lives are most likely to be 
degraded by Ubs.

Many extracellular stimuli evoke cellular responses by engaging intracellular signaling 
networks, which ultimately activate nuclear transcription factors and lead to a phenotypic 
response to the extracellular stimulation. Cellular decision making frequently requires 
dynamic regulation of signaling activity before the cell reaches a certain fate. Depending 
on the cellular context and stimulus, some signaling cascades deactivate in as little as a 
few minutes through posttranslational regulation (Legewie et al. 2008). In these situations, 
signaling proteins must be regulated in a temporally and spatially specific manner. It is 
known that most signaling protein degradation is carried out by the ubiquitin system. 
Therefore, it is desirable to understand the effects of ubiquitination on signaling networks 
in normal and cancer cells, and, in turn, to identify the potential implications of these 
insights to human diseases. In this chapter, we will summarize the results of ubiquitination 
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on the human signaling network in normal cells (Fu, Li, and Wang 2009) and the insights 
of ubiquitination on a human cancer signaling network.

6.2  ExTRA LONG HALF-LIFE PROTEINS FORM A NETWORk BACkBONE
To systematically analyze the principles of ubiquitination on the human signaling net-
work, we examined a previously literature-mined human signaling network that repre-
sents signal transduction processes from multiple cell surface receptors to various cellular 
machines and signaling outputs in humans (Cui et al. 2007a). The network contains more 
than 1600 nodes and 5000 links, including 2287 activating (positive) links, 651 inhibitory 
(negative) links, and 1914 neutral (protein physical interaction only) links. Nodes with pos-
itive links indicate that the node (protein) is required to sense and to transmit the signal 
(i.e., kinases), while a node with a negative link indicates that the node (protein) attenuates 
information transfer (i.e., by catalyzing kinase dephosphorylation). Neutral links repre-
sent physical interactions between proteins. We mapped the Ub-mediated half-lives of the 
proteins, which have been determined from the GPS survey, onto the human signaling 
network. In total, 570 proteins were mapped, of which 53 (9.3%), 122 (21.4%), 198 (34.7%), 
and 197 (34.6%) had short (S), medium (M), long (L), and extra long (XL) half-lives, respec-
tively. We also mapped the Ub-mediated half-lives of the proteins onto the cancer signal-
ing network obtained from Cui et al. (2007a). There are 126 cancer proteins, in which 11 
(8.7%), 21 (16.7%), 46 (36.5%), and 48 (38.1%) proteins have S, M, L, and XL half-lives, 
respectively.

Hub regulators in gene transcriptional networks are characterized by unstable mRNAs; 
however, hubs in protein integration networks are characterized by stable mRNAs (Balaji, 
Babu, and Aravind 2007; Janga and Babu 2009; Wang and Purisima 2005). Therefore, 
we examined the enrichment of groups of proteins with different half-lives (S, M, L, and 
XL) in the groups of nodes categorized based on node degree. As shown in Table 6.1A, 

TABLE 6.1A Enrichment of Different Half-Life Protein Groups in the Groups of Nodes, 
Categorized Based on Degree (the Entire Human Signaling Network)
Subgroup 
(Node Number)

Ratio of Node Number of Each Half-Life Group to the Total Node 
Number of Each Subgroup Categorized by Node Degree (P-value)

S M L XL

Degree <= 1 (136) 11.00% (0.967) 21.30% (0.981) 33.80% (0.981) 33.80% (0.981)
Degree <= 2 (241) 11.60% (0.342) 21.60% (0.981) 33.60% (0.981) 33.20% (0.981)
Degree <= 3 (322) 7.50% (0.151) 20.80% (0.981) 35.70% (0.967) 36.00% (0.967)
Degree <= 4 (251) 6.40% (0.077) 22.70% (0.967) 32.70% (0.999) 38.20% (0.342)
Degree <= 5 (200) 4.50% (0.0056) 22.00% (0.981) 33.00% (0.981) 40.50% (0.205)
Degree <= 6 (169) 2.40% (0.0028) 20.10% (0.981) 34.30% (0.981) 43.20% (0.042)
Degree <= 8 (119) 0.80% (0.0028) 19.30% (0.981) 32.80% (0.981) 47.10% (0.028)

Values in italics represent negative enrichment, while those in bold represent positive enrich-
ment. S, M, L, and XL represent short, medium, long, and extra long half-life proteins, 
respectively.

Source: Adapted from Fu, Li, and Wang (2009).
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proteins with more than three links are significantly less enriched for short half-life 
proteins, whereas proteins with more than five links are significantly enriched for extra 
long half-life proteins. Further, we observed a statistically significant positive correlation 
between node (protein) degree and protein stability index value (correlation coefficient = 
0.14; Spearman correlation, P = 0.015). Proteins with fewer links that take part in fewer 
signaling events are more likely to be a Ub substrate. In contrast, proteins with more links 
or those involved in more signaling events are more likely to avoid being Ub substrates. 
The positive correlation between Ub-mediated protein half-life and node degree in the 
human signaling network agrees with the findings in an Escherichia coli protein inter-
action network study (Janga and Babu 2009), but contradicts the observation that hubs 
in the E. coli gene regulatory network have short half-lives (Wang and Purisima 2005). 
This difference might reflect the different roles of the hubs in different types of cellular 
networks. Hubs in protein interaction networks and signaling networks play a major role 
in “integrating different signals and pathways,” while hubs in gene regulatory networks 
are often transcription factors, which play a major role in “responding to the stimuli and 
coordinating the regulated genes.”

To understand the distribution of different half-life protein groups in the network, we 
reconstructed a subnetwork using only the proteins whose half-lives were determined in 
the GPS survey (570 proteins). Interestingly, most of these proteins (342/570, 60%) are con-
nected and form a subnetwork. We individually removed each group (S, M, L, and XL) of 
the proteins from the subnetwork. When Groups S, M, and L were removed, the subnet-
work remained largely connected, suggesting that the XL proteins form the backbone of 
the network. This suggests that Ubs are not likely to degrade the backbone nodes of the sig-
naling network. We further analyzed the XL proteins using a Gene Ontology tool, DAVID. 
The DAVID results indicated that the backbone nodes are mainly involved in intracellular 
signaling. When Groups XL, S, and M were removed, the subnetwork collapsed. Moreover, 
when Groups XL and L were removed, the subnetwork also collapsed. These results indi-
cate that Ubs are targeted to degrade the periphery of the network. We also examined 
the GO terms and pathways enriched in the S and M protein groups. We found that the 
S proteins are enriched for receptors, especially G-protein-coupled receptors and plasma 
membrane proteins. The periphery of the network is known to sense signals for the cell and 
also undergoes rapid evolution (Cui, Purisima, and Wang 2009). Therefore, ubiquitination 
of the human signaling network might play a role in sensing cellular signals and enabling 
the system to adapt to environmental changes.

A similar result was obtained for the cancer signaling network (Table  6.1B). These 
analyses showed that the signaling network is composed of two major parts: the network 
backbone, a set of signaling proteins that are largely connected and generally stable, and a 
flexible portion, composed of a set of signaling proteins that are inducible and have high 
turnover rates. These results suggest that proteins in the network can either be flexible and 
rapidly responding (unstable proteins) or stable and relatively static (stable proteins). The 
stable portion of the network forms a subnetwork that is shared by many signaling path-
ways (i.e., stable nodes have high degrees) to perform common signaling activities in the 
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organism. Nodes of the flexible part (short half-life proteins) are scattered throughout the 
network and have low degrees. Ub-mediated degradation of proteins in the flexible part of 
the network might provide a regulatory mechanism in a cell-type-specific or physiological 
manner.

6.3  SHORT AND MEDIUM HALF-LIFE PROTEINS DO NOT 
TEND TO CONNECT TO EACH OTHER IN BOTH 
NETWORkS OF NORMAL AND CANCER CELLS

To understand the interacting relationships among the proteins with different half-lives, we 
tested the interaction preferences of the different protein groups (S, M, L, and XL). We first 
extracted the neighbors of the XL proteins and counted the number in each group (S, M, L, 
and XL). To examine the statistical significance of the enrichment of certain groups of pro-
teins in the XL proteins’ neighbors, we randomly reassigned the half-lives of these proteins. 
We found that XL proteins are preferentially connected to each other (P = 0.0001). Similar 
analyses were extended to check the neighbors of the L, M, and S proteins, respectively. 
Interestingly, both L and M proteins are preferentially connected with the XL proteins 
(P = 0.035 and 0.042, respectively). However, both S and M proteins avoid connecting to 
the S proteins (P = 0.021 and 0.012, respectively). These results suggest that the XL pro-
teins tend to interconnect to form basic signaling cascades or the network backbone. The 
L and M proteins tend to attach to the XL-formed network backbone to extend the signal-
ing cascades and the network. Finally, Ub-mediated S and M proteins generally are not 
neighbors of each other. For example, it is difficult to find edges connecting S-S, S-M, and 
M-M proteins in a signaling cascade. Similar results have been obtained for the cancer 
signaling network: XL proteins are preferentially connected to each other (P = 0.0004) and S 
proteins avoid connecting to the S proteins (P = 0.0002). These results suggest that Ubs do 

TABLE 6.1B Enrichment and Less Enrichment of Different Half-Life Protein Groups in the 
Groups of Nodes, Which Are Categorized Based on Node Degree (the Cancer Signaling Network)

Subgroup 
(Node Number)

Ratio of Node Number of Each Half-Life Group to the Total Node Number 
of Each Subgroup Categorized by Node Degree (P-value)

S M L XL
Degree <= 1 (26) 19.20% (0.077) 7.70% (0.985) 42.30% (0.2691) 30.80% (0.736)
Degree <= 2 (39) 17.90% (0.057) 12.80% (0.948) 33.30% (0.635) 35.90% (0.486)
Degree >= 3 (87) 4.60% (0.021) 18.40% (0.806) 37.90% (0.279) 39.10% (0.203)
Degree>= 4 (69) 2.90% (0.016) 21.70% (0.527) 34.80% (0.544) 40.60% (0.164)
Degree >= 5 (55) 3.60% (0.023) 23.60% (0.391) 30.90% (0.784) 41.80% (0.149)
Degree >= 6 (48) 4.20% (0.040) 20.80% (0.605) 29.20% (0.841) 45.80% (0.059)
Degree >= 8 (36) 2.80% (0.020) 19.40% (0.686) 30.60% (0.760) 47.20% (0.071)

Ratio of node number in each half-life protein group to the total number of network nodes mapped 
with half-lives (126 proteins). Values in italics represent negative enrichment, while those in bold 
represent positive enrichment. S, M, L, and XL represent short, medium, long, and extra long half-
life proteins, respectively.
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not regulate consecutive proteins in a signaling cascade, but that they instead degrade key 
individual proteins in signaling cascades.

It should be noted that the above finding differs from the observation that the mRNA 
half-lives of interacting proteins tend to be similar in the E. coli protein interaction 
network (Janga and Babu 2009). In bacteria, genes belonging to one pathway can be 
arranged on one operon and tightly coregulated. These tightly coregulated genes often 
perform a single task (i.e., genes in a biosynthetic pathway used for a metabolic process). 
Therefore, it makes sense that the tightly coregulated genes should be degraded at the 
same time. However, in mammalian signaling networks, proteins in a chain are not 
tightly coregulated. This finding also appears to hold true for posttranscriptional regu-
lation in human signaling networks. For example, miRNA regulated signaling proteins 
are not neighbors in a signaling cascade (Cui et al. 2007b). Such a regulatory mecha-
nism might provide for better adaptation to the complexity of the signaling networks in 
mammalian genomes.

6.4  SHORT HALF-LIFE PROTEINS ARE ENRICHED IN 
THE UPSTREAM PORTION OF BOTH SIGNALING 
NETWORkS OF NORMAL AND CANCER CELLS

Cellular signaling information flow propagates from the extracellular space to the 
nucleus. Therefore, network components can be divided into ligands, cell surface recep-
tors, intracellular signaling proteins, and nuclear proteins, based on their positions along 
the flow of signaling information. To discover which stages of the signal information 
flow are predominantly regulated by Ubs, we examined the enrichment of the different 
protein groups (S, M, L, and XL) along the signaling information flow and determined 
which groups (S, M, L, and XL) of the proteins are enriched in each signaling category 
(i.e., ligands, cell surface receptors, intracellular signaling proteins, and nuclear proteins). 
We found that ligands and receptors are significantly enriched for S and M proteins, but 
less enriched for XL proteins (Table 6.2A). Furthermore, intracellular signaling proteins 
are enriched for XL proteins (Table 6.2A). Similar results have been seen in the cancer 
signaling network (Table 6.2B). These results suggest that Ubs tend to regulate ligands 
and receptors. In cells, ligands and receptors are used for initial signal processing and 
specificity (i.e., ligands act in a specific manner). These results indicate that Ubs might 
act as rapid posttranslational mediation and could be most important for initial signal 
processing and specificity.

Ub-mediated regulation of the Notch signaling pathway is one example that illustrates 
this conclusion. The Notch pathway is an evolutionarily conserved signaling system that 
is absolutely required for normal embryonic development (Gridley 2003). Ligand-induced 
Notch signaling regulates a variety of cell types during specification, patterning, and mor-
phogenesis through effects on differentiation, proliferation, survival, and apoptosis (Fiuza 
and Arias 2007). The Notch ligands Delta, Serrate, Jagged1, Jagged2, and Lag2 (DSL) are 
the major Notch signaling activators. It is known that two structurally distinct E3 ligases, 
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Neuralized (Neur) and Mind bomb (Mib), influence Notch signaling by interacting with 
and ubiquitinating the DSL ligands. Neurl ubiquitinated Jagged1 leads to degradation and 
attenuation of Jagged1-induced Notch signaling (Koutelou et al. 2008). However, Mib2 
ubiquitinated Jagged2 is associated with activation of Notch signaling (Takeuchi, Adachi, 
and Ohtsuki 2005). These results suggest that different ubiquitination states of DSL ligands 
have different functional roles for Notch signaling, illustrating the signaling specificity 
mediated by Ubs. Furthermore, ubiquitination of different G-protein-coupled receptors 
has also been shown to be highly cell-type dependent (Dromey 2008).

TABLE 6.2A Enrichment of Different Half-Life Protein Groups along the Flow of Signaling 
Information (the Entire Human Signaling Network)

Ratio of Node Number in Each Half-Life Protein Group to the Total Node 
Number in Each Signaling Stage (P-value)

Signaling Stage
Short Half-Life 

Proteins
Medium Half-Life 

Proteins
Long Half-Life 

Proteins
Extra Long 

Half-Life Proteins
Ligands 17.8% (0.05) 33.3% (0.04) 40.0% (0.253) 8.9% (0.001)
Cell surface 
receptors

23.6% (0.002) 30.3% (0.02) 25.8% (0.016) 20.2% (0.001)

Intracellular 6.3% (0.001) 17.3% (0.001) 32.9% (0.083) 43.6% (0.0002)
 signaling proteins
Nuclear proteins 3.1% (0.001) 23.3% (0.317) 39.5% (0.112) 34.1% (0.596)
Ave* 9.3% 21.4% 34.7% 34.6%
* Ratio of node number in each half-life protein group to the total number of network nodes mapped with 

protein half-lives (570 proteins). Values in italics represent positive enrichment, while those in bold repre-
sent negative enrichment. S, M, L, and XL represent short, medium, long, and extra long half-life proteins, 
respectively.

Source: Adapted from Fu, Li, and Wang (2009).

TABLE 6.2B Enrichment of Different Half-Life Protein Groups along the Signaling Information Flow (the 
Cancer Signaling Network)

Ratio of Node Number in Each Half-Life Protein Group to the Total Node Number 
in Each Signaling Stage (P-value)

Signaling Stage
Short Half-Life 

Protein
Medium 

Half-Life Protein
Long Half-Life 

Protein
Extra Long 

Half-Life Protein
Ligands 33.3% (0.115) 50.0% (0.072) 0% (0.002) 16.7% (0.062)
Cell surface 
receptors

14.3% (0.304) 23.8% (0.291) 38.1% (0.510) 23.8% (0.053)

Intracellular 7.0% (0.882) 14.0% (0.896) 32.6% (0.058) 46.5% (0.005)
 signaling proteins
Nuclear proteins 3.4% (0.055) 13.8% (0.759) 44.8% (0.201) 37.9% (0.616)
Ave* 8.7% 16.7% 36.5% 38.1%
* Ratio of node number in each half-life protein group to the total number of network nodes mapped with half-

lives (126 proteins). Values in italics represent negative enrichment, while those in bold represent positive 
enrichment. S, M, L, and XL represent short, medium, long, and extra long half-life proteins, respectively.
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Ubiquitination of the EGFR signaling pathway has also been documented in the litera-
ture. Upon ligand activation of many receptor tyrosine kinases, such as EGFR, there is a 
rapid decrease in the number of cell surface receptors and an eventual decrease in the cel-
lular content of activated receptors, a process known as downregulation. This process can 
be divided into two distinct stages: internalization of the membrane receptor and degrada-
tion of the internalized receptor. Upon activation of the EGFR by a ligand, rapid ubiquit-
ination of the EGFR occurs and leads to receptor internalization and degradation (Thien 
and Langdon 2001). For many growth hormone receptors, an active ubiquitination system 
is required for both uptake and degradation (Strous et al. 2004).

6.5  UBIqUITINATION OCCURS MORE FREqUENTLy 
IN POSITIVE NETWORk MOTIFS

A signaling network can be broken down into distinct regulatory patterns, or network 
motifs, typically comprised of three to four interacting components capable of signal pro-
cessing. The function of a motif depends on whether the links are positive or negative. 
For example, positive feedback network motifs, also known as positive regulatory loops, 
lead to emergent network properties such as ultrasensitivity, disability, and switch-like 
behavior, whereas negative feedback network motifs, known as negative regulatory loops, 
permit adaptation, desensitization, and preservation of homeostasis (Babu et al. 2004; 
Barabasi and Oltvai 2004; Cui et al. 2007a, 2007b; Ferrell 2002; Ma’ayan et al. 2005). We 
asked if Ubs tend to regulate positively or negatively linked loops. Toward this end, we 
first extracted all 4-node network motifs from the subnetwork reconstructed using the 
proteins with half-life data from the GPS survey (570 proteins). Since XL proteins form 
the network backbone, we used the number of XL proteins (nodes) to classify the 4-node 
motifs into subgroups. Motifs containing 0, 1, 2, 3, and 4 XL proteins were defined as 
motif-subgroups 0, 1, 2, 3, and 4, respectively. Finally, we calculated the ratio (R) of posi-
tive links to the total positive and negative links in each motif-subgroup and compared 
it with the average R for all motifs, which is shown as a horizontal line in Figure 6.1. For 
the 4-node motifs, the values of R for motif-subgroups 0 and 1 are higher than the aver-
age R of all 4-node motifs (P < 10−10, Wilcoxon rank-sum test; Figure 6.1a). The values of 
R for motif-subgroups 3 and 4 are lower than the average R of all the 4-node motifs (P < 
10−7, Wilcoxon rank-sum test; Figure 6.1a). In general, these motifs show a clear negative 
correlation between the positive link ratio and the number of XL proteins in the motif 
(Figure  6.1a). We extended this analysis to the 3-node motifs and similar results were 
obtained (Figure 6.1b). These results suggest that Ubs target negative regulatory motifs 
less frequently than positive regulatory motifs.

Ubiquitination in positive regulatory motifs allows faster inhibition of signaling path-
ways or cascades. Such quick attenuation might be advantageous for the cell to dynami-
cally respond to external stimuli. In principle, such a process can be rapidly reversed (i.e., 
proteins can be de-ubiquitinated). Therefore, such a posttranslational mechanism pro-
vides robust and efficient regulation to speed up adaptation of signaling networks upon 
activation.
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6.6  HIGH ExPRESSIONS OF 26S PROTEASOME GENES PREDICT 
POOR OUTCOMES FOR BREAST CANCER PATIENTS

To understand which biological processes are primarily involved in Ub-mediated posi-
tive regulatory motifs, we extracted the S and M proteins (71 total proteins, 15 S and 56 
M proteins) from motif-subgroups 0 and 1 and performed GO analysis. We found that 
the biological processes of inducing and positively regulating apoptosis were significantly 
enriched in the Ub-mediated positive regulatory loops. Apoptosis is one component of 
cancer signaling (Cui et al. 2007a; Wang, Lenferink, and O’Connor-McCourt 2007). 
Furthermore, analysis of cancer mutations in the human signaling network showed that, 
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FIGURE 6.1 The relationship between the fraction of positive links and the fraction of extra long 
(XL) proteins in network motifs. All network motifs were classified into motif-subgroups based on 
the number of XL nodes. The ratio of positive links to total links in each motif-subgroup was plot-
ted. The horizontal lines indicate the ratio of positive links to the total links in all network motifs: 
(a) 4-node motifs; (b) 3-node motifs. (Adapted from Fu, Li, and Wang 2009.)
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regardless of cancer types, almost all tumor samples bear at least one mutated gene in a 
network module dominated by apoptotic signaling (Cui et al. 2007a). These data suggest 
that disruption of apoptotic signaling is essential for cancer signaling, tumor progression, 
and metastasis. Twenty out of the 71 proteins extracted from motif-subgroups 0 and 1 
are apoptotic proteins. To explore the relationship between cancer and these apoptotic 
proteins, we compared the 20 apoptotic proteins to our previously compiled list of cancer-
associated proteins (Cui et al. 2007a), most of which have cancer promoting mutations. We 
found that 17 of the 20 apoptotic proteins are among the cancer-associated proteins. These 
results suggest that most of the Ub-mediated apoptotic proteins in the positive regulatory 
motifs are cancer-associated.

Functional links between cancer, apoptosis, and ubiquitination have been reported for 
both Smad3 and Siva-1, both of which are included in the 20 apoptotic proteins. Smad3 is 
an important component of the transforming growth factor-β (TGF-β) pathway, which 
regulates essential cellular functions ranging from cellular proliferation and differen-
tiation to apoptosis. TGF-β-induced apoptosis is mediated through a Smad3-dependent 
mechanism (Ramesh et al. 2008). Moreover, 26S proteasome-dependent degradation of 
Smad3 has been implicated in cancer development (Inoue and Imamura 2008). Siva-1 
induces apoptosis of T lymphocytes through a caspase-dependent mitochondrial pathway 
(Jacobs et al. 2007) or by negatively regulating NF-κB activity in T cell receptor-mediated 
activation-induced cell death (Gudi et al. 2006). Siva-1 can be ubiquitinated and degraded, 
resulting in downregulation of its proapoptotic activity (Lin et al. 2007).

If Ubs preferentially regulate positive regulatory motifs, which are predominately 
involved in positive regulation of apoptosis, which is itself implicated in cancer initiation 
and progression, we expect that increased expression of the genes of the common ubiquit-
ination machinery (Ub machinery), such as genes encoding the 26S proteasome proteins, 
would block cell apoptosis and might be correlated with cancer progression and metastasis. 
To test this hypothesis, we compiled a set of known genes of the common Ub machin-
ery, the 26S proteasome proteins (43 proteins). We tested whether the expression levels of 
the 26S proteasome genes are significantly higher in tumors than in normal tissues using 
Gene Set Enrichment Analysis (GSEA, http://www.broad.mit.edu/gsea/). GSEA is a com-
putational tool that determines whether a priori defined set of genes shows statistically sig-
nificant concordant differences between two biological phenotypes (i.e., tumor and normal 
samples). Twenty-five and twenty-four out of the 26S proteasome genes have been mapped 
onto the microarray platforms used for lung and bladder tumors, respectively. As shown in 
Figures 6.2a and 6.2b, 92% of the 26S proteasome genes are more highly expressed in tumor 
samples than in normal samples (P = 0.02 for lung tumors; P = 0.03 for bladder tumors; 
Figures 6.2a and 6.2b). These results suggest that elevated expression of the 26S proteasome 
is highly correlated with cancer development. Although some of the 26S proteasome genes 
have been implicated in cancer progression previously, this is the first report that the 26S 
proteasome genes, as a whole set, have higher expression levels in tumors than in normal 
tissues.

Presently, many cancer patients are over-treated. For example, 70% to 80% of lymph 
node-negative breast cancer patients may undergo adjuvant chemotherapy when it is, in 
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FIGURE 6.2 (See color insert following page 332.) The association of the 26S proteasome genes 
with tumor progression and metastasis. Heat map generated by GSEA based on the gene expres-
sion values of the 26S proteasome genes: (a) lung tumor, GSE2514, (b) bladder tumor, GSE3167. 
Kaplan–Meier survival analysis of breast cancer patient groups stratified by the 26S proteasomes 
genes’ expression in tumors: (c) breast tumor, 295-set, (d) breast tumor, GSE349. (Adapted from Fu, 
Li, and Wang 2009.)
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fact, unnecessary (van de Vijver et al. 2002). Unfortunately, there is currently no satis-
factory approach to determine which cancer patients would benefit from extra therapy 
(such as chemotherapy) after surgery. Therefore, identification of genes and proteins that 
can be used for prognostic purposes would be greatly beneficial. Furthermore, prognostic 
biomarkers can be used as tools for predicting survival after a diagnosis of cancer and to 
guide oncologists in treatment of the cancer to obtain the best outcome. Cancer patients 
who have “bad” tumors have a higher chance of tumor recurrence and a short survival 
time, while the patients who have “good” tumors will not experience tumor recurrence 
after removal of the tumor.

We investigated whether the whole set of the 26S proteasome genes can be used as a 
prognostic signature. Using GSEA, we found that the expression levels of the 26S protea-
some genes are significantly higher in “bad” breast tumors compared to “good” tumors 
(P = 0.02, P = 0.02, for both breast cancer datasets, respectively). Furthermore, we performed 
survival analysis, which was previously implemented (Cui et al. 2007a), using the gene 
expression profiles of two breast tumor cohorts in which patient clinical information (such 
as survival data) is available. Survival analysis showed that the 26S proteasome gene set 
can distinguish good and bad tumors (P = 0.017, P = 0.008, for the two breast cancer sets, 
respectively; Figures 6.2c and 6.2d). These results support our hypothesis that common 
ubiquitination machinery, specifically the 26S proteasome gene set, is significantly cor-
related with cancer progression and metastasis. In agreement with our discovery, it has 
been reported that RNAi silencing of UbcH10, an E2 enzyme and a Ub machinery gene, 
enhances cell death in neoplastic human cells (Wagner et al. 2004). Our findings imply 
that the Ub machinery, and the 26S proteasome genes specifically, can be used as prog-
nostic biomarkers to distinguish good and bad tumors. This is also the first evidence that 
the 26S proteasome genes, as a whole set, predict poor outcomes of breast cancer patients. 
Taken together, these results suggest that the expression of these 26S proteasome genes is 
highly correlated during cancer development and metastasis.
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FIGURE 6.2 (Continued)
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6.7  CONCLUDING REMARkS
We performed a comprehensive analysis of ubiquitin-mediated protein stability on a lit-
erature-mined human signaling network. We showed that the signaling network could be 
divided into two parts: the first consisting mainly of extra long half-life proteins connected 
to form a network backbone, and the second consisting of short and medium half-life 
proteins that preferentially attach to the network backbone and are scattered throughout 
the network. Nodes representing the extra long half-life proteins have significantly higher 
degrees of connection, suggesting that the network backbone might participate in many 
signaling pathways and perform basic signaling activities or integrate signals for different 
pathways. We also showed that short and medium half-life proteins avoid connecting to 
one another in the network, suggesting a rule of mutually exclusive ubiquitination of the 
proteins that are neighbors in a signaling cascade. This organization of the ubiquitination 
network may enable more efficient control of signaling.

We found that short half-life proteins are enriched in the upstream portion of the sig-
naling network. The upstream portion of the network consists mainly of signaling recep-
tors and ligands. Many studies have reported the functions of ubiquitination of signaling 
receptors and ligands in such pathways as Notch signaling and growth hormone factor 
signaling. Furthermore, ubiquitination of receptors and ligands helps initiate signal pro-
cessing and specificity in the context of cell-specific or cellular conditions. We also showed 
that ubiquitination preferentially occurs in positive regulatory loops, which might enable 
faster breakdown of the amplification of signals in the positive regulatory loops and inhibit 
certain signaling pathways or cascades. Such a quick attenuation might be advantageous 
for the cell in dynamically altering responses to external stimuli and providing robust and 
efficient regulation for increased adaptation of signaling networks upon activation.

Interestingly, the ubiquitinated positive regulatory loops predominately take part in 
inducing or positively regulating cell apoptosis. Most of the apoptotic proteins in these 
loops have been implicated in cancer development. Thus, we expected that the common 
machinery of ubiquitination might be associated with tumor progression and metastasis. 
Indeed, we showed that high levels of expression of the ubiquitination machinery, specifi-
cally the 26S proteasome, are significantly associated with tumor progression and metasta-
sis in several cancer types. We showed that high levels of expression of the 26S proteasome 
predicted poor outcomes of breast cancer patients. These findings have implications for 
the development of cancer treatments and prognostic biomarkers using the ubiquitination 
machinery.
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7.1  INTRODUCTION
microRNAs (miRNAs) are endogenous ~22-nucleotide RNAs that suppress gene expres-
sion by selectively binding, through base-pairing, to the 3′-noncoding region of specific 
messenger RNAs. Growing evidence supports the idea that miRNA has a crucial role in 
key biological processes, such as cell growth, differentiation and proliferation, embryonic 
development, and apoptosis. Several hundred miRNAs have been identified through exper-
imental and computational approaches. These miRNAs are estimated to regulate more 
than half of the human genes that are related to a wide range of the biological processes 
mentioned above. Therefore, it would not be surprising if miRNAs could regulate cellular 
networks and subsequently exert their functions. Cells use cellular networks such as signal-
ing networks to make decisions whether to grow, differentiate, move, or die. By regulating 
such cellular networks, miRNAs could affect many kinds of cellular activity. miRNAs have 
also been found to contribute to a variety of disease states. Global expression profiling has 
demonstrated a wide spectrum of aberrations in miRNA expression profiles that are cor-
related with different stages of tumor progression. Several studies have deciphered molecu-
lar mechanisms of tumor development mediated by miRNAs. miRNAs could potentially 
modulate several components of cellular networks and thus attain broad influence on cel-
lular activity, including cancer development and progression. A systems-level analysis of 
the interactions between miRNAs and cellular networks would enable us to understand 
the principles of miRNA regulation of cellular networks.

7.2  miRNA REGULATION OF NETWORkS OF NORMAL CELLS
It is intriguing and crucial to understand how miRNAs regulate different types of cellular 
networks, and what biological functions miRNAs could exert in biological systems. In 
order to understand miRNA functions in biological processes, we must learn how miRNAs 
function either in isolation or in concert with other factors to regulate biological systems. 
In this section, we will summarize the recent progress in computational studies of miRNA 
regulation of a few representative cellular networks, and the principles and implications of 
miRNA regulation of cellular networks.

7.2.1  miRNA Regulation of Cell Signaling Networks

Physiological decisions made by a living cell are a consequence of dynamic interactions of 
components in complex signaling networks. Protein components that interact in molec-
ular pathways could be modulated by miRNAs. Such modulation may be an important 
part of the underlying regulatory mechanisms of physiological processes. Alternatively, it 
could be the manifestation of a disease that results from alterations in cell signaling (Irish, 
Kotecha, and Nolan 2006). Thus, it is imperative to understand the role of miRNAs in the 
regulation of cell signaling. In this section, we review studies that have addressed miRNA 
regulation of the human signaling network.
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7.2.1.1   miRNAs Preferentially Regulate Positive Signaling Regulatory 
Loops but Avoid Regulating Negative Regulatory Loops

Cui and co-workers pioneered the systems-level analysis of miRNA networks. They analyzed 
the interactions between miRNAs and human cellular signaling networks and uncovered 
several key miRNA regulatory principles (Cui et al. 2006). Analysis also revealed miRNA 
roles in the regulation of the strength and specificity of cellular signaling. Integrative anal-
ysis of the human signaling network and miRNAs showed that miRNAs preferentially 
regulate positive regulatory motifs and avoid affecting negative regulatory motifs. Positive 
and negative regulatory loops are the major building blocks of cellular networks; how-
ever, these loops affect network behavior in distinct ways. Positive feedback loops promote 
the amplification of transient signal/noise in a system, causing a shift of cellular states. 
Therefore, they are associated with converting a transient signal into a long-lasting cellular 
response, as with the case of developmental switches. In contrast, negative feedback loops 
act as a filter, buffering noise or fluctuations, and thus stabilizing the network.

The yeast galactose (GAL) network, which contains positive and negative loops, is a 
good example of the importance of negative feedback loops (Acar, Becskei, and van 
Oudenaarden 2005). When negative feedback loops were experimentally removed from the 
network, GAL genes in the network randomly switched ON and OFF (randomly switch-
ing between two phenotypes) over time, regardless of network induction (Acar, Becskei, 
and van Oudenaarden 2005). In this network, negative feedback is executed by transcrip-
tion factors (TFs). Compared with transcriptional repressors, miRNAs can turn off mRNA 
translation faster than TFs. These data hint at the possibility that miRNA may provide 
fast feedback responses and filter noise effectively by regulating positive feedback motifs 
(Brandman et al. 2005; Ferrell 2002).

7.2.1.2   miRNAs Preferentially Regulate Downstream Components 
but Avoid Regulating Common Components of the Network

Cui and co-workers also showed that miRNAs are frequently involved in regulation of 
downstream network components such as transcription factors; however, they less fre-
quently regulate upstream network components, such as ligands and receptors. For exam-
ple, only 9.1% of ligands are miRNA targets, whereas 50% of the nuclear proteins, mostly 
TFs, are miRNA targets. In other words, miRNA targets are enriched more than fivefold 
in the most downstream components (the output layer of the signaling network) compared 
with the most upstream proteins. These results suggest that miRNA tends to control the 
output layer of the signaling network.

Cui et al. (2007a) also studied the cancer-signaling network by mapping cancer driver-
mutating genes, determined by large-scale genome sequencing, onto a human signaling 
network that contained more than 1600 nodes and 5000 signaling relations. The authors 
showed that cancer driver-mutated genes are enriched in the output layer and in the posi-
tive regulatory motifs of the network. In general, these two principles of cancer signaling 
are in agreement with miRNA regulatory principles. Thus, lower expression of miRNAs 
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may generally promote cancer signaling, and therefore may promote cancer progression. 
Indeed, a recent report showed that low expression of two components of miRNA machin-
ery, Drosha and Dicer, was significantly associated with advanced tumor stages. Cancer 
cases with high expression of both Dicer and Drosha were associated with increased sur-
vival (Merritt et al. 2008).

miRNAs avoid targeting common components of cellular machines in the networks. 
The common components are the signaling proteins, which are shared by shortest paths 
starting from any signaling input node to cellular signaling machines, such as transcrip-
tion and translation machinery, the secretion apparatus, motility machinery, and electrical 
response. The common components targeted by miRNAs are significantly underrepre-
sented among the total proteins of the network. For example, only 14.3% of all proteins 
derived from basic cellular processes, that is, transcription, translation, secretion, motility, 
and electrical response machineries, were miRNA targets, compared with 30% of all pro-
teins in the network. These results indicate that miRNAs avoid disturbing the commonly 
used signaling components (Cui et al. 2006).

7.2.1.3   miRNAs Preferentially Target the Downstream Components of the Adaptors, 
Which Have Potential to Recruit More Downstream Components

Many types of intracellular signaling activity, such as the recruitment of downstream 
signaling components to the vicinity of receptors, are performed by adaptor proteins. 
Adaptors perform such jobs by activating, inhibiting, or relocalizing downstream com-
ponents through direct protein–protein interactions. An adaptor is able to recruit dis-
tinct downstream components in different cellular conditions. Therefore, some adaptors 
(high-linking adaptors) could recruit more downstream components than others (low-
linking adaptors). miRNA targets more proteins in the high-linking adaptor group (36.1%, 
39/108) than in the low-linking adaptor group (24.2%, 22/91, P < 0.015). This result suggests 
that miRNAs preferentially target the downstream components of the adaptors, which 
have potential to recruit more downstream components (Cui et al. 2006).

If an adaptor can recruit more downstream components, these components should have 
higher dynamic gene expression. To accurately respond to extracellular stimuli, adaptors 
need to selectively recruit downstream components. As miRNA targets are more com-
mon among the downstream components of high-linked adaptors, miRNAs may play an 
important role in the precise selection of cellular responses to stimuli by controlling the 
concentration of adaptors’ downstream components.

7.2.1.4   Dynamic Regulation of Signaling Pathways by miRNAs
General principles of miRNA regulation of signaling networks are understood, and sev-
eral studies have been done to investigate the expression dynamics of miRNA regulation 
of signaling pathways. The loci and patterns of miRNA coexpression are conserved across 
various organisms (Altuvia et al. 2005; Megraw et al. 2007). This makes it easier to inves-
tigate the signaling pathways that are potentially regulated by miRNA clusters. Yen and 
co-workers (2008) surveyed conserved clustering of mammalian miRNAs on chromo-
somes, and then examined the potential signaling pathway genes (targets) of each miRNA 
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cluster. Their analysis suggested that each member of the miRNA clusters could regulate 
one or more components of a signaling pathway. Thus co-ordination between members 
of the miRNA clusters controlling components of a signaling pathway can regulate signal 
flow. The authors also experimentally verified their predictions and showed that one of 
the miRNA clusters, mmu-mir-183-96-182, targets irs1, Rasa1, and Grb2. Interestingly, 
all of these components are known members of the insulin signaling pathway. The ability 
of miRNA clusters to modulate multiple components of a single pathway suggested that 
miRNA could act as an efficient regulator for certain signaling pathways.

In another study, Gusev (2008) presented computational analyses of cellular processes, 
functions, and pathways that are collectively targeted by differentially expressed miRNAs. 
Gusev linked miRNAs to different GO categories, disease and toxicological categories, 
physiological functions and pathways. Results of the study suggested that coexpressed 
miRNAs may provide systematic compensatory responses to the abnormal phenotypic 
changes in cancer cells by targeting different signaling pathways.

7.2.2  miRNA Regulation of Gene Regulatory Networks

Gene regulatory networks describe the regulatory relationships between a regulator, which 
could be a TF and/or RNA, and its target genes. In such a network a TF receives input from 
an upstream signal transduction cascade and binds to a cis-regulatory element in the pro-
moter of a gene. The bound transcription factor can stimulate or repress gene transcription 
and facilitate information flow from TFs to downstream effectors, resulting in a phenotype 
(Cui et al. 2007b; Zhu, Gerstein, and Snyder 2007). Deciphering gene regulatory networks 
is a way to understand cellular processes.

7.2.2.1   miRNA Preferentially Regulates the Genes with High 
Transcriptional Regulation Complexity

Much is known about the primary components of transcriptional regulation, that is, TFs, 
transcriptional factor binding sites (TFBS) on a promoter region, and the relationships 
(combinatorial regulation, cooperation and antagonism, autoregulation, feed-forward, and 
so on) between them. However, study of the regulatory networks with miRNAs as regu-
lators is just beginning. In particular, the ability of miRNAs to regulate multiple genes 
invites the question of whether miRNAs share TF functional paradigms, such as combina-
torial regulation and regulation of whole genetic programs.

miRNAs have great diversity and an abundance of targets; however, it is unclear why 
some genes are regulated by miRNAs whereas others are not. In other words, what prin-
ciples govern miRNA regulation in animal genomes? To answer this question, Cui et al. 
(2007b) examined the regulatory principles of miRNA within a gene regulatory network of 
the human embryonic stem cell. The network contained three transcription factors (OCT4, 
NANOG, and SOX2) and 2043 genes that are regulated by the three TFs. The analysis 
revealed that there are significantly more miRNA target genes that are regulated by more 
TFs (Cui et al. 2007b). This observation means that a gene that is regulated by more TFs is 
most likely to be regulated by miRNAs. To extend the observation to the entire genome, 
the authors extended the analysis onto entire human genes by correlating the TFBSs of 
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miRNA target and nontarget genes. The analysis confirmed that genes targeted by more 
miRNAs have more TFBSs (Cui et al. 2007b). This observation led Cui et al. to propose a 
novel mechanism for spatiotemporal expression behavior of miRNA-regulated networks: 
genes that are part of some dynamic process likely require complex regulation under dif-
ferent temporal and spatial conditions. Analysis of developmental genes, which are known 
to be regulated dynamically by TFs, confirmed that these genes have more TFBSs (imply-
ing that they are regulated by more TFs) and are regulated by more miRNAs. Borneman 
et al. (2006) demonstrated a similar concept, showing that genes that extensively regulate 
crucial processes are often heavily regulated by miRNAs.

7.2.2.2   miRNA Tends to Team up with TFs to Form Regulatory Loops
The discovery mentioned above has led to the suggestion of co-evolution between 
TF-mediated transcriptional regulation and miRNA-mediated posttranscriptional regula-
tion. Other studies have also suggested that miRNAs are most likely to regulate cellular 
processes in coordination with TFs (Shalgi et al. 2007; Tsang, Zhu, and van Oudenaarden 
2007). A statistical analysis of combinatorial regulation between TFs and miRNAs showed 
support for evolutionary advantages of joining transcriptional and posttranscriptional 
regulatory mechanisms for regulatory control of genes (Zhou et al. 2007).

Analysis of signaling networks integrated with miRNAs showed that miRNAs pref-
erentially regulate positive regulatory loops of signaling networks (Cui et al. 2006), and 
this conclusion has been detailed in Section 7.2.2.1. In this context, it is interesting to ask 
whether miRNAs also regulate the positive regulatory loops in gene regulatory networks. 
Tsang and co-workers used mammalian gene expression data to compute positive and 
negative transcriptional coregulation circuits of miRNA and its targets (Tsang, Zhu, and 
van Oudenaarden 2007). These miRNA-mediated feedback and feed-forward loops were 
shown to be prevalent in the human and mouse genome. Results of the analyses strongly 
suggested that coordinated transcriptional and miRNA-mediated regulation become a 
common mechanism in mammalian genomes to maintain the robustness of gene regula-
tion (Tsang, Zhu, and van Oudenaarden 2007).

There are two prevalent classes of circuits (Type 1 and Type 2 circuits; more details 
about these two types of circuits can be found in Section 7.3.1) in mouse and human 
miRNA regulation networks. In Type 1 circuits (Figure  7.1), any deviation from the 
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FIGURE 7.1 (See color insert following page 332.) Type-1 circuits of transcription factor and miRNA 
regulatory motifs (F), (T), and (m) represent upstream factor, target gene, and miRNA, respectively.



microRNA Regulation of Networks of Normal and Cancer Cells    ◾    113

upstream factor (F)’s steady state would drive the target (T) and miRNA (m) away 
from their steady states in the same direction; thus, m could modulate the produc-
tion rate of T in the direction opposite to F’s fluctuation. Type 1 circuits could func-
tion as noise buffering that helps to maintain target protein homeostasis and ensures 
more uniform expression of T within a cell population. For example, in the human 
c-Myc/E2F1/miR-17-20 network (Acar, Becskei, and van Oudenaarden 2005; O’Donnell 
et al. 2005; Tsang, Zhu, and van Oudenaarden 2007), c-Myc and E2F1 can activate 
each other’s transcription and form a positive regulatory loop, and both can acti-
vate the transcription of the miR-17 miRNA cluster. miRNA-17 mediates negative 
feedback to the E2F1 transcription factor. This negative loop, mediated by miRNAs, 
could prevent random activation of c-Myc/E2F1 by fluctuations in their expres-
sion. These motifs are overrepresented in animal genomes. Mathematical modeling 
has shown that miRNA in such motifs stabilizes the feedback loop to resist exter-
nal perturbation, increasing network stability (Yu et al. 2008). Such robust action 
can be often observed in developmental processes that are regulated by miRNAs. 
The existence of extensive TF-like combinatorial interactions among miRNAs (Yuh, 
Bolouri, and Davidson 1998) and between miRNAs and TFs (Shalgi et al. 2007) has 
also been reported. Using evolutionarily conserved potential miRNA binding sites in 
human genes and conserved TF binding sites in gene promoter regions, the authors 
pointed out two global architectural features that are involved in recurring regulation 
networks consisting of miRNAs and TFs. The first feature is that the network con-
sists of combinatorial interactions between pairs of miRNAs with many shared targets. 
Furthermore, networks encode several levels of hierarchy. The second feature is that 
the network included hundreds of miRNA-TF pairs that regulate a large set of common 
genes, which, in turn, tend to mutually regulate each other. The second global network 
character has been extensively observed in gene regulatory networks.

A recent genome-scale miRNA network motif analysis in Caenorhabditis elegans showed 
that miRNA-TF composite feedback loops, in which a TF controls a miRNA and, in turn, 
the TF, is also regulated by that same miRNA. Such network motifs were found in statisti-
cally significant numbers in the network (Martinez et al. 2008). Such miRNA-TF feedback 
loops are highly connected and heavily regulated (TFs and miRNAs regulate each other).

The data indicate that miRNAs and TFs regulate each other and form important regu-
latory motifs. These miRNA-TF motifs are prevalent in animal genomes; thus, they play 
important roles in many biological processes.

7.2.3  miRNA Regulation of Metabolic Networks

Cellular response to genetic and environmental perturbations is often reflected and/or 
mediated through changes in metabolism. It is accepted that mechanisms that control 
metabolic networks are complex and involve transcriptional, posttranscriptional, and 
translational regulation. Several studies have integrated expression with metabolic net-
work data to analyze how the coordinated expression of enzymes shapes the metabolic 
network. Most of these studies have been successful in systematically characterizing 
transcriptional regulation of metabolic pathways. Since miRNAs could regulate many 
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target genes, it is reasonable to believe that miRNA could extensively regulate meta-
bolic networks.

Several studies have shown the effects of miRNA on a particular metabolic pathway. For 
example, miRNA may regulate entire metabolic pathways, such as cholesterol biosynthesis 
and triglyceride metabolism (Krutzfeldt and Stoffel 2006). miR-122 negatively regulates 
some transcriptional repressors that modulate a cluster of cholesterol-biosynthesis genes, 
including HMG-CoA reductase (Krutzfeldt and Stoffel 2006).

Tibiche and Wang recently analyzed the direct regulatory effect of miRNAs on enzymes 
in the human metabolic network. They explored miRNA regulatory principles in the net-
work by exploring the relationships between the miRNA targets and the metabolic network 
nodes with distinct network structural features (Tibiche and Wong 2008). In the network, 
nodes represent either enzymes or reactions. In this study, the nodes were classified into 
five categories based on their structural features in the network (Figure 7.2). The nodes 
that uptake metabolites from extracellular space and have no incoming links were called 
upstream nodes (UPNs). The nodes with no outgoing links were called downstream nodes 
(DSNs), which were responsible for producing pathway output metabolites used in various 
cellular activities and biological processes. One crucial node in a network is a cut vertex 
node, or articulation or cut points (CPs). If the graph was connected before the removal of 
the vertex, it will be disconnected after its removal. Any connected graph with a cut vertex 
has a connectivity of 1. This means that a bottleneck node, when deleted, will disconnect at 

Cut point

Hub

Downstream nodes

Upstream node
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FIGURE 7.2 Node types with distinct network structural features. Nodes represent enzymes while 
the arcs represent chemical reactions.



microRNA Regulation of Networks of Normal and Cancer Cells    ◾    115

least one component from the network. They are usually located in crucial network posi-
tions and, therefore, control metabolic flow from one part of the network to another. The 
nodes with a high degree of connectivity (top 5% of connection in network) were called 
hubs. All other nodes were called intermediate nodes.

Analysis of miRNA regulation of metabolic networks showed that miRNAs preferen-
tially regulate network hubs. They avoid intermediate nodes, which is in agreement with 
the observation that miRNA avoids targeting common components of cellular signaling 
networks. miRNAs regulate CPs, allowing them greater control and targeted modulation 
of metabolic flow. miRNAs preferentially regulate two or more consecutive linear meta-
bolic reactions but avoid regulating metabolic branches. Furthermore, certain metabolic 
pathways are predominately regulated by miRNA. For example, over 30 pathways, such as 
amino acid synthesis or degradation, glycan biosynthesis, pantothenate and CoA biosyn-
thesis, and a group of lipid metabolism pathways, are extensively regulated by miRNAs. 
This is in agreement with previous studies reported in the mouse (Krutzfeldt and Stoffel 
2006) and Drosophila (Stark et al. 2003). Taken together, the data show that miRNA regu-
lates the central metabolic pathways and has a major role in cell metabolism.

7.2.4  miRNA Regulation of Protein Interaction Networks

Proteins interact with each other to perform specific cellular functions. Protein interac-
tion networks or interactome maps provide a valuable framework for systematic study of 
protein function.

7.2.4.1   miRNAs Preferentially Regulate Network Hubs
Analysis of the human protein interaction network integrated with miRNAs showed that 
the average number of target-site types in the 3′ untranslated regions (3′UTR) of a set of 
genes encoding the protein is strongly correlated with the extent of protein connectivity in 
the network (Liang and Li 2007). Furthermore, the interacting proteins tend to share more 
miRNA target-site types compared with random pairs. In principle, proteins with more 
interacting partners suggest their participation in complex dynamic processes. Protein 
production in such processes is highly dynamic, requiring tighter regulatory control (Cui 
et al. 2007c). The analysis of microarray profiles of miRNA target genes in various tissues 
is consistent with this trend, showing that mRNAs with broad expression profiles have a 
tendency to be regulated by more miRNAs (Cui et al. 2007b). These data suggest that when 
a protein has many interacting partners, it will be regulated by many transcription factors 
and miRNAs. This is in agreement with the results from the gene network analysis, which 
showed that miRNAs preferentially regulate the genes regulated by many transcription 
factors (Borneman et al. 2006).

Based on the clustering coefficient (a ratio of the existing links among a node’s neigh-
bors and the maximum possible number of links between them) of network hubs, they can 
be classified into two categories, intermodular and intramodular. A hub protein with a 
high clustering coefficient is likely to be an intramodular hub, which interacts with most of 
its partners simultaneously to form a protein complex, and completes a coherent function. 
In contrast, a hub protein with a low clustering coefficient tends to be an intermodular hub, 
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which tends to interact with other proteins at different times and in different places, and 
then coordinates different functional modules. The number of miRNA target-site types 
of a gene encoding a hub protein is significantly negatively correlated with the clustering 
coefficient (Liang and Li 2007). These results suggest that different types of hub proteins 
have different miRNA targeting propensities and the miRNAs regulate intermodular hubs 
more than intramodular hubs. Further analysis of hubs using betweenness centrality (a 
measure of the number of nonredundant shortest paths going through a node) showed that 
miRNAs preferentially regulate hubs with high betweenness, which are the “bottlenecks” 
of information flow in the network (Hsu and Huang 2008). These results indicate that 
miRNA tends to affect the “key nodes” in networks.

7.2.4.2   The Targets of Individual miRNAs Tend to Form Subnetworks
Decomposition of the network in a modular manner results in the finding that target genes 
of individual miRNA are significantly closer to each other, as shown by short character-
istic path lengths between the target genes of the same miRNA, when compared to the 
whole network (Hsu and Huang 2008). The conclusion was drawn by comparing two sub-
network models: (1) a subnetwork formed by proteins directly regulated by one miRNA 
(level-0 proteins), and (2) an extended subnetwork involving interacting neighbors (level-1 
proteins) of the proteins in the first network (level-0). Further statistical analysis led the 
investigators to conclude that formation of functional modules is rarer in the first type 
(level-0) of subnetwork than in the second (level-1). This result means that level-0 proteins 
do not interact closely with each other; instead, they interact with one another indirectly 
through some mediator proteins. These mediator proteins may correspond to the level-1 
subnetwork proteins. Because level-1 proteins, along with level-0 proteins, form functional 
modules, miRNA could influence specific biological functions by regulating a small num-
ber of selected level-0 genes.

7.3  miRNA REGULATION OF CANCER GENE NETWORkS
Cancer is a disease that can be induced by multiple factors, such as gene mutation, methy-
lation, and environmental factors. Certain genes induce cancer and promote oncogenesis 
(oncogenes), while others inhibit tumor development (tumor suppressors) (Cui et al. 2007a). 
Thus, pathogenesis of cancer is a delicate balance between oncogenes and tumor suppres-
sors. Recently, miRNA expression was shown to be altered in cancer, compared with nor-
mal tissue, spanning a wide range of tumor types including lung, breast, brain, liver, and 
colon cancer, and leukemia. miRNAs regulate cancer-related processes like cell growth 
and tissue differentiation. Because abnormal proliferation and defective differentiation 
are characteristic features of tumor cells, and miRNAs are involved in regulation of these 
processes, miRNAs are considered to be key molecules that are likely to affect cancer gene 
networks. Global analysis of miRNA chromosomal locations suggested that miRNA genes 
were located at fragile sites in the genomic regions that are commonly amplified or deleted 
in human cancer (Calin et al. 2004). The functional roles of miRNA in cancer have been 
extensively reviewed elsewhere (Blenkiron and Miska 2007; Cui et al. 2007a; Sassen, Miska, 
and Caldas 2008; Wu et al. 2007). In summary, although miRNAs negatively regulate their 
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targets, they perform more complex regulation by working with other regulatory genes, 
such as TFs. As explained above (see Section 7.2), it is expected that an integrative analysis 
of TFs, miRNAs, and their interactions with their target genes could shed light on tran-
scriptional and posttranscriptional regulatory mechanisms of cancer gene networks.

7.3.1  miRNA Regulatory Circuits in Cancer

Gene regulatory loops are important components of cancer networks. Several lines of evi-
dence have suggested that miRNA could interact with these cancer gene regulatory loops, 
and subsequently regulate cancer progression and metastasis. For example, mir-17-92 was 
implicated in regulating the Myc oncogenic pathway (Ma’ayan et al. 2005). Further studies 
of mir-17-92 in cancer suggested that a double feed-forward loop exists between E2F, Myc, 
and the miR-17/20 cluster, which plays a crucial role in regulation of cancer progression 
(O’Donnell et al. 2005; Sylvestre et al. 2007). Such a loop, containing TFs (E2Fs and Myc) 
and genes coding for miRNAs (miR-17-92 cluster), has been defined as a Type-I circuit, 
as described earlier (Figure 7.1; see Section 7.2.2). Briefly, the characteristics of this type 
of miRNA-mediated feedback and feed-forward circuits are: (1) the transcription of the 
miRNAs and their targets are positively coregulated; (2) they are found to be less abundant 
than type-II circuits (transcription of the miRNAs and their targets is oppositely regulated 
by common upstream factors); (3) they possess the ability to provide the host with some 
important regulatory and signal processing functions, that is, modulation and mainte-
nance of the protein steady state.

Although we are able to infer general characteristics of the c-Myc/E2Fs and miR-17-92 
regulatory loop based on the type of regulatory circuits, we still lack a full quantitative 
understanding of how the loop functions. In other words, when E2Fs/Myc are expressed at 
pathological levels, what quantitative levels induce these proteins to activate targets to con-
trol proliferation and apoptotic behavior, and what levels of miRNA are needed in tumor 
and normal states? To answer these questions, Aguda et al. (2008) proposed a simple math-
ematical model for this regulatory loop.

The authors explored the consequences of the network based on the steady states and 
dynamic states of miR-17-92 and the group of proteins that are its targets (Figure 7.3). 
The positive feedback loops between E2F and Myc can emerge into bistability (existence 
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FIGURE 7.3 (See color insert following page 332.) The regulatory loop of c-Myc/E2Fs and miR-
17-92. Arrows represent active regulation while T signs represent negative regulation.
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of low and high levels of proteins, corresponding to bistable switches “OFF” and “ON,” 
respectively, with sharp transitions between levels inducible by a triggering stimulus, 
such as a growth factor (Ferrell 2002)). The model described by Aguda et al. could exhibit 
bistability and predicted that miR-17-92 plays a critical role in regulating the position 
of the OFF-ON switch in E2F/Myc protein levels, and in determining the ON levels of 
these proteins. The model predictions agreed with current thinking about the regula-
tory mechanism by which c-Myc fine-tunes gene expression through the activation of 
E2F and miR-17-92 transcription. Upon activation, miR-17-92 simultaneously reduces the 
translation of E2F/Myc, preventing a rampant E2F/Myc feedback loop that could induce 
uncontrolled cell proliferation. Most importantly, the model predicted that miR-17-92 
counteracts the cancer-associated decrease in growth factor requirement for cell prolifer-
ation. At non-steady-state conditions the model could also explain why miR-17-92 is anti-
apoptotic. Initially the Myc/E2F protein levels were high, which corresponds to increased 
apoptosis. When the level of miR-17-92 was increased, the level of the target genes of 
miR-17-92 decreased, and, in turn, led to a decrease in the rate of apoptosis. The model 
demonstrated a delicate balance in the cellular system and accounted for a mechanism 
in which the same cellular components can cause or suppress the cancer depending on 
various influencing factors.

7.3.2  miRNA Regulatory Networks Associated with Cancer

As mentioned above, miR-17-92 has been studied extensively. Currently it is known that 
miR-17-92 has more than 20 genes, such as TGFBR2, PTEN, and THBS1, that are experi-
mentally validated as its targets. Although many of these targets are known as cell cycle 
regulators, none of these interactions is sufficient to explain the oncogenic potential of this 
locus. The specific mechanisms of either the tumor suppressor or oncogenic activities of 
the miR-17-92 remain unknown, and may require investigation with the methods of sys-
tems biology. A recent study showed that miR-17-92 regulates a cell cycle specific network, 
a central component of cancer signaling (Cloonan et al. 2008).

Analysis of the miR-17-92 regulatory network predicted that miR-17-5p could act as an 
oncogene or a tumor suppressor by targeting both cell proliferation activators and prolif-
eration inhibitors, respectively, in different cellular contexts. In situations where pro-pro-
liferative genes dominate, miR-17-5p may stabilize the proliferation signal and maintain 
a net proliferative (oncogenic) outcome by removing proliferation inhibitors and increas-
ing the mRNA levels of proliferation activators. On the other hand, in situations where 
proliferation inhibitors dominate, suppression of pro-proliferative signals is reinforced, 
leading to a net antiproliferative signal. Functional analysis of the network explained that 
miR-17-5p acts by suppressing the G1/S cell cycle check point, resulting in a sudden rise 
in cell proliferation rate by targeting a large genetic network of interacting proteins. This 
coordinated targeting allows miR-17-5p to efficiently decouple negative regulators of the 
MAPK signaling cascade, thus promoting growth in cancer cells. Withdrawal of miRNA-
17-5p would result in increasing proliferation activators and decreasing mRNA levels of 
the proliferation inhibitors (pro-proliferative signal), possibly leading to tumor suppres-
sion (Cloonan et al. 2008).
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Network approaches have been also used to construct a miR-21 regulatory network that 
may contribute to cancer progression. To uncover the molecular mechanisms of miR-21 
in cancer development, Papagiannakopoulos, Shapiro, and Kosik (2008) first predicted all 
the potential targets of miR-21 using TargetScan, a computational program designed for 
miRNA target prediction (Lewis et al. 2003). They performed Gene Ontology (GO) analy-
sis to identify a subset of the predicted targets that are involved in regulating cell growth or 
apoptosis. Their analysis showed that GO terms, such as cell growth and proliferation, cell 
death, cancer, and cell cycle, were statistically significant in the predicted targets. Finally, 
they mapped the predicted targets of these GO terms onto a protein interaction network 
and extracted a subnetwork mainly consisting of the predicted targets of the selected GO 
terms. The authors suggested that such a subnetwork is likely to be tightly regulated by 
miR-21 in what is also called the miR-21 regulatory network.

Predominant finds in the miR-21 regulatory network are the TGF-β pathway genes 
(TGFBR2, TGFBR3, and DAXX), p53 pathway genes (p53, TP73L, and TAp63), activating 
cofactors of the p53 pathway (JMY, TOPORS, HNRPK, and TP53BP2), and mitochondrial 

apoptotic pathway genes (APAF1, caspase-8, VDAC1, and PPIF). These genes, found in 
the subnetwork, are predicted to be regulated by miR-21. The TGF-β pathway is known to 
induce apoptosis in cancer cells, and also during development, in response to TGF-β ligand 
binding to its receptors, TGFBR2 and TGFBR3, which can, in turn, inhibit growth and acti-
vate apoptosis. Furthermore, genes involved in the p53 pathway are known to assist in the 
transcriptional activation of antiproliferative and proapoptotic genes in response to DNA 
damage. These results suggest that miR-21 may act as an oncogene to suppress p53 and 
the apoptotic pathways. Further experimental analysis of the regulatory effects of miR-21 
on the components of the subnetwork suggested that changes in the level of miRNA-21 
are likely to reduce the robustness of a highly interconnected tumor-suppressive network 
and result in global dysregulation of the network functions. This suggests that miRNA-21 
upregulation may be a key step in oncogenesis.

7.3.3  miRNA Regulation of the p53 Network

The p53 network controls many pathways important for tumor suppression by regulating 
transcription. Recently, Sinha et al. (2008) have identified a cancer-signaling module (p53 
module) that contains many tumor suppressors, such as p53, p16, and others that are com-
monly employed by tumors. The tumor suppressor p53 modulates the expression of target 
genes that promote growth arrest and apoptosis. Therefore, regulation of the p53 network 
may be critical for cancer progression and metastasis (Sinha et al. 2008).

A computationally systematic characterization of miRNAs that are components of the p53-
miR transcriptional regulatory network was conducted by Sinha et al. (2008). They constructed 
a p53-centered regulatory network containing 23 TFs that regulate p53 and 48 TFs that are 
regulated by p53 (based on the p53 knowledgebase) (http://p53.bii.a-star.edu.sg). Furthermore, 
the authors integrated miRNAs that not only target the TFs in the p53-centered regulatory net-
work, but may also be potentially regulated by p53, into the p53-centered regulatory network 
(Figure 7.4). In order to find the miRNAs that are potentially regulated by p53, they scanned 
the 10 kb flanking regions of each miRNA in the human genome using the p53MH. The latter 



120    ◾    Pradeep kumar Shreenivasaiah, Do Han kim, and Edwin Wang

is an algorithm that identifies p53-responsive genes in the human and mouse genome in order 
to identify putative p53-binding sites within miRNAs. Finally, a regulatory network centered 
on the p53 gene and miRNA was obtained. Notably, most of the miRNAs in the network had 
been reported to be modulated in either cancer cell lines or tumor samples. Further analysis of 
the potentially targeted network genes showed that miRNAs within the network are function-
ally enriched with biological processes, such as apoptosis and cell cycle. These data indicate 
that the p53-centered gene and miRNA regulatory network are involved in tumor progres-
sion. This case provides strong evidence for using integrative methods and data sources to 
tackle important problems regarding the roles of miRNA.

Using the p53 regulatory network, Sinha et al. identified four types of representative 
miRNA-TF regulatory circuits. They used these models to hypothesize the mechanisms of 
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FIGURE 7.4 (See color insert following page 332.) The p53-centered miRNA regulatory cancer 
network. Red boxes represent miRs. Red dotted lines represent the regulation of miRs to TFs which 
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miRs whose expression 1.5-fold (p < 0.05) in cancer is triggered by the p53 activation are under-
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action of p53 (“master transcriptional regulator”) repression. The authors explained various 
scenarios of p53 repression as a direct or indirect effect of transactivating/transrepressing 
downstream targets (TFs/miRNA). For the downstream coherent models, the p53 action 
on downstream target genes and the miRNA is opposite (Figures 7.5A and 7.5B). In the 
downstream incoherent models, p53 acts on downstream target genes, as do the miRNAs 
(Figures 7.5C and 7.5D). By analyzing these circuits, the authors suggested that in the case of 
the p53 downstream targets, the foremost activated positive feedback in a coupled feedback 
circuit can rapidly induce the “ON” state transition of the signaling system (p53 activat-
ing downstream target genes), and then another delayed positive feedback (p53 suppressing 
miRNAs that target p53 downstream target genes) could robustly maintain this “ON” state. 
Finally, the most delayed negative feedback would reinstate the system to the original “OFF” 
state, preventing any further excessive response specific to the applied stimulus.

Using a computational and a systems biologic approach, it would be possible to perform 
a comprehensive survey of the miRNA-p53 network. Furthermore, the potential cross-talk 
between the miRNAs and the p53 transcriptional network could be investigated to illus-
trate the potential molecular mechanisms of p53-miRNA in cancer progression. Along this 
line, using an experimental approach, several studies showed that a part of the p53 network 
is mediated through transcriptional activation of a cluster of miRNAs. In turn, these miR-
NAs repress a number of target genes to induce growth arrest. All these studies compared 
the expression of miRNAs in cells with or without p53 expression. Sinha et al. compared 
the miRNA expression profiles of wild-type and p53-null mouse embryonic fibroblasts, 
which also expressed a variety of oncogenes. Three miRNAs, miR-34a, miR-34b, and miR-
34c, were found to positively correlate with p53 status. The interaction of p53 and miR-34s 
has also been documented in the p53-centered gene and miRNA regulatory network.

Apoptosis and growth arrest are common consequences of p53 activation. Experiments 
have shown that the cyclin-dependent kinase inhibitor p21Waf1/Cip1 is an immediate target 
of p53. This inhibitory protein can affect most, but not all, of the antiproliferative capabili-
ties of p53. This suggests the possibility that additional signaling molecules may participate 
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models.
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in p53-mediated growth arrest. Furthermore, chromatin immunoprecipitation and luciferase 
assays (Blenkiron and Miska 2007; Raver-Shapira et al. 2007) confirmed that the activation of 
p53 resulted in binding to miR-34a promoters and activation of transcription in HCT116 cells. 
Additionally, Oren et al. and Mendell et al. were able to show that p53 regulates miR-34a in the 
same cancer cells (reported in Chang et al. 2007; Raver-Shapira et al. 2007). Hermeking (2007) 
and Raver-Shapira et al. (2007) have both reported that miR-34b and miR-34c are direct tran-
scriptional targets of p53. Their studies have also shown that the ectopic expression of miR-
34a, miR-34b, and miR-34c induced cell cycle arrest in primary human fibroblasts and in 
four other tumor cell lines. Expression of miR-34 inhibited proliferation by inducing cellular 
senescence and cell cycle arrest at G1. p53 upregulates miR-34a in response to DNA damage 
and subsequently leads to G1 cell cycle arrest and apoptosis in various cancer cell lines. All 
these studies substantiate the miRNA-p53 relationship in various mouse tissues and cancer 
cell lines. Interestingly, miR-34-mediated growth arrest can occur in the absence of p21waf1/
Cip1. Taken together, the data highlight an important role of miRNAs in promoting p53 sig-
naling through the p21-independent pathway for p53-dependent tumor suppression.
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8.1  INTRODUCTION

8.1.1  Signaling Studies in Humans: The Dilemma

The original idea of signaling pathways, as presented in the early studies of G-protein sig-
naling (Gilman 1987; Hardman, Robison, and Sutherland 1971; Rodbell 1995) was heav-
ily influenced by concepts of signal transduction in computer science. Each pathway was 
considered as an independent responding unit that coupled extracellular stimulations to 
specific outputs through defined signaling cascades. However, as more signaling pathways 
were identified, it became obvious that crosstalk was a common phenomenon among path-
ways, and the same pathway could participate in cellular responses against different envi-
ronmental stimulations (Eungdamrong and Iyengar 2004; Ma’ayan 2008). It is now well 
established that molecular events in the cell occur in the context of a complex signaling 
network that is temporally, spatially, and concentration-wise dynamic.

Understanding this enormously dynamic signaling network is a long-term challenge 
for our experimental studies, particularly in humans because of technical and ethical con-
cerns. Due to technical limitations, conventional signaling studies can only address signal-
ing events among a few molecules. This approach tends to provide artificially separated 
pathways simply because the “connectors” among pathways are overlooked. Results from 
conventional signaling studies in turn constrain later studies to focus on interactions of the 
components in one pathway while neglecting the broader effects in the same or other path-
ways. As discussed in other chapters, the development of experimental techniques greatly 
facilitates qualitative and quantitative signaling studies in humans. However, studying 
temporal and spatial dynamics of multiple signaling components usually relies on in vitro 
tissue culture systems or animal models. Neither system can reproduce the exact molecu-
lar events under the same in vivo environment as seen in humans. On the other hand, 
limited availability and notorious variation curb the use of primary human samples. Taken 
together, some degree of approximation, simplification, generalization, and deduction is 
inevitable for most human signaling studies, no matter how capable the experimental sys-
tems are to extract quantitative information. In other words, what we obtain biologically 
from signaling pathway studies in humans are usually models rather than realities.

There is a long-lasting debate about the usefulness and possibility of integrating and 
analyzing these human signaling “models” with tools of systems biology. In conventional 
signaling studies, researchers focus more on qualitative changes in terms of a few signaling 
inputs and outputs, such as the relationship between overexpression of one protein and cell 
survival. It was widely believed that simple logic is sufficient to make qualitative predictions 
in well-defined signaling pathways without formal modeling efforts. However, with the 
exponential increase of signaling pathway information, it is becoming less intuitive to infer 
signaling events in complex signaling networks such as T-cell activation (Saez-Rodriguez 
et al. 2007). Moreover, although “low-throughput” per experiment, conventional signaling 
studies typically yield higher quality data compared to most high-throughput methods. 
They can also provide detailed signaling information of a particular pathway region from 
primary human samples, which cannot be replaced by high-throughput data obtained from 
in vitro systems or animal models. Thus, integrating the existing pathway knowledge is as 
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important as obtaining high-throughput data to better our understanding of the human 
signaling network at a systematic level.

On the other hand, there is a need for tools that can aid this integration. Conventional 
signaling studies in humans are not naturally compatible with systems biology tools. Most 
of those studies were not equipped to ask quantitative questions such as reactant/product 
turnover rate, subcellular localization, and reaction kinetics. This limits the applicability of 
quantitative mathematical methods, such as the use of differential equations, in modeling 
existing data. Meanwhile, the topological analysis of signaling networks, although insight-
ful in identifying motifs and key signaling components (Ma’ayan et al. 2005), has limited 
application in predicting the dynamic behaviors of specific signaling components.

8.1.2  Boolean Modeling: A Natural and Powerful Translator 
between Signaling Studies and Systems Biology

It is often observed that changes in signaling behaviors can be attributed to the qualitative 
or digital changes of certain components in a pathway, such as the activation or inhibi-
tion of certain proteins (Bornholdt 2008). To some extent, these observations serve as “the 
zeroth law” of conventional signaling research, based on which pathways can be studied. 
Recent quantitative research did indeed confirm the digital behavior of certain signal-
ing pathway components (Altan-Bonnet and Germain 2005). These approximate or exact 
digital behaviors in biological processes triggered the initial exploration of using discrete 
dynamic models such as Boolean models to capture the dynamics of biological systems 
(Glass and Kauffman 1973).

Retrospectively, Boolean logic is a way of thinking implicitly embedded in conventional 
signaling pathway studies. Boolean models have no parameters, and only assume two pos-
sible states: ON, meaning above threshold, and OFF, meaning below threshold. This cor-
relates well with the qualitative concepts of presence/activation and absence/inhibition 
in signaling studies. In Boolean models, relationships among components are indicated 
by three Boolean operators: AND (conjunction), OR (disjunction), and NOT (negation). 
Similar language is widely used in depicting regulatory relationships among signaling 
pathway components. The conditional dependency of upstream regulators to achieve a 
downstream effect, such as regulations exerted by proteins that form a complex, resem-
bles the AND relationship. The combined effect of independent upstream regulators on a 
downstream node, such as regulations exerted from independent signaling pathways on 
the same target, resembles the OR relationship. NOT describes inhibitory effects. By using 
Boolean operators in combination, it is intuitive to translate biological regulation from 
upstream regulators to downstream targets into Boolean rules.

The establishment of Boolean rules from signaling pathways enables computational 
simulation of signaling events (Chaves, Albert, and Sontag 2005; Davidich and Bornholdt 
2008; Kaufman, Andris, and Leo 1999; Li, Assmann, and Albert 2006; Saez-Rodriguez 
et al. 2007). In this chapter, we present our study in which we applied Boolean model-
ing to study the survival signaling network of T-cell large granular lymphocyte (T-LGL) 
leukemia (Zhang et al. 2008). This study proves that, as in other experimental systems, 
Boolean modeling retains its power of dynamic analysis and prediction when it comes to 



128    ◾    Ranran zhang, Thomas P. Loughran, Jr., and Réka Albert

signaling studies in human cancers. By analyzing existing signaling information, Boolean 
modeling as a tool is capable of bringing insights into the pathogenesis and potential thera-
peutic targets in a rare leukemia, which would otherwise be inaccessible to intuitive logic 
deduction.

8.2  CASE STUDy: NETWORk MODEL OF THE SURVIVAL SIGNALING 
IN T-CELL LARGE GRANULAR LyMPHOCyTE LEUkEMIA

8.2.1  Studying Signaling Abnormalities in T-LGL Leukemia: 
Can We Make a Wiser Guess?

The name large granular lymphocyte (LGL) refers to a morphologically distinct subpopu-
lation that normally comprises 10% to 15% of peripheral blood mononuclear cells (PBMC). 
They are characterized by a high cytoplasmic to nuclear ratio and abundant azurophilic 
granules (Loughran 1993; Timonen, Ortaldo, and Herberman 1981). Normal circulating 
LGL are mainly comprised of CD3− natural killer (NK) cells. Only about 15% are derived 
from CD3+ cytotoxic T lymphocytes (CTL) (Sokol and Loughran 2006). LGLs serve as the 
main executors of cell-mediated cytotoxicity. They are essential for eliminating infected 
somatic cells and tumor cells (Russell and Ley 2002). LGL leukemia is a rare disorder of 
cytotoxic lymphocytes. It was first described as a clonal proliferation of LGL involving 
blood, marrow, and spleen. In LGL leukemia patients, leukemic LGL usually form the 
major cell type in circulating PBMC, and bone marrow and spleen infiltration is frequently 
observed (Loughran et al. 1985). Based on the lineage of leukemic LGL, LGL leukemia is 
further divided into T-LGL leukemia and NK-LGL leukemia. T-LGL leukemia features an 
abnormal clonal expansion of antigen-primed, competent CTL. It occurs predominantly 
in the elderly. The majority of T-LGL leukemia cases follow an indolent course with median 
survival of more than 10 years, although acute cases have been reported. Currently, there is 
no curative therapy for this leukemia (Loughran 1993; Sokol and Loughran 2006). T-LGL 
leukemia is frequently associated with autoimmune diseases and autoimmune-mediated 
bone marrow disorders (Rose and Berliner 2004). This places T-LGL leukemia at the inter-
section of cancer and autoimmunity (Shah et al. 2008).

CTL activation normally involves an initial expansion of antigen-specific CTL clones 
and their acquisition of cytotoxic activity. Subsequently, the activated CTL popula-
tion undergoes contraction mediated by activation-induced cell death (AICD), result-
ing in final stabilization of a small antigen-experienced CTL population (Klebanoff, 
Gattinoni, and Restifo 2006). This process requires a delicate balance between cell pro-
liferation, survival, and apoptosis. Leukemic T-LGL exhibit constitutive activation of 
multiple survival signaling pathways that are only transiently activated during normal 
CTL activation, including the Janus kinases (JAK), signal transducers and activators of 
the transcription (STAT) pathway (Epling-Burnette et al. 2001), the mitogen-activated 
protein kinase (MAPK) pathway (Epling-Burnette et al. 2004; Schade et al. 2006), the 
phosphoinositide-3-kinase (PI3K)-v-akt murine thymoma viral oncogene homolog 
(AKT) pathway (Schade et al. 2006), and the mitochondria-related apoptosis pathways 
(Epling-Burnette et al. 2001). Most of these chronic activations can be attributed to the 
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potential existence of long-term immunostimulation (Loughran 1993) and abnormal 
AICD of leukemic T-LGL in vivo. It has been shown that leukemic T-LGL are not sensi-
tive to Fas-induced apoptosis (Lamy et al. 1998), a process essential for AICD (Krueger 
et al. 2003). Recent molecular profiling data further suggests that normal CTL activa-
tion and AICD are coupled by signaling components that are deregulated in leukemic 
T-LGL (Shah et al. 2008). In summary, T-LGL leukemia provides a unique opportunity 
to decipher the key mediators that bridge CTL activation and AICD in humans. This 
knowledge is essential for identifying potential therapeutic targets for T-LGL leukemia 
as well as generating long-term competent CTL necessary for tumor and cancer vac-
cine development.

Despite its importance, studying the signaling abnormalities in T-LGL leukemia is dif-
ficult. LGL leukemia is a rare disease (Sokol and Loughran 2006), and there is no animal 
model or cell line available for study of T-LGL leukemia signaling. The necessary reliance 
on primary lymphocytes from patients or healthy donors restricts the quantitative and 
even qualitative information that can be obtained in signaling studies of T-LGL leukemia. 
On the other hand, signaling perturbations in T-LGL leukemia, as discussed above, involve 
multiple signaling pathways. It is possible and likely that these perturbations result from 
deregulation of only a subset of pathway components. However, identifying such a subset 
is by itself difficult. Thus, in order to guide future signaling investigations in T-LGL leuke-
mia, it is becoming increasingly important to synthesize the results of existing signaling 
studies as well as to discern the subset of key regulators hiding among them.

8.2.2  Constructing the Survival Signaling Network of T-LGL Leukemia

As the first step toward systematically understanding the long-term survival of leukemic 
T-LGL, we started to assemble the survival signaling network of T-LGL leukemia with 
the signaling network of CTL activation–AICD as a framework. The hypothesis behind 
this was that leukemic T-LGL were likely to arise from abnormal immune responses, and 
most of the deregulated signaling components were likely to interact with other signaling 
components as they do in normal CTL activation and AICD signaling. Due to the lack of 
an existing signaling network to depict signaling events during human CTL activation and 
AICD, we first constructed the human general CTL activation–AICD signaling network 
through an extensive literature search. As in many other signaling networks (Christensen, 
Thakar, and Albert 2007), proteins, mRNAs, and small molecules (such as lipids) were rep-
resented as nodes. In addition, “Cytoskeleton signaling,” “Proliferation,” and “Apoptosis” 
were included as nodes to summarize the biological effects of a group of components in 
the signaling pathways and serve as the indicators of cell fate. Interactions among nodes 
were denoted as edges, and the direction of edges followed the direction of the information 
flow, from the upstream (source) node to the downstream (product or target) node. Edges 
were characterized by signs, where a positive sign indicated activation and a negative sign 
indicated inhibition.

As expected, after constructing the general CTL activation–AICD signaling network, 
we did indeed find the majority of known deregulations in T-LGL leukemia involved in 
this network. However, we also noticed that a few deregulations, such as deregulations 
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in platelet derived growth factor (PDGF) and sphingolipid signaling, were not involved. 
This observation by itself highlighted the topologically unique signal wiring in leukemic 
T-LGL as compared to normal CTL. To evaluate the relationships between these deregula-
tions and other components normally involved in CTL activation as well as AICD, we aug-
mented the general CTL activation–AICD network with nodes and edges corresponding 
to these deregulations and their signaling activities. We also included the node “Stimuli” 
to represent the unknown initial trigger of the CTL activation in T-LGL leukemia (Sokol 
and Loughran 2006).

To incorporate the most unique interactions through which all known deregulations 
in leukemic T-LGL were connected as well as to simplify the later simulation of the net-
work dynamics, the augmented network was subjected to network simplification using 
NET-SYNTHESIS, a signal transduction network inference and simplification tool (Albert 
et al. 2007; Kachalo et al. 2008). NET-SYNTHESIS constructs the sparsest network that 
maintains all the causal (upstream-downstream) effects incorporated in a redundant start-
ing network based on combinatorial optimization of graph algorithms for binary transi-
tive reduction and pseudo-vertex collapse. Nodes and edges can be marked as “critical” 
so they will not be removed during the simplification process. In our study, we marked 
nodes known to be deregulated in T-LGL leukemia in the augmented network to be criti-
cal. We also marked the direct interactions or biochemical reactions between critical nodes 
as critical. Edges connecting two noncritical nodes are not critical regardless of whether 
or not they represent direct interactions. It is worth noting that the sparsest network may 
not be the most realistic network to recapitulate a biological process. Hence, we performed 
additional adjustment (manual curation) of the NET-SYNTHESIS output to obtain the 
T-LGL leukemia survival signaling network (Figure 8.1). This network contains 58 nodes 
and 123 edges.

Here is a brief description of the T-LGL leukemia survival signaling network. “Stimuli” 
initiates the CTL activation via engaging the T-cell receptor (TCR) complex (Samelson 
2002). Consequently, Src kinase family members such as lymphocyte-specific protein 
tyrosine kinase (LCK) and FYN oncogene related to SRC, FGR, YES (FYN) are triggered 
(Veillette, Latour, and Davidson 2002) and stimulate the MAPK pathway (Samelson 2002), 
the PI3K pathway (Kane and Weiss 2003), and transcription factors such as NFκB and 
nuclear factor of activated T-cells (NFAT) (Feske 2007). These transcription factors facili-
tate the expression of IL-2 (Hayden, West, and Ghosh 2006; Kane, Lin, and Weiss 2000), 
amplifying the T-cell activation signal mainly through the JAK-STAT pathway (Leonard 
and O’Shea 1998). The negative regulation of T-cell activation from ZAP70 and FYN 
reflects the negative feedback loop that regulates the normal CTL activation at the TCR 
level. T-cell activation results in clonal expansion and the production of inflammatory fac-
tors such as interferon-γ, tumor necrosis factor family members, granzyme B, and perforin 
(Bouwmeester et al. 2004; Brueckmann et al. 2004; Glimcher et al. 2004; Grove and Plumb 
1993; Hoffmann and Baltimore 2006).

Meanwhile, T-cell activation elevates the expression of Fas and Fas ligand, which 
prepare the competent CTL for AICD (Hoffman et al. 2002; Hsu et al. 1999; Macian 
2005; Rengarajan et al. 2000). Fas-induced apoptosis is positively regulated by ceramide 
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(Grassme et al. 2001), and negatively regulated by FLICE inhibitory protein (FLIP) as well 
as inhibitor of apoptosis proteins (IAP) (Hoffmann and Baltimore 2006). Leukemic T-LGL 
overexpress soluble Fas (sFas), which inhibits Fas signaling by interfering Fas-FasL interac-
tion (Lamy et al. 1998). In addition to the Fas-induced apoptosis, AICD is also regulated 
by mitochondrial pathways which are mainly governed by the balance between pro- and 
anti-apoptotic Bcl-2 family members (Siegel 2006). T-cell activation can be positively regu-
lated by IL-15 (Weng et al. 2002), and negatively regulated by sphingosine-1-phosphate 
(S1P) through small mothers against decapentaplegic (SMAD) (Xin et al. 2004) as well as 
by PDGF (Daynes, Dowell, and Araneo 1991).

8.2.3  Studying the Signal Propagation in Motion: A Boolean Dynamic 
Model Based on the T-LGL Leukemia Survival Signaling Network

Constructing the T-LGL leukemia survival signaling network integrated the existing sig-
naling knowledge about leukemic T-LGL in the context of CTL activation and AICD in the 
format of a network. However, due to the complexity of this network, it remains difficult to 
intuitively analyze the causal relationships among the signaling deregulations or the key 
regulators that determine the long-term survival of leukemic T-LGL. As the second step of 
systematically understanding the dynamics of survival signaling in T-LGL leukemia, we 
translated the T-LGL leukemia survival signaling network into a Boolean dynamic model. 
Each of the nodes was associated with a Boolean function using the three Boolean opera-
tors that describe the relationship between the state of the node and the states of the nodes 
regulating it. As in the biological system, there is a time lag between the state change of 
the regulators and the state change of the targets in the Boolean model. For example, the 
Boolean rule “PI3K*= (PDGFR OR RAS) AND NOT Apoptosis” indicates that the next 
state of PI3K (denoted by PI3K*) will be ON if one of its upstream regulators, PDGF recep-
tor (PDGFR) or RAS, is currently ON, and the state of Apoptosis is currently OFF.

The kinetics of signal propagation are rarely known from experiments in T-LGL leu-
kemia studies. Thus, to equally sample the space of all possible timescales, we used a 
random-order asynchronous update algorithm (Chaves, Albert, and Sontag 2005; Li, 
Assmann, and Albert 2006), which samples differences in the speed of signal propaga-
tion. In this algorithm, the unit of time (also called timestep) is a round of updating 
during which all nodes are updated in a randomly selected order. Thus, the timestep 
corresponds to the longest duration required for a node to respond to a state change of its 
regulators. The general updating scheme of the random-order asynchronous algorithm 
is written as
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i j
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where Si
t  is the state of component i at timestep t, Bi is the Boolean function associated with 

the node i and its regulators j, k, l, … and mj, mk, ml, … ∈(t−1, t) are the timesteps when the 
last status change occurred for the regulators, which can be either the current or previous 
timestep.
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To reproduce how a population of cells responds to the same signal, and to simulate cell 
to cell variability, we performed multiple simulations with the same initial conditions but 
different updating orders (i.e., different timing). The model was allowed to update for mul-
tiple rounds until the node “Apoptosis” became ON in all simulations (recapitulating the 
death of all CTL) or stabilized in the OFF state in a fraction of simulations (recapitulating 
the stabilization of the long-term surviving CTL population). The frequency of activation 
for each node, that is, the fraction of simulations where the node is ON, represents the 
trends of signaling events in the cell population studied. The onset of apoptosis removes 
cells from the CTL population. This effect was reproduced by terminating simulations in 
which the node “Apoptosis” was activated and obtaining the frequency of node activa-
tion from ongoing simulations only. The frequency of “Apoptosis” activation, however, is 
obtained from the whole population as in the beginning of simulations.

Before simulation, the states of nodes were set according to their states in resting CTL. 
The state of Stimuli was set to ON at the beginning of every simulation, recapitulating the 
activation of CTL by an antigen. At the end of the simulation, if the state of a node stabi-
lized at ON although it was in the OFF state at the beginning of the simulation, we consider 
it as constitutively active. If the state of a node stabilized at OFF although it was in the ON 
state at the beginning of the simulation, or it was experimentally shown to be active after 
normal CTL activation, we consider it as downregulated/inhibited. During simulations, 
the state of a node can be fixed to reproduce signaling perturbations.

8.2.4  Revealing the Causal Relationships among the known 
Signaling Abnormalities in T-LGL Leukemia

To investigate signaling abnormalities underlying the long-term survival of the leuke-
mic T-LGL, we first tested whether our model could reproduce the uncoupling of CTL 
activation and AICD using all known deregulations. To reproduce these deregulations, 
we simultaneously set all known deregulations according to their state in T-LGL leuke-
mia (either ON or OFF) throughout the simulations and tracked the state of “Apoptosis.” 
“Apoptosis” turned OFF in all simulations after the first timestep. This suggests that the 
known deregulations are sufficient to reproduce the long-term survival of leukemic T-LGL 
in the model.

To determine the causal relationships within the known deregulations, we simulated 
the T-LGL survival signaling network by constantly setting the state of the known deregu-
lated nodes individually and examined the other nodes that reached steady (time-indepen-
dent) states during simulation. IL-15, PDGF, and Stimuli are three nodes that have been 
suggested to be abnormal in T-LGL leukemia without known upstream regulators in the 
T-LGL survival signaling network. To recapitulate the effect of their deregulations without 
masking the effect of the perturbation tested, the states of IL-15, PDGF, and Stimuli were 
randomly set at ON or OFF at every round of updating, that is, in a random state, except 
when probing for the effect of their own deregulations.

After setting the state Si of node i, nodes achieving steady states (termed a fixed point in 
dynamical systems terminology) consistent with what is experimentally observed in T-LGL 
leukemia correspond to nodes whose state is determined by the deregulation of node i. All 



134    ◾    Ranran zhang, Thomas P. Loughran, Jr., and Réka Albert

the nodes that reach their T-LGL-like fixed points due to the deregulation of node i form 
the induced node set of i, written as Ij. One can represent this causal relationship by j ⇒ Ij. 
For nodes a and b, if Ia ⊂ Ib (the induced node set of a is a subset of the induced node set 
of b) and a ∈ Ib (a belongs to the induced node set of b), the causal relationship between 
nodes b, a and Ia can be compressed into b ⇒ a ⇒ Ia. We present these relationships as a 
hierarchical network in Figure 8.2, with upstream deregulations as the potential cause of 
downstream deregulations.

These causal relationships among known deregulations, which are difficult to address 
through individual experiments, are particularly important to identify potential mecha-
nisms of pathogenesis. Surprisingly, we found that keeping the state of IL-15 at ON was 
sufficient to reproduce all known deregulations in leukemic T-LGL when setting a random 
state for PDGF and Stimuli. To understand the effect of PDGF and Stimuli individually 
upon the constant presence of IL-15, we probed all the possible states of PDGF and Stimuli. 
We determined that the presence of PDGF is needed for the long-term survival of leuke-
mic T-LGL. In contrast, the presence of Stimuli is not required after its initial activation 
 
. We concluded that, based on the available signaling information regarding 
T-cell activation and AICD, the minimal condition required for our model to reproduce 
all known signaling abnormalities in T-LGL leukemia (i.e., a leukemic-T-LGL-like state) is 
IL-15 constantly ON, PDGF intermittently ON, and Stimuli ON in the initial condition.

IL-15 has been shown to be important for CTL activation and generation of long-lived 
CD8+ memory cells (Liu et al. 2002; Weng et al. 2002). On the other hand, the need of 
PDGF for CTL long-term survival was not reported in humans. To validate this surprising 
prediction, we experimentally tested the effect of inhibiting PDGF signaling on the survival 
of leukemic T-LGL. Indeed, a specific chemical inhibitor of PDGFR effectively induced 
apoptosis in T-LGL leukemia patient PBMC but not in PBMC from healthy donors. This 
finding confirmed the possibility that the constitutive presence of IL-15 and PDGF is an 
upstream cause that can explain all known signaling abnormalities in T-LGL leukemia. 
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FIGURE 8.2 Hierarchy among known signaling deregulations in T-LGL leukemia. Color code for 
nodes and edges is the same as in Figure 8.1. (Adapted from Zhang et al. 2008.)



Network Model of Survival Signaling in T-Cell Large Granular Lymphocyte Leukemia    ◾    135

In addition, it suggested that provision of IL-15 and PDGF may be a strategy to generate 
long-lived CTL necessary for the development of virus and cancer vaccines.

8.2.5  Identifying Potential key Regulators That Contribute to Long-term 
Survival of Leukemic T-LGL and Predicting Signaling Events

By constantly setting only two nodes, IL-15 and PDGF, in the ON state, we dynamically 
reproduced a leukemic-T-LGL-like state. This provided us a platform to examine the impor-
tance of network components in determining the long-term survival of leukemic T-LGL. 
In experiments, the importance of a protein, small molecule, or complex in the survival 
of leukemic T-LGL can be evaluated by reducing its amount or interrupting its function 
and tracking the changes of apoptosis. In our model, the importance of a corresponding 
node can be evaluated by resetting and maintaining its state. For example, if the node 
would normally stabilize at ON, we reset its state to OFF and vice versa. We can then track 
the change in the activation frequency of the node “Apoptosis.” Since during the in vitro 
experiments the assumption is that only the manipulated components were changed dur-
ing treatment while the other components remain in their in vivo status, we maintained 
the setting of “IL15,” “PDGF,” and “Stimuli” as ON.

Intuitively, a key regulator of leukemic T-LGL survival should fulfill two criteria during 
model simulation. First, its state stabilizes once a leukemic-T-LGL-like state is achieved. 
Second, altering its state increases the activation frequency of “Apoptosis.” Based on these 
criteria, we systematically simulated the effect of individually altering the states of all 
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nodes that stabilize when a leukemic-T-LGL-like state is achieved. Out of 58 nodes in the 
network, 18 nodes were suggested to be key nodes for the survival of leukemic T-LGL. 
Among them, 11 were experimentally identified in previous studies (including PDGF and 
PDGFR), and 7 were novel predictions (SPHK1, NFκB, S1P, SOCS, GAP, BID, and IL2RB). 
As model verification, we tested 2 of the 7 predicted key regulators: sphingosine kinase 1 
(SPHK1) and nuclear factor kappa-B (NFκB). Specific chemical inhibitors for SPHK1 and 
NFκB induced apoptosis in T-LGL leukemia patient PBMC but not in PBMC from healthy 
donors, validating the model’s predictions.

In addition to predicting key regulators, our model is also capable of predicting addi-
tional signaling pathways that can connect and explain the known deregulations in T-LGL 
leukemia. As shown in Figure 8.4, the model predicted that NFκB functions downstream 
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of PI3K and prevents apoptosis through maintaining the expression of myeloid cell leuke-
mia sequence 1 (Mcl-1). In addition, the initial Mcl-1 downregulation upon NFκB inhibi-
tion was predicted to be independent of STAT3 activity, another transcriptional factor that 
was shown to regulate Mcl-1 in leukemic T-LGL (Epling-Burnette et al. 2001). We validated 
these predictions experimentally.

8.2.6  Boolean Modeling: you Can Do It, We Can Help

Our work on the signaling pathways in T-LGL leukemia illustrates the benefits of 
network-based dynamic modeling. Summarizing signaling information from cancer 
and its normal counterparts in the form of a graph/network, such as what we did for 
survival signaling pathways in T-LGL leukemia, facilitates knowledge integration and 
visualization. Translating the network into a Boolean model enables the initial sys-
tematic analysis of the signaling dynamics. The simulation process might appear less 
accessible to biologists. To overcome this obstacle, software tools are rapidly being 
developed to support modeling attempts at different levels. Network structures can 
be visualized by using software tools such as Graphviz (http://www.graphviz.org/), 
Cytoscape (http://www.cytoscape.org/), and yEd (http://www.yworks.com/en/prod-
ucts_yed_about.html). Some of these tools will be further reviewed in Part 3 of this 
book. Suites such as ProMoT (Saez-Rodriguez et al. 2006) and CellNetAnalyzer (Klamt, 
Saez-Rodriguez, and Gilles 2007) minimize the modeling efforts to just inputing the 
signaling network. They can automatically extract regulatory relationships depicted in 
the signaling network and offer outputs such as the final state based on given inputs, 
node state dependency (whether the state of one node is determined by the state of 
another node), and minimum node set to achieve a desired final state in the model. 
As a common drawback of comprehensive software tools, these programs usually have 
limited capacity for customization.

An intermediate modeling path is offered to biologists with a certain programming expe-
rience. Toolboxes that fall into this category provide basic “building blocks” for Boolean 
modeling, such as synchronous updating (the states of all network nodes are updated at the 
same time) and asynchronous updating (as we used in modeling the T-LGL leukemia sur-
vival signaling network). With intuitive text input of Boolean rules for network nodes and 
initial node states, network dynamics can be analyzed as desired by calling different simu-
lation “building blocks” individually or in combination. An example of these toolboxes is 
BooleanNet (Albert et al. 2008), which serves as a mini-language under the programming 
language Python (http://www.python.org). Given the Boolean rules for individual network 
nodes, it is capable of analyzing network dynamics upon a given node-state input (includ-
ing the constitutive activation or inhibition of certain nodes) using different simulation 
algorithms. It can also integrate available time-scale information by the use of piecewise 
linear differential equations. Although having a slightly steeper learning curve compared 
to the comprehensive modeling software tools, this type of toolbox greatly increases the 
flexibility and exploratory capacity of the model and provides a nice alternative to model 
simulation entirely by custom-made code.
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8.3  DISCUSSION

8.3.1  Boolean Modeling in Cancer Systems Biology: A Way 
of Thinking in Addition to a Way of Modeling

Qualitative data are usually obtained from experiments in human cancer research, and 
their suitability for systematic level studies has been seriously questioned. Our study serves 
as an example that as long as we ask the right questions and use the right tools, qualita-
tive data can be used to dynamically model complex signaling processes. In our study of a 
rare human cancer, T-LGL leukemia, Boolean modeling was proven to be powerful in pre-
dicting clinically relevant signaling events. It greatly facilitated our understanding of the 
pathogenesis and highlighted potential therapeutic targets in this leukemia. In addition, it 
provided feasible strategies for generating long-term competent CTL, which are necessary 
for tumor and cancer vaccine development. Moreover, in light of the lack of cell lines and 
animal models for T-LGL leukemia, Boolean modeling is likely to be the only way through 
which the existing qualitative data can be summarized and dynamically analyzed.

However, the power of Boolean modeling to benefit cancer systems biology studies may 
well exceed what was shown from the perspective of modeling. Conventional signaling 
studies rely heavily on intuitive pathway analysis. Researchers derive their hypotheses and 
deduce the causal relationships among pathway components from looking at the signal-
ing pathway diagrams. The misconception is that signaling pathway dynamics are easy 
to predict as long as the pathways are well defined. A simple reality check shows that this 
cannot be further from the truth: in a signaling network containing n nodes, the number 
of potential initial states for signaling propagation is 2n. It will not take more than half a 
dozen initial conditions to cause one to lose count, not to mention keeping track of the 
network dynamics after each signaling event. Instead of “staring and wondering,” Boolean 
formalism is one of the most natural ways to translate a signaling diagram into a dynamic 
model, through which the effects of different initial conditions, interrupted signaling com-
ponents, and node state dependency can be evaluated. Taken together, Boolean modeling 
may benefit wet-bench signaling studies if used as a routine research tool to aid hypothesis 
formulation. This is particularly true in light of the intuitiveness of the Boolean rules and 
availability of various modeling tools.

8.3.2  Boolean Modeling: Limitations

As all modeling tools, Boolean modeling has its own limitations. By nature, the efficacy 
and accuracy of Boolean models are heavily influenced by what we know now. Boolean 
models established from signaling data can be informative only if the amount of data is 
relatively abundant. Otherwise, it is difficult to bring insights into signaling dynamics 
beyond intuitive analysis. Boolean models are biased toward our current knowledge. A 
downside of Boolean modeling, as compared to large-scale high-throughput studies, is 
that it is difficult to predict the involvement or dynamics of a completely new pathway by 
Boolean models if no previous information is available. The sensitivity of Boolean model-
ing depends on whether qualitative input changes can induce qualitative output changes. 
Despite attempts at incorporating quantitative changes and time-scale differences into 
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Boolean models (Albert et al. 2008; Klamt, Saez-Rodriguez, and Gilles 2007), at present 
only limited signaling details (rates, kinetic parameters) can be reliably incorporated com-
pared to differential equation models.

Moreover, as a supervised approach, Boolean modeling has been accused of subjectivity. 
Signaling components are usually affected by more than one upstream regulator, and the 
relationships among them may not be well studied. With the lack of experimental data, 
researchers are required to make an “educated guess” about the usage of Boolean operators 
when modeling. Suspicions may arise regarding the potential practice of altering the use of 
Boolean operators in order to obtain “desired” model predictions. In addition to empha-
sizing academic ethics, this concern can be addressed by testing the robustness of the 
Boolean models proposed. As models for signaling networks that are biologically robust, 
Boolean models are expected to exhibit robustness against small perturbations in model 
composition, such as altering a small portion of Boolean rules in the models. The accuracy 
of Boolean models may be questioned only if they are fragile even under the slightest rule 
changes. In fact, the involvement of decision making from researchers is a unique feature 
of Boolean modeling, which allows it to facilitate our intuitive understanding of biological 
systems but not to replace it.

In summary, Boolean modeling is a unique tool in systems biology. It is particularly 
useful in facilitating cancer systems biology studies because of its compatibility with 
qualitative data. Despite its relative coarseness compared to more sophisticated modeling 
frameworks such as differential equations, Boolean modeling is an ideal starting point 
for summarizing existing conventional signaling studies, for systematically analyzing 
signaling dynamics under a specified condition such as a particular cancer, for guiding 
future experiments, and for serving as the basis of more sophisticated models. Because 
of its robustness and straightforwardness, Boolean modeling has the potential to become 
a platform that directly facilitates the dialogue between wet- and dry-bench researchers. 
It provides a path through which conventional signaling studies and systems biology can 
be bridged.
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C h a p t e r  9

Cancer Metabolic Networks
Metabolic Pathways Modeling and 
Metabolomics in Cancer Research

Miroslava Cuperlovic-Culf

9.1  INTRODUCTION
Several hypotheses are being explored in an effort to understand the causes of malignant 
transformation. Currently, a principal view is that the formation of a cancer cell requires a 
series of mutations in the nuclear DNA sequence of its ancestral cell, either giving rise to 
oncogenes or impairing the action of tumor suppressor genes. Common features of cancer 
cells thus developed are dynamic changes in the genome, that is, genomic instability lead-
ing to a large variety of clones (Griffiths and Stubbs 2005; Hanahan and Weinberg 2000). 
This cellular diversity gives a basis for the selection of the most aggressive and resilient 
subpopulation. In other words, inherent genetic flexibility of these mutated cells allows 
cancer cells to progressively evolve functions that promote cell growth, disable cell death 
mechanisms, and evade immune surveillance and therapy. With more than 100 distinct 
types of cancer and many more subtypes, the starting point as well as the path that a cell 
can take on its way to become malignant are highly variable. However, in all cancers the 
endpoints that are ultimately reached appear to be the same and are termed hallmarks of 
cancer (Hanahan and Weinberg 2000). They include: (1) self-sufficiency in growth signals, 
(2) insensitivity to antigrowth signals, (3) ability to evade apoptosis, (4) limitless replicative 
potential and sustained angiogenesis, (5) tissue invasion and metastasis, (6) genome insta-
bility, and, recently added, (7) an inflammatory microenvironment (Mantovani 2009) as 
well as (8) cancer metabolic phenotype (Young and Anderson 2008). Regulation of cellular 
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processes such as growth, replication, and apoptosis, which are all closely linked with met-
abolic processes, is the ultimate concern of the majority of oncogenes and oncogenic muta-
tions. Most of these oncogenic mutations are clustered in a few pathways across different 
cancers. Therefore, the ultimate effects on the metabolism are similar across different can-
cers and this is described as the cancer metabolic phenotype. Altered metabolism of cancer 
cells gives them an advantage in survival and proliferation and is a necessary part of can-
cer development. This unique metabolic phenotype is in general characterized by (1) high 
glucose uptake, (2) increased glycolytic activity, (3) decreased mitochondrial activity for 
energy production, (4) low bioenergetic expenditure, (5) increased phospholipid turnover, 
altered lipid profile, and increase of de novo lipid synthesis, (6) increased amino acid trans-
port and protein as well as DNA synthesis, (7) increased hypoxia (a pathological condition 
in which the body as a whole or a region of the body is deprived of adequate oxygen sup-
ply), (8) increased tolerance to reactive oxygen species (ROS), that is, highly reactive ions 
or small molecules with an unpaired valence shell electron.

The increased metabolic needs as well as altered metabolic pathways of cancer cells are 
regularly utilized in clinical practice for diagnosis using positron emission tomography 
(PET) and single-photon emission computed tomography (SPECT) as well as noninva-
sive magnetic resonance imaging (MRI) and the related method of magnetic resonance 
spectroscopy (MRS) (DeGraaf 2007; Vallabhajosula 2007). Some molecules used for PET 
and MRS in relation to the general metabolic changes observed in cancers are shown in 
Table 9.1. These diagnostic applications clearly show consistent alterations in cancer cells in 
energy production, lipid synthesis and turnover, amino acid and protein synthesis, as well 

TABLE 9.1 Examples of PET Tracers and NMR or MRS Observed Metabolites Utilized for the 
Diagnosis of Different Cancers

Biochemical Process PET Tracer NMR Observed Metabolites
Energy metabolism:
Glycolysis; incomplete TCA

[19F]Fluorodeoxyglucose Citrate; glucose; acetate; 
glutamine; creatine; lactate; 
pyruvate; succinate

Membrane and lipid synthesis [11C]Choline;
[18F]Flurocholine;
[18F]Fluoroacetate

Choline containing compounds; 
glycerol; various lipids; 
triglycerides; creatine

DNA synthesis [11C]Thymidine;
[18F]Fluorothymidine

Amino acid transport and protein 
synthesis

[18F]FDOPA(1)

[11C]-L-methionine;
[18F]FMT(2)

Alanine, phenyalanine; threonine; 
tryptophan; valine; glycine; 
aspargine; aspartate; leucine; 
glutamate; glutamine; tyrosine; 
histidine

Hypoxia [18F]FMISO(3)

1 [18F]FDOPA, 3,4-Dihydroxy-6-[18F]fluoro-l-phenylalanine.
2 [18F]FMT, [18F]-l-m-tyrosine (FMT).
3 [18F]FMISO, fluoromisonidazole.
Source: Data from DeGraaf (2007) and Vallabhajosula (2007).
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as DNA synthesis. The causes and the consequences of these metabolic changes in cancers 
are still a point of contention primarily due to the still prevailing attempts to describe the 
changes individually rather than describing the cancer metabolic phenotype in a more 
holistic manner. The development of high-throughput approaches in biology as well as the 
increased popularity of quantitative systems biology analysis provide new methodologies 
for a more complete and clear understanding of both the causes and the consequences 
of the cancer metabolic alterations. Systems biology in this context involves an iterative 
interplay between more or less high-throughput and high-content “wet” experiments, data 
analysis, and theoretical and computational modeling (Alon 2007; Kell and Knowles; Kell 
2006; Palsson 2006). The potential for improvement in treatment and diagnosis through 
increased understanding of the significance of metabolic changes in cancers makes sys-
tems biology analysis of cancer metabolism necessary and timely. Several different levels of 
analysis are needed for the description of these systems. On the first level, it is necessary to 
quantitatively measure changes in different metabolites. For many years measurements of 
metabolite concentrations and fluxes as well as enzyme kinetics were performed primar-
ily in focused-hypothesis driven and often ex vivo experiments. Data provided by these 
approaches is a crucial starting point. However, ex vivo enzyme kinetics measured under 
optimal rather than physiological conditions cannot result in the most accurate informa-
tion. Novel high-throughput, nonselective measurements provided by omics methodolo-
gies can supply in vivo data about a larger number of molecules in parallel. Although omics 
technologies are complementary, analysis of the metabolome (termed metabolomics) is an 
especially useful approach for identifying actual metabolic network transformations in 
pathologies. Metabolomics measurements can be performed in vivo, ex vivo, and in vitro, 
in body fluids as well as tissues and cell lines with different foci. The results of a metabolo-
mics experiment can be analyzed independently or in conjunction with other omics meth-
ods, leading to a range of system-level information.

The next layer of systems biology analysis of metabolic changes in tumors involves the 
development of mathematical and computer models of changes in metabolic pathways and 
networks that can be exploited in different cellular situations, environments, and treat-
ments. A mathematical model is an important tool used to integrate different data leading 
to an understanding of the system. Quantitative models of individual pathways and the 
complete metabolic network are based on various data, including qualitative metabolic 
pathways, that is, wiring diagrams, as well as enzyme kinetic information and concentra-
tion measurements for the molecules involved. Metabolism is subject to thermodynamic 
and stoichiometric constraints and there is a large body of data describing enzyme bio-
chemistry, kinetics, and thermodynamics (as in Rojas 2007). This information provides 
a good starting point for the development of models that can subsequently be perfected 
based on new information.

Several texts provide detailed descriptions of general procedures used both in metabo-
lomics and quantitative modeling and this will not be the focus of this chapter. Rather, 
we will provide an overview of the current knowledge of the metabolic network changes 
observed in cancers, followed by a description of the application of metabolomics analysis 
as well as metabolic pathway and network modeling and analysis that is related to cancer 
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research. Although systems biology can be viewed in terms of the global analysis of both 
cellular systems and complete organisms, our primary focus in this chapter will be on the 
description of a cancer cell.

9.2  METABOLIC CHANGES IN CANCER
The metabolism of a cancer cell differs from normal cell metabolism in terms of the rate and 
the avenue for energy production, biosynthesis of lipids and other macromolecules. Virtually 
all cancers show metabolic changes that result in upregulated glycolysis and glucose con-
sumption as well as upregulated and altered lipid, protein, and nucleotide synthesis. In the 
1920s, Otto Warburg published the seminal observation that tumor cells consume glucose 
at a surprisingly high rate compared to normal cells. Further, in these early experiments 
it was also observed that cancer cells secrete most of the glucose-derived carbon as lactate 
rather than oxidizing it completely in mitochondrial respiration (Warburg 1925, 1956). The 
phenomenon is since termed the Warburg effect and it describes the anaerobic glycolysis 
of cancers. This anaerobic glycolysis is a highly inefficient, wasteful form of energy genera-
tion in comparison to mitochondrial respiration and, although in normal circumstances it 
only happens under hypoxia, in cancers it appears to be present even in an oxygenated envi-
ronment (DeBerardinis et al. 2008a). Currently the prevalent hypothesis is that glycolysis is 
the major source of energy in cancer cells. Recent experimental and theoretical analysis of 
tumors in vivo (Griffiths and Stubbs 2005) show that even though glucose intake is indeed 
highly increased in cancer tissues, the production of ATP is higher than can be provided only 
through glycolysis. Sonveaux and co-workers (2008) have recently proposed a very interesting 
explanation for this apparent disagreement between observed high glucose intake in tumors 
both in vivo and in vitro and the observed discrepancy in ATP production in vivo. In this 
work the authors performed systematic analysis of the complete tumor tissue. They observed 
that hypoxic tumor cells do indeed follow the Warburg scenario and produce large amounts 
of lactate (2 mol for each 1 mol of glucose). The surrounding, well oxygenated, tumor cells 
that are adjacent to blood vessels appear to have a very different metabolic behavior. It was 
observed that these cells express proteins which allow them to take up lactate (e.g., monocar-
boxylate transporters, MCT) and use it in the presence of O2 as their principal substrate for 
mitochondrial oxidative phosphorylation, generating in the process 36 mol of ATP per 2 mol 
of lactate. This “metabolic symbiosis” appears crucial for cancer and thus provides a new 
avenue for treatment. In fact, experiments on mice have shown that the inhibition of MCT 
significantly increased radiation-induced tumor retardation.

Apart from quenching energy needs, a replicating cell must duplicate its genome, pro-
teins, and lipids and assemble the components into daughter cells, while at the same time 
avoiding apoptosis. For this, the cancer cell must take up extracellular nutrients like glu-
cose and glutamine as well as essential amino acids and use them in metabolic pathways 
that convert them into biosynthetic precursors (DeBerardinis et al. 2008b). Tumor cells 
achieve this in a self-sufficient way while being insensitive to outside signals and nutrient 
concentrations (Hanahan and Weinberg 2000) through changes in the expression, acti-
vation, and sequence of enzymes that determine metabolic flux rates (Dang et al. 1997; 
DeBerardinis et al. 2008a, 2008b; Rashid et al. 1997).
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With many different molecular changes that are happening during oncogenesis the 
ongoing challenge in describing tumor cell metabolism is to understand how individual 
pathways fit together into the global metabolic phenotype of the cell and how the metabolic 
changes are related to the other oncogenic processes. Although the answers to these ques-
tions are still not available, a schematic of the connection between the known oncogenes 
and the metabolic changes is starting to emerge. A brief summary of current knowledge 
related to the effects of major oncogenes and tumor suppressors on the cancer metabo-
lome is given in Figure 9.1. One of the initial triggers leading to carcinogenic metabolism 
appears to be the low oxygen environment of the developing cancer cell, that is, hypoxia, 
caused by insufficient blood supply to the fast growing cancer tissue. The cell’s primary 
answer to hypoxia is the activation of hypoxia-inducible transcription factor 1 (HIF-1), 
which is involved in transcription of many regulatory genes. In addition, particularly in 
cancers, HIF-1 accumulation can be caused by factors other than hypoxia. Known can-
cerogenic mutations that activate the mTOR pathway (PTEN, TSC2, PL3Kα or AKT1) 
promote transcription and translation of HIF-1 (Brugarolas and Kaelin 2004; Kaelin and 
Ratcliffe 2008). Activation of the oncogene Ras leads to suppression of HIF-1 hydroxyla-
tion. Further, HIF-1 also appears to be stabilized and its accumulation is stimulated by 
lactate as well as succinate, both observed in cancer cells as a result of increased glycolysis 
and incomplete TCA cycle (Vizan, Mazurek, and Cascante 2008). The resulting increased 
accumulation of HIF-1 has as its major function the initiation of a transcriptional program 
that provides possible multiple solutions for hypoxic stress (Kaelin and Ratcliffe 2008) as 
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FIGURE 9.1 Schematic representation of some known effects of oncogenes and tumor suppres-
sors on metabolic processes in cancer. Oncogenes are in white letters with dark grey background; 
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well as transcriptional activation of several oncogenes and enzymes. HIF-1 is addition-
ally an effector of oncogenes such as Ras, Src, and Her-2. Also, HIF-1 upregulates expres-
sion and activation of genes and growth factors like VEGF and several glycolytic enzymes 
(Vizan, Mazurek, and Cascante 2008).

In addition to the indirect effect of oncogenes on metabolism through the activation of 
HIF-1, various oncogenes have a direct effect on the expression and activation of several 
enzymes. The alterations in the expression of oncogenes such as Akt, Ras, v-SRC, c-Myc, 
and tumor suppressors p53 and pVHL cause changes in the expression and activation 
of several enzymes involved in glycolytic or pentose phosphate as well as the biosynthe-
sis pathway (Bensaad and Vousden 2007; Bertout, Patel, and Simon 2008; Costello and 
Franklin 2005; Dang et al. 1997, 2008; Dang and Semenza 1999; DeBerardinis et al. 2008a, 
2008b; Gillies and Gatenby 2007a, 2007b; Gordan, Thompson, and Simon 2007; Hsu and 
Sabatini 2008; Kuhajda 2006; Ma et al. 2007b; Matoba et al. 2006; Menendez and Lupu 
2007; Yeung, Pan, and Lee 2008; Young and Anderson 2008). The tumor suppressor p53 
has a major role in the cellular response to a wide and diverse range of stress signals, such 
as DNA damage, hypoxia, or oncogenic activation (Bensaad and Vousden 2007; Vogelstein, 
Lane, and Levine 2000). The best understood is p53 control of cell cycle arrest and cell 
death. However, p53 functions appear to also include regulation of other processes, such as 
the response to and regulation of glucose metabolism. Tumor suppressor p53 was shown 
to be sufficient for induction of SCO2 expression, which ensures the maintenance of the 
cytochrome c oxidase complex. This complex is essential for mitochondrial respiration 
and the utilization of oxygen to produce energy (Matoba et al. 2006). Lack of functional 
p53 leads to lower oxygen consumption through mitochondrial respiration and the shift 
to glycolysis for energy production even in highly oxygenated environments, that is, the 
Warburg effect. In addition, p53 appears to downregulate the expression of phosphoglycer-
ate mutase (PGM), an enzyme that is part of the glycolytic pathway (Kondoh et al. 2005). 
Although the mechanism for this downregulation is not clear, the loss of p53 is associated 
with increased PGM expression and thus enhanced glycolysis. Additionally, p53 influences 
glycolysis through the expression of TIGAR (T53-induced glycolysis and apoptosis regu-
lator) which lowers the intracellular levels of fructose-2,6-bisphosphate, a substrate that 
promotes glycolysis and leads to an alternative pentose phosphate pathway (PPP).

Other metabolic changes in tumors involve altered biosynthesis of macromolecules 
such as lipids, proteins, and nucleic acids. Once again the oncogenes are the effectors of 
these metabolic changes with mTOR pathway alterations leading to modifications in pro-
tein biosynthesis and translation and Akt and Ras oncogenes leading to alterations in lipid 
biosynthesis. In the case of fatty acid biosynthesis the major effect is the highly increased 
expression of fatty acid synthase (FASN). The complete mechanism responsible for the 
tumor-associated FASN over-expression is not fully understood; however, there is experi-
mental evidence linking FASN over-expression with the increased translation of known 
oncogenes Akt and Ras as well as hormonal stimulations (in breast and prostate tumors). 
Additionally, there is evidence for posttranscriptional activation of FASN once again by Akt 
as well as a PI3K and mTOR dependent mechanism. A number of different mechanisms 
leading to increased FASN expression in tumor cells highlight the importance of FASN in 
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tumor progression. Other experimental evidence, primarily through inhibition of FASN 
activity, indicates that a change in FASN expression is not only a consequence of carcino-
genesis but is actively contributing to the development, maintenance, and promotion of the 
cancer phenotype. The inhibition of FASN in vivo leads to the blocking of tumor growth as 
well as cell death through apoptosis in tumor cells. These experiments suggest that changes 
in the lipid biosynthesis pathway are crucial for the blocking of apoptosis in tumors (Little 
and Kridel 2008). In fact, FASN inhibition has been linked to p53 status but the actual 
correlation between FASN and p53 is still unclear. FASN is the key lipogenic enzyme that 
catalyzes terminal steps in the de novo biogenesis of fatty acids. In normal cells FASN 
expression depends on the levels of extracellular lipids; however, in tumors FASN is highly 
over-expressed regardless of the extracellular lipid concentration. FASN uses acetyl-CoA as 
a primer, malonyl-CoA as a carbon donor, and NADPH as a reducing equivalent and leads 
to the synthesis of the saturated fatty acid palmitate (Menendez and Lupu 2007; Figure 9.2). 
The activation of FASN leading to de novo synthesis of lipids as well as other changes in the 
expression of enzymes involved in the generation of lipids lead to the modified lipid profiles 
of tumor cells. In clinical applications, FASN expression correlates with poor patient prog-
nosis and reduced survival. Anti-FASN drugs have successfully inhibited tumor growth in 
several animal models and their development is a point of active research. The lipid molecu-
lar fingerprint as well as concentration analysis through spectroscopy and the analysis of 
choline uptake through PET scanning are already used in diagnosis (Table 9.1).
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Another significant aspect of tumor metabolism is the specific expression of isoenzymes. 
These proteins have a different amino acid sequence than their normal counterparts but 
still catalyze the same reaction, although with altered kinetic and regulatory properties 
(Vizan, Mazurek, and Cascante 2008). Although the changes in the kinetic and regula-
tory properties of isoenzymes contribute to a tumor’s metabolic changes, there is still no 
clear model explaining the cause and the role of isoenzymes. Therefore, further research is 
essential before the effects of isoenzymes can be included in cancer metabolic phenotype 
models as well as clinical applications.

The hypothesis developed thus far about the metabolic changes in carcinogenesis provides 
an illustrative description of some aspects of cancer metabolic phenotype. Further develop-
ment of novel and focused treatment and diagnosis targeting metabolic changes requires 
more holistic and quantitative descriptions and understanding of the processes involved.

9.3  METABOLIC PATHWAy MODELING AND NETWORk DEVELOPMENT
Most biological characteristics arise from complex interactions between the cell’s numer-
ous constituents, such as proteins, DNA, RNA, and small molecules. The key challenge for 
biology is to understand and describe the structure and the dynamics of this interaction 
network (Barabasi and Oltvai 2004). Metabolism is a major part of this cellular network and 
various changes observed in metabolism in different cell phenotypes or stages of develop-
ment can result from changes elsewhere in the network. A schematic model that describes 
the development of a cancer metabolic phenotype outlined above clearly shows that several 
seemingly unrelated genes strongly influence the changes in the metabolic processes. Thus, 
only a very large network of diverse biological molecules can lead to even a qualitative 
understanding of the process. Furthermore, even when only the metabolic processes are 
of direct interest it is crucial to keep in mind that metabolic reactions are highly intercon-
nected. In human cells biological molecules, including metabolites, are involved in many 
different processes as products, substrates, or regulators and thus accurate kinetic infor-
mation can only be achieved with the inclusion of all these different reactions. Once the 
network of stimulations leading to the cancer metabolic phenotype as well as the network 
of metabolic reactions is described, it will be possible to find focused and specific drug and 
diagnostic targets. The metabolic pathways can present a highly accurate diagram for the 
individual well studied processes, and metabolic pathway maps such as the Boehringer 
map (available on http://www.expasy.ch/cgi-bin/show_thumbnails.pl) can provide a very 
extensive diagram of many processes. However, pathways are largely artificial constructs 
of molecular interactions primarily resulting from in vitro analysis of individual enzymes. 
Networks that can be developed from omics data as well as automated literature searches 
can provide more information about the multifunctionality of biological molecules and 
can also give an indication of the function of unknown molecules (Barabasi and Oltvai 
2004; Goodacre 2004). Furthermore, the analysis of the network and neighborhoods can 
lead to information about the structural properties of the network such as the determina-
tion of the most connected members as well as the distance between different members. 
Current efforts are focused on outlining the general metabolic network for a human cell 
and this general road map can subsequently be used for construction of specific routes that 
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a cancer cell takes under different conditions. The availability of such a network will also 
allow direct visualization of various high-throughput experiments leading to more infor-
mation about the activated neighbourhoods.

The reconstruction of a metabolic network is approached in several different ways. In 
one approach detailed networks and simulations are initially focused on the well under-
stood, simple, model system such as Escherichia coli and yeast. These networks can then 
be upgraded and extended to describe more “complicated” cellular systems such as the 
human cell. The other approach involves the development of partial models and networks 
directly for a human cell, ultimately aiming at connecting them into a complete network. 
Several first round metabolic networks for a number of organisms including Homo sapiens 
are already available (Duarte et al. 2007; Ma et al. 2007a; Paley and Karp 2006) and can 
be utilized for the analysis of measurements in cancers. The development of such net-
works is a result of literature searches as well as genomics and protein-protein interac-
tion information. Very detailed networks are available through the BIGG database (Recon 
1 model available at http://bigg.ucsd.edu/), Reactome (http://www.reactome.org), and 
MetaCyc (http://metacyc.org). These tools in conjunction with other analysis tools (such as 
Cytoscape, http://cytoscape.org) allow the mapping of omics data and investigation of rela-
tionships between metabolites. Further optimization of such metabolic networks can be 
achieved from quantitative metabolomics measurements using methods such as compara-
tive analysis of the correlation of concentration changes between different metabolites (Steuer 
et al. 2003) The network development is ultimately aimed at the building of the complete 
stoichiometric matrix, that is, a stochiometrically accurate network that would be able to 
describe all biochemical transformations of members in a self-consistent and chemically 
accurate mathematical model (Jamshidi and Palsson 2008; Figure 9.3). The development of 
a stoichiometric matrix is a prerequisite for the development of quantitative, mathemati-
cal models of the cellular processes. The main applications for quantitative models include 
possibilities: (1) to test whether a hypothesized model can describe known experimental 
facts and which changes in the network/model are necessary (hypothesize verification and 
generation); (2) to determine major components of the system for particular applications 
(e.g., biomarkers, drug targets, or external markers discovery); and (3) to provide a system 
for rapid testing of various system manipulations without costly and complex experiments 
(in silico experimentation). The development of network models as well as still prevail-
ing partial pathway models intended for interpretation of biological data and in silico cell 
development can be approached in many different ways. These approaches include the 
development of detailed kinetic models, cybernetic models, stochastic models, metabolic 
control analysis, biochemical systems theory, and constraint-based methods. Constraint-
based modeling is currently one of the most popular approaches as these models provide 
tools that can be used for genome-scale model construction. These models can include a 
large number of genes and reactions and were even proven to be predictive in some cases 
(Reed and Palsson 2003). In the constraint-based models parameter optimization is based 
on all allowed solutions for a set of equations. In this method detailed kinetic information 
is not included and rather than looking at individual reactions, the model calculates from 
the data major constraints for the whole network. In other words, the resulting models are 
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made to fit a complete system of reactions rather than any individual reaction. The con-
straints used for model optimization are stoichiometric (mass balance), thermodynamics 
and enzymatic capacity (using the appropriate enzyme load values). The advantage of these 
models is that they do not require accurate kinetic data. In this type of model it is assumed 
that the network is in a steady state and therefore total concentration of each substance 
does not change. Following this assumption the system of reactions can be described 
with a set of linear equations that can be solved using linear programming. Constraint-
based analyses of metabolic networks have gained considerable popularity and have been 
used to analyze genome-scale reconstructions of several organisms as well as the effect of 
various perturbations, such as gene deletions or drug inhibitions in silico. Genome-scale 
constraint-based models have an immense potential for building and testing hypotheses, 
as well as guiding experiments (reviewed in Raman and Chandra 2009 and Karlebach and 
Shamir 2008). The problem with such models is that they only provide an overall picture of 
the system and do not give any insight into cellular substrate concentrations. Furthermore, 
the steady-state assumption is problematic for metabolites that are exported from the cell. 
Also, their overall representation is only as good as the network used.

The growing availability of metabolomic and fluxomic datasets as well as methods for 
the determination of the thermodynamic properties of biochemical reactions in vivo has 
opened the possibility to formulate large-scale kinetic models (Jamshidi and Palsson 2008). 
In this type of model the goal is to determine accurate kinetic rules for each reaction and 
then to combine these individual reaction kinetics into a model of the complete network 
(Figure 9.3). The kinetic model of a metabolic process considers the cellular network as 

Determination of the stoichiometric matrix (S)
which defines the time change of concentration
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FIGURE 9.3 Outline of two extreme approaches to quantitative modeling of networks. Examples 
present stoichiometric and kinetic model approaches. The stoichiometric model is presented in 
detail in Palsson (2006). The functions used in kinetic models can be Michaelis–Menten, Hill, ping-
pong, etc., and are described in detail in Demin and Goryanin (2009).
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the combination of processes catalyzed by enzymes. The model consists of a system of 
nonlinear differential equations that provide time change information for each reaction 
species. These equations can sometimes be solved explicitly but in the majority of cases 
have to be solved approximately using many different, often computationally intensive, 
solvers. So far only small-scale models have been made and solved that describe only some 
pathways and only under some conditions. In cancer research most kinetic models have 
been aimed at describing signaling pathways with several kinetic models developed for the 
MAPK pathway (reviewed in Rangamani and Iyengar 2008 and Orton et al. 2005). Large-
scale kinetic models as well as models of metabolic pathways for cancer cells have not been 
successfully constructed to date (Jamshidi and Palsson 2008). Kinetic models of metabolic 
networks are still unavailable at least in part due to the inherent complexity of cellular 
and regulatory networks as well as gaps in knowledge concerning system organization 
and kinetic rules. A large number of kinetic parameters required to define this system are 
still undetermined. Furthermore, even known kinetic parameters were largely determined 
from in vitro experiments on isolated enzymes under optimal rather than physiological 
conditions and thus they might not accurately represent the in vivo situation. Few attempts 
have been made at the development of detailed kinetic models of metabolic pathways in 
small healthy cells, such as simulation of the metabolism of the red blood cell (Nakayama, 
Kinoshita, and Tomita 2005) with good results. Although kinetic models can provide the 
most accurate information about the system, the problems with large numbers of kinetic 
parameters and equations that need to be determined as well as computationally intensive 
calculations makes them still only applicable to partial, relatively small and well-studied 
systems.

Several authors have made initial attempts to determine kinetic parameters on a net-
work scale for both constrained as well as kinetic models. The availability of metabolomics 
data (Wishart 2008) and approaches for the extrapolation of thermodynamic quantities 
using computational approaches (Mavrovouniotis 1991; Zamboni and Kümmel 2008) are 
being explored for this application. The framework for metabolic modeling is also being 
proposed (Jamshidi and Palsson 2008), based on the combination of genomic and litera-
ture data for network design and thermodynamic and metabolomic data (for parameter 
determination). A great advancement in further development of models is the develop-
ment of Systems Biology Markup Language (Hucka et al. 2003). Thanks to SBML the 
models are interoperable among many different software tools and users can upload them 
and further work on improvements as well as combining existing models, or alternatively 
use existing models for comparison and analysis of experimental data without going into 
mathematical details (http://www.sbml.org; Hucka et al. 2003). Many commercial and 
academic software tools are now available for the development of models and param-
eter determination from experimental data. The next major hurdle in the development 
of metabolic network models is the collection of high quality and quantity data that can 
show metabolite concentrations in different conditions and at different times. Once these 
data become available to modelers and data analysts it will be possible to make major 
contributions to the development of metabolomics network models for various systems, 
including cancer.
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9.4  METABOLIC PROFILES OF CANCER
The human metabolome comprises thousands of endogenous molecules, many with still 
unknown functions and structures. The large diversity of molecular types in our metabo-
lome and their significance both as participants and regulators of many cellular processes 
make their analysis both challenging and prudent. The analysis of metabolites should 
clearly be a major part of functional genomics as well as systems biology. An attraction of 
the metabolome is that, although more diverse in classes of molecules present, it is likely 
numerically smaller than the transcriptome or proteome (Oliver et al. 1998). Even more 
importantly, as metabolites are downstream of both transcription and translation they are 
potentially a better indicator of enzyme activity and actual phenotype defining changes (ter 
Kuile and Westerhoff 2001). In other words, metabolic changes are showing activated pro-
cesses rather than the potential for process activation. Also, in catalyzed reactions in general 
and in enzyme-catalyzed metabolic processes in particular larger concentration changes 
are observed in metabolites (reaction substrates or products) than in catalysts, that is, either 
enzymes gene or protein form. However, thus far most of the focus in cancer research is still 
on observing changes in genes and proteins and the metabolomics applications in cancer 
research have been primarily aimed at fingerprinting or at diagnosis using only a handful 
of metabolites. The emerging field of metabolomics explores the structure and function of 
low molecular weight compounds beyond DNA and protein. Metabolic profiling has been 
performed for several decades. However, only recent technical innovations have allowed 
metabolite profiling to be carried out on a large scale in terms of both numbers of differ-
ent classes of metabolites simultaneously observed as well as number of samples measured 
(Fernie et al. 2004). Also, the data-driven rather than the hypothesis-driven research ini-
tiated by omics methodologies makes metabolomics a conceptually different approach to 
previous metabolite analyses. Similar to other omics methodologies, metabolomics is an 
interesting platform for diagnostic biomarker discovery, functional genomics, and systems 
biology. In this context, metabolomics attempts to measure the complete set of metabolites 
that vary according to the physiology, development, or pathologic state of the cell, tissue, 
organ, or organism (Kim and Maruvada 2008; Oliver 2002). Several different, primarily 
spectroscopic methods are used for the high-throughput measure of metabolites. A brief 
outline of the most popular methods is given in Table 9.2. These technologies provide simul-
taneous measurements of mixtures and the resolution of different molecules arises from the 
dispersion of observed properties in one or more dimensions (Table 9.2). The major prob-
lem with current metabolomics analysis is that even the most involved technologies can 
individually allow observation of under about 300 different metabolites. Future efforts in 
experimental metabolomics should clearly be aimed at devising thoroughly high-through-
put methodologies.

Metabolomics and metabolic profiling are extensively explored for direct clinical appli-
cation in cancer patient stratification. Early efforts were aimed at finding cancer meta-
bolic markers in the blood from the analysis of NMR spectral lines (Fossel, Carr, and 
McDonagh 1986). However, this initially highly praised result has since proven inaccu-
rate (Chmurny, Hilton, and Halverson 1988; Herring et al. 1990) and this led to general 
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scepticism toward the application of metabolic profiling in cancer diagnosis. At the same 
time, both MS and NMR have been highly successfully utilized for the analysis of cancer 
cell lines and tissue extracts. Furthermore, magnetic resonance spectroscopy (MRS) allows 
noninvasive, in vivo fingerprinting of metabolic profiles of tumors. Despite limitations in 
sensitivity and resolution, MRS metabolic profiling is successfully used for diagnosis of 
tumors particularly of the central nervous system (CNS) and prostate as well as breast 
cancers (Table 9.3). In these measurements the most visible, that is, the most diagnostic are 
the alterations and increase in the energy and fatty acid production with many examples of 
cancer phenotype determination from metabolites such as lactate, lipids, phosphocholine, 
choline, citrate, various amino acids, and triglycerides. The direct analysis of cancer cells 
has also many clinical applications in diagnostics as well as development of novel treat-
ments. Metabolomics of cells can be aimed at measuring the total complement of indi-
vidual metabolites—metabolic fingerprint analysis, or as a measure of a particular class 
of metabolites. Both approaches lead to the determination of a metabolic fingerprint of 
the phenotype. Metabolic profiling of cancer cells can be further combined with avail-
able data on pathways and networks as well as other omics data such as transcriptomics 
(Cuperlovic-Culf et al. 2008) and proteomics with the ultimate goal in developing highly 
detailed, quantitative models.

In metabolic fingerprint analysis complete metabolomics spectra are used in the exam-
ination. In this chemometric approach the compounds are not initially identified. That 
is, only spectral patterns and intensities of the mixtures are recorded. Complete spectra 

TABLE 9.2 Major Methods Used in Metabolomics Analysis

NMR MRS MS FTIR
Raman 

Spectroscopy
Metabolic 
fingerprinting

Yes Yes Yes Yes Yes

Quantitative 
analysis of 
metabolites

Yes Yes Yes No No

Observed 
molecular 
property

Nuclear spin’s 
chemical shift

Nuclear spin’s 
chemical shift

Mass to charge 
ratio

Chemical bond 
vibrations

Chemical bond 
vibration 
(complementary 
to FTIR)

Equipment cost High High High Low High
Maintenance cost High High High Low Low
Per sample cost Low Low High Low Low
Reproducibility High High Low High High
Identification of 
new metabolites

Yes Difficult Yes Difficult Difficult

Main advantage Nondestructive Noninvasive High sensitivity Cheap and fast Very low water 
peak

The labels are NMR, nuclear magnetic resonance spectroscopy; MRS, in vivo NMR spectroscopy; MS, mass 
spectroscopy; FTIR, Fourier transform infrared spectroscopy.

Source: Data from Cuperlovic-Culf et al. (2008), Griffin and Shockcor (2004), and Lenz and Wilson (2007).
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are compared statistically and used to identify the relevant spectral features or areas 
that distinguish similar sample classes. Once these major features are identified different 
approaches can be used to assign them to the corresponding metabolites (Holmes, Wilson, 
and Nicholson 2008; Trygg, Holmes, and Lundstedt 2007). Alternatively, in another 
approach, termed quantitative metabolomics, compounds are identified and quantified 
initially. Once these compounds are identified and quantified, the data can be used for 
various applications including the development of more accurate systems biology models 
(Weljie et al. 2006; Wishart 2008). If the quantitative measurement of metabolite concen-
trations is performed over time the method is called fluxomics.

The chemometrics approach has a range of clinical applications for sample classifica-
tion and in this context has some advantages over the quantitative approach (Serkova and 
Niemann 2006). At the same time this method has several inherent weaknesses caused 
by variations in the data due to the experimental conditions, overlapping peaks as well as 
the unresolved issue of result normalization. Utilization of complete spectra leads to the 
inclusion in the analysis of spectral regions with only background noise. This leads to the 
application of unnecessarily large datasets and can possibly also result in inaccuracies in 
classification. A major concern in quantitative metabolomics is therefore the problem of 
spectral assignment. Unlike transcriptomics where gene assignment is trivial thanks to 
highly specific hybridization of genes to specially designed, unique probes, in the high-
throughput analysis of metabolic mixtures the peak assignment as well as measurement of 
intensity for each metabolite is highly challenging. Some of the major problems in quan-
titative metabolomics are the same as in the chemometric approach and include problems 
with overlapping spectra as well as changes in spectra of various compounds under differ-
ent conditions (i.e., pH). Additionally, unidentified metabolites present a great challenge 
to quantitative metabolomics analysis. Possible experimental solutions are the utilization 
of more complex experiments (multidimensional NMR) or more involved preprocessing 

TABLE 9.3 Major Metabolites Observed Thus Far by NMR- and 
MS-Based Metabolomics Studies of Various Cancer Tissues 
and Cells

Cancer Type Major Differentiating Metabolite
Breast Choline metabolites
Liver High lacate, high amino acids, low carbohydrates
Pancreatic Decreased levels of phosphocholine, 

glycerophosphochiline, and phosphatidylinositol
Cervical Low glucose, high cholines, high amino acids
Prostate Altered amino acids levels; increased lactate; 

phospholipids, choline, decrease in citrate 
concentration, polyamines

Renal High triglycerides and cholesteryl esters
Brain Altered lipids; inositol, N-acetyl aspartate/choline 

ratio creatine/choline ratio

Source: From Gowda, G. A. et al. 2008. Expert Rev. Mol. Diagn. 8: 
617–633. With permission.
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procedures (particularly for MS; Villas-Boas et al. 2005) and also combined utilization of 
different methods, for example MS and NMR methods or a combination of high-through-
put liquid- and gas-based chromatography (MS) (Sreekumar et al. 2009). Another highly 
beneficial experimental method is stable isotope labeling followed by either MS or NMR 
measurement. This approach allows pathway tracing and easier metabolite assignment as 
well as metabolic flux measurements (Lane, Fan, and Higashi 2008). Isotope labeling was 
used in many different analyses of pathways and networks in various systems (Chikayama 
et al. 2008) including cancers (Yang et al. 2007). Mass spectrometry-based approaches that 
are coupled with chromatography provide high sensitivity for targeted compound analysis 
(Nordstrom et al. 2006; Sreekumar et al. 2009). NMR spectroscopy, on the other hand, 
does not require extensive sample preprocessing and separation and provides a number 
of different experimental protocols optimized for mixture analysis, as well as molecular 
formula or structure determination. Thus far the quantification of metabolites with or 
without isotope labeling requires comparison with standard measurements on individ-
ual metabolites. Several such databases are under development and some major noncom-
mercial examples are outlined in Table 9.4. The spectral assignment is performed using 
methods for line comparison of the pure compound measurements and mixture spectra 
(such as Lewis et al. 2007; Sreekumar et al. 2009; Weljie et al. 2006) with either manual or 
semiautomatic spectral assignment (for example, Sreekumar et al. 2009; Xia et al. 2008; 

TABLE 9.4 Some Major Noncommercial Databases of Metabolomics Standard Data for 
Quantification and Assignment

Name and Availability
Metabolomics 
Experiments Additional Functionality

Human Metabolome Project 
(Wishart et al. 2007); 
http://www.hmdb.ca

NMR; MS Biological data; chemical and 
clinical data specific to humans

BMRD
  http://www.bmrb.wisc.edu

NMR Database search for NMR peaks 
assignment

Prime (Akiyama et al. 2008)
  http://prime.psc.riken.jp

MS, NMR

Golm metabolome database
  http://csbdb.mpimp-golm.mpg.de

MS Specific to plants

METLIN metabolite database
  http://metlin.scripps.edu

MS Drug and drug metabolites; 
specific to humans

NIST Chemistry WebBook
  http://Webbook.nist.gov/chemistry

NMR, MS, IR

Madison metabolomics database 
(Cui et al. 2008)

  http://mmcd.nmrfam.wisc.edu

MS, NMR

NMR Lab of Biomolecules
  http://spinportal.magnet.fsu.edu

NMR Database search for NMR peaks 
assignment
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Zhang et al. 2008). Several tools for metabolic data processing including quantification are 
presented in reviews of the field (Katajamaa and Oresic 2007; Wishart 2008).

Although quantitative metabolomics is still under active development, there were 
several interesting applications in the analysis of metabolic pathways and networks in 
cancers. GC-MS and HPLC analysis of metabolites was used for the investigation of 
the effects of oncogenesis on metabolite profiles. In this three-dimensional screening 
experiment the authors analyzed four cell lines serially transduced with four different 
oncogenes and five small-molecule inhibitors of metabolic and nutrient-sensing path-
ways (Ramanathan, Wang, and Schreiber 2005). The resulting quantitative metabolomic 
data have shown the connection and consonance between the effects of oncogenes and 
metabolic changes. The conclusion from this study was that metabolic changes are likely 
the result of gene changes in cancers. The quantitative metabolic data clearly showed 
increased glucose consumption and lactate production (indicative of anaerobic glyco-
lysis), increased consumption of oxygen, high levels of nucleotide biosynthesis, changes 
to the citric acid cycle metabolite concentrations, and changes in mitochondrial bio-
genesis. These data were in good agreement with the cancer metabolite model emerg-
ing from other methods described previously. However, these experiments led to some 
unexpected and as yet unexplained observations, including the observation that cells 
with greater tumorigenic potential consume more oxygen and yet exhibit diminished 
oxygen-dependent ATP synthesis.

Other research using metabolic profiling of cancer tissues has shown that in ovarian 
cancers there are significant quantitative metabolic differences in different tumor types 
(Denkert et al. 2006). In this work the authors investigated the fold change of metabo-
lites in relation to known pathways. The high-throughput metabolite information addi-
tionally provided data for further investigation of pathways and networks. An example 
of such work came two years later from the same group and was focused on the analysis 
of metabolite profiling of human colon carcinoma (Denkert et al. 2008). In this case 206 
metabolites were measured using time-of-flight mass spectrometry resulting in the deter-
mination of 82 significantly different metabolites between colon cancer and normal tis-
sues. The list of identifiable metabolites was mapped on the cluster of closest neighbors 
determined from the KEGG pathway database. The neighbors were determined using the 
metabolite-metabolite distance calculations, based on the number of pathways needed 
to connect two metabolites. This analysis showed increased concentration in cancers of 
metabolites involved in amino acid as well as nucleic acid synthesis and downregulation 
of metabolites from the TCA cycle as well as fatty acid metabolism. These data are in gen-
eral agreement with other published results, and additionally it shows a very interesting 
approach for the visualization of quantitative metabolomics results on the KEGG pathway 
network (Denkert et al. 2008). Several other groups have investigated the application of 
isotope labeling for quantitative metabolomics analysis of cancers. Many such studies were 
reviewed by Lutz (2005) and Boros and co-workers (2002, 2004). Recent efforts utilized 
more comprehensive high-throughput approaches (combined NMR and MS; 2D NMR) as 
well as isotopomer modeling approaches (Richardson et al. 2008; Yang et al. 2007). From 
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these measurements it was possible to determine changes in the flux of different parts of 
energy production pathways (glycolysis and TCA cycle) as well as quantitative metabolic 
changes in breast cancer relative to breast normal cell lines. Richardson et al (2008) gained 
similar information, that is, carbon flux through central metabolism, in a cellular model 
of breast cancer progression.

Metabolomics and quantitative metabolomics produce voluminous data that can lead 
to highly useful information about cancers with the ultimate goal in clinical applications. 
However, this as well as other omics methods should be seen as data aimed at provid-
ing understanding or knowledge about biological processes, in this case understanding of 
metabolism in cancers (Kell 2004). Such understanding can only come from the develop-
ment of, ultimately, quantitative models of metabolic networks that will one day become 
part of the complete cellular network.

9.5  CONCLUSION
Cancer is currently viewed as a disease resulting from cancer-causing genes that deregu-
late cellular proliferation, differentiation, and death. Although the relationship between 
genetic changes and the deregulation of energy production as well as biosynthesis is only 
partially understood, the significance of metabolic changes for cancer development and 
progression is now generally accepted. This recognition has led to many new ideas for 
various clinical applications of specific cancer metabolic phenotypes. The metabolic and 
mitochondrial changes are now being proposed as possible primary targets for cancer 
therapeutics. One example of a promising cancer drug is dichloroacetate, recently pro-
posed and tested by researchers at the University of Alberta, Canada (Michelakis, Webster, 
and Mackey 2008). DCA is a known activator of pyruvate dehydrogenase and the effect of 
DCA on cancer cells appears to be increased delivery of pyruvate into the mitochondria, 
followed by increased mitochondria-based glucose oxidation and apoptosis, all resulting 
in the shrinking of tumors. DCA is currently undergoing clinical trials and promises to be 
widely applicable to a number of solid tumors. The applications in diagnostic are already 
clear from examples shown by PET and MRS methods. However, all of these applications 
are still primarily the result of observations rather than focused analysis due to the lack 
of quantitative in vivo metabolic data as well as quantitative models and networks of a 
cancer metabolic phenotype. System-level analysis and modeling can lead to more focused 
discovery and optimization of targets and markers. Metabolome measurements provide 
more information about the efficacy of cancer treatment and disease progression as well as 
the analysis of toxicity of the treatment. Quantitative models will allow in silico testing of 
various possible drugs and inhibitors and also lead to more optimal biomarkers. In silico 
modes of action studies on network and pathway models can lead to the discovery of the 
most significant enzymatic targets for treatment. Large progress is being made in all the 
individual fields of analysis of cancer metabolic phenotypes and only a combined effort 
from these different approaches can lead to a truly quantitative model of this important 
part of systems biology analysis.
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C h a p t e r  10

Warburg Revisited
Modeling Energy Metabolism 
for Cancer Systems Biology

Mathieu Cloutier

10.1  INTRODUCTION
This chapter on mathematical modeling and energy metabolism in cancer systems biology 
will pursue two major objectives. First, the importance of energy, energy signaling, and 
energy metabolism in cancer will be emphasized, because a major phenotype character-
istic of cancer tumors is the loss of a very important systems property in energy metabo-
lism. The second objective of this chapter is to show how the mathematical modeling of 
biological processes is relevant for cancer systems biology. Here, the emphasis on processes 
is extremely important. In engineering terms, a process is the sum of operations by which 
an input (energy, material, or information) is transformed into an output with specific 
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properties. The concept of process is also well established in biology. For example, we could 
define glycolysis as the process by which glucose (GLC) is converted to pyruvate (PYR) 
with the regeneration of two molecules of ATP and two NADH. As will be seen, the dereg-
ulation of this process is very important in cancer and its mathematical modeling will yield 
significant insights on the disease development and potential therapeutic targets.

Thus, we will examine not only static interactions between cell components (a very 
important aspect of systems biology), but also the dynamic properties of the cell as a multi-
input, multi-output system (the other important aspect of systems biology).

Otto Warburg, in his breakthrough study (Warburg 1930), observed a key phenotype 
difference between normal tissues and cancer tumors, that is, glycolytic overflow to lactate 
(LAC) in the presence of sufficient oxygen (O2) and reduced (but not null) mitochondrial 
oxidation rate. This uncoupling of glycolysis and oxidative phosphorylation (OP) leads to 
a much less efficient energy metabolism, as glycolysis yields only 2 ATP per molecule of 
GLC consumed, while the complete oxidation of GLC yields approximately 30 molecules 
of ATP. Thus, the tumor cells require a much higher inflow of GLC and end up produc-
ing significant amounts of LAC, something that is not normally observed in mammalian 
metabolism in the presence of sufficient O2 inflow. This came to be known as the Warburg 
effect. Relying on lactic fermentation is not optimal for mammalian cells, but it has been 
shown to provide “local” advantages for the tumor: increased availability of growth pre-
cursors, acidification of the surroundings, and prolonged resistance to hypoxia or anoxia. 
Moreover, tumors have access to a plentiful supply of GLC, especially with our modern, 
carbohydrates-rich alimentation. Thus, it might be that the “Warburg phenotype”—even 
though energetically suboptimal—provides mostly advantages to tumors, hence allowing 
their proliferation.

As observed by Pedersen in a recent review, the Warburg effect (and metabolism in 
general) received very little attention in the cancer literature (Pedersen 2007). Being more 
of a phenotype difference, the Warburg effect obviously cannot be the root cause of cancer 
and thus, the most valiant efforts were put into finding genetic and chromosomal factors 
involved in carcinogenesis. However, something very important might have been forgotten 
along the way. Even though Warburg had access to limited experimental techniques and 
incomplete knowledge of genetics (the DNA structure was not even known at the time), he 
managed to show something critical: cancer cells lack a very important systems property, 
that is, the process of OP is not coordinated with glycolysis and energy metabolism is thus 
suboptimal in tumors. If we are to develop efficient therapies for cancer, it will be impor-
tant to assess not the specific properties of one cancer type, but the systems properties that 
induce cancer. In that regard, the aberrant energy metabolism of tumors might provide 
some cues.

Needless to say, the modern tools of molecular and systems biology can be used to 
reassess the Warburg effect and analyze the potential of targeting energy metabolism to 
cure cancer. Regarding the molecular biology behind the Warburg effect, the interested 
reader is directed to the review by Pedersen (2007), which offers an insightful, chronologi-
cal report of some scientific advances since the days of Warburg. Elsewhere in this book, 
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Chapter 9 covers metabolic pathway modeling and presents a review of the current state of 
knowledge on the implications of metabolism in cancer.

The huge steps forward in our understanding of tumor development were possible 
because of the painstaking work of biologists, biochemists, and molecular biologists. As 
of now, the automation of biological measurements and high-throughput methods allows 
scanning an organism at practically all levels: genome, transcriptome, proteome, and 
metabolome. And yet, we won’t completely elucidate cellular functioning (and malfunc-
tioning) in the foreseeable future. Thus, new approaches to existing problems are sought. 
In that regard, systems biology offers unique opportunities to provide meaning to data and 
cellular processes that were, in the past, analyzed separately. According to Franklin M. 
Harold (2001 p. 65): “The time has come to put the cell together again.” This chapter will 
thus present a possible way to do so, using energy as the underlying, common factor to all 
cellular processes.

10.2  ENERGy AND ENERGy METABOLISM IN CANCER
As was mentioned previously, the major phenotype particularity of a cancer tumor, the 
Warburg effect, seems to be a crisis in energy management. Energy is involved in cellular 
division, maintenance, and death, three modes between which a cancer cell will not switch 
normally. Most signaling pathways will include protein phosphorylation cascades, which 
require ATP. It would probably be impossible to identify a cellular process that does not 
involve, directly or indirectly, energy. The most fundamental function of a living organ-
ism, that is, the transcription of its genome and further protein synthesis, can account for 
a significant portion (up to 40% to 50%) of the energy budget (Buttgereit, Burmester, and 
Brand 2000). These considerations are presented in Figure 10.1, where energy is seen as 
being central in the multi-input, multi-output system that is the cell.
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Thus, it is not preposterous to assume that energy metabolism and energy-related inter-
actions are, at some point, critical in cancer development. Recent findings (Pastorino, 
Shulga, and Hoek 2002; Pollak 2009; Heiden et al. 2001) have pointed at energy metabo-
lism as being extremely important in cancer development. Mitochondrial dysfunctions 
because of impaired mtDNA are important in many, if not all, cancer types (Carew and 
Huang 2002). This implies that cancer cells are gradually deprived of their major energy 
generators (the mitochondria) and have to reorganize their metabolic activity. Analyzing 
the processes by which cells produce and manage energy will thus be crucial.

Another reason to consider energy metabolism is the diversity of experimental systems 
and cellular species that are studied in cancer research. Cell extracts and organelles (i.e., 
mitochondria) are used for molecular biology works, yeasts are used to analyze the cell 
cycle, tissues are used to study tumor development, animal models are used for genetic and 
in vivo studies, and, finally, humans are involved in clinical trials. In other words, cancer 
research and development of therapies has to deal with biological mechanisms that span 
many orders of magnitude both in time and space (Butcher, Berg, and Kunkel 2004). This 
concept is shown in Figure 10.2.

This layout presents, roughly, the available experimental systems for cancer studies 
(horizontal axis) and the relevant cellular mechanisms (vertical axis), from simple (in vitro 
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enzyme kinetics) to complex (cell function in the human body) that can be involved in 
cancer research. In that scheme, energy is definitely the conserved factor (horizontally 
and vertically). The most preserved biological mechanisms and pathways usually related to 
energy metabolism as glycolysis, TCA cycle, energy signaling, etc., are found in virtually 
all cells. It is thus hypothesized here that energy metabolism and energy-related signaling 
will be crucial in integrating the wide array of cellular processes relevant to cancer systems 
biology.

10.3  MATHEMATICAL MODELING OF CELLULAR 
PROCESSES IN CANCER SySTEMS BIOLOGy

10.3.1  Integration with Traditional Approaches

Since the vertical (time) and horizontal (space) dispersion of biological mechanisms in 
Figure  10.2 is complicating our experimental investigations, a mathematical modeling 
approach can help to cope with this research challenge. Mathematical modeling is a power-
ful tool to organize knowledge and hierarchy in biological systems (Haefner 1996). Known 
biological processes (i.e., enzyme reactions, signaling, and gene regulation) can be trans-
lated into equations (i.e., differential equations) and solved analytically or numerically. 
The simulation results, in the form of time profiles of reaction rates, concentrations, and 
various protein/cellular functions, can then be compared to actual experimental data to 
improve the modeling. This comparison of experimental and theoretical works is actually 
extremely important in systems biology and in biology in general, as it improves the clas-
sical approach of formulating a hypothesis and trying to confirm or disprove it through 
experimental work alone. This is exemplified in Figure 10.3, where mathematical modeling 
of biological processes is included in the loop.

As mentioned by Khalil and Hill (2005), Stransky et al. (2007), and Ribba, Colin, 
and Schnell (2006), the integration of available biological knowledge through dynamic 
mathematical modeling will be crucial for cancer research. The physiome project is 
another example of such integration of biological knowledge through modeling 
(Crampin et al. 2004).

10.3.2  Modeling and Differential Equations in Systems Biology

As reviewed elsewhere in this book (Chapter 16, Modeling Tools for Cancer Systems 
Biology), several approaches and tools are available when modeling biological systems. 
Depending on the desired level of abstraction that is to be achieved, the model can take 
many forms. When the emphasis is on the dynamics of biological processes, ordinary 
differential equations (ODE) are frequently used. Several textbooks on the modeling of 
biological systems also use differential equations as the common ground for the math-
ematical description of the dynamics of biological processes. Haefner (1996) and Heinrich 
and Schuster (1996) are two good examples for the interested reader.

The use of ODE also allows many links with other fields of research, such as dynami-
cal systems analysis and control engineering. The ODE model developed by Lotka and 
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Volterra to describe predator-prey interactions was one of the first attempts at a systems 
analysis of a biological process (Israel 1988). To emphasize the power of ODE models for 
systems analysis of biological problems, a simple, generic example can be used. Let’s look at 
a pathway where a signal (S) is converted to a response (R) through a set of linear reactions 
with intermediates (X1, X2) and with feedback of the system’s response (R) on the first step 
of the pathway. This pathway is shown in Figure 10.4.

This motif is found in various pathways for signaling, gene regulation, or metabolism. In 
glycolysis (a linear pathway) the third reaction, catalyzed by phosphofructokinase (PFK), 
is regulated by one of the end products of glycolysis (ATP) and also by citrate, one of the 
products of the TCA cycle. The example in Figure 10.4 could also serve as an analogy with 
gene regulation networks, where one signal upregulates a first transcription factor, which 
in turn upregulates a second transcription factor and so on until the desired response is 
achieved and the first step is inhibited (see Goldbeter et al. 2001 for further examples on 
gene regulation). “Visual” models (or cartoons) such as the one presented in Figure 10.4 
are very common in biology and biologists will rapidly understand the implications and 
hypotheses behind such a graphical model.

S RX1 k1k0 k2 k3
X2

FIGURE 10.4 A linear pathway with feedback inhibition.
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However, the dynamic response of a system with feedback regulation is not necessarily 
intuitive and the transcription of the model in Figure 10.4 into an ODE form is neces-
sary for a rigorous analysis of the interactions between the signal (S) and response (R). 
As the objective of this chapter is not to explain the details of ODE model construction, 
the interested reader is encouraged to read textbooks such as the one by Haefner (1996) 
for further details on how to build such models. ODE models can be built and solved 
using various software packages. MATLAB• (The Mathworks Inc.) and Mathematica• 
(Wolfram Research) are the most common commercial packages. Various free software 
packages such as Gepasi (http://www.gepasi.org) are also available to develop ODE mod-
els of biological systems. Chapters 9 and 16 in this book also offer a good overview of 
possible approaches for the modeling of metabolic pathways and links with experimental 
metabolomics studies. Moreover, many databases and repositories are now available to 
store and exchange ODE models, with the possibility of integrating cellular processes at 
a relatively large scale. Biomodels (http://www.biomodels.org) and CellML (http://www.
cellml.org) are two very good examples of such databases.

Concerning our example in Figure 10.4, we can first derive the mass balances for X1, X2, 
and R:
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To the untrained eye, this mathematical description looks rather “dry” and will not reveal 
much about the underlying biology. These equations are nevertheless a transcription of the 
model presented in Figure 10.4. Each equation shows the rate of change of species involved 
in the system (∂X1/dt ... in units of X1 per unit of time). In each case, this rate of change is 
the difference between synthesis (first term on the right-hand side) and consumption or 
degradation of the molecule (second term on the right-hand side). Here, we assume simple 
mass action kinetics for all reactions (ki ∙ Xi …) and the inhibition of the first step by the end 
product is described by the Hill equation: 1/(1+(R/KI)nH).

When numerical values for parameters (k0, k1, k2, KI, nH) and initial conditions (amounts 
of X1, X2 and R at t = 0) are defined, the system can be solved analytically or numerically 
(the latter being more common with large systems). Figure 10.5 shows simulation results 
where an input (S = 1) was imposed after 5 units of time and the response (R) is shown with 
three values for the Hill coefficient (nH = 1, 10, and 20).

As can be seen, variations in parameter nH will induce qualitative changes in the sys-
tem’s behavior. At low values (black line in Figure 10.5) the system behaves as is normally 
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expected in dose-response experiments, as a given input signal gives a stable response 
(R) after a short time. However, if the strength of the feedback inhibition is increased an 
unstable behavior develops, with damped oscillations for nH = 10 (grey line in Figure 10.5) 
or sustained oscillations for nH = 20 (dashed grey line). Of course, the system presented 
here is generic, but it must be mentioned that oscillations are observed in simple biologi-
cal networks with negative feedback. Glycolytic oscillations have been studied for decades 
(Chance and Gosh, 1964) and genetic oscillators are also observed, even in simple systems 
(Guantes and Poyatos 2006). What we observe here is a mix of negative feedback and delay, 
that is, because of the three steps, the signal S is not instantly converted to response R. This 
combination is known to induce oscillations in dynamical systems. Again, the interested 
reader can find a more elaborate treatment of necessary conditions for biological oscilla-
tions in textbooks such as Heinrich and Schuster (1996).

First, these simulation results show that it might not be possible to guess a system’s 
behavior by simply looking at the topology of the network. Here the topology is simple 
and does not change, but a variation in one parameter can change the qualitative behavior 
(from stable to unstable response). Second, it shows the importance of correctly analyzing 
the dynamics of the system, that is, the time-profile response after a perturbation. At the 
functional level, the dynamic response of a biological system is extremely important (Csete 
and Doyle 2002), because the coordination between cell components and the processing 
between signal and response are often critical (Tyson, Chen, and Novak 2003). Moreover, 
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if oscillations were observed the usual approach of analyzing dose-response curves would 
be prone to intrinsic errors (i.e., the response is not stable) and a dynamic time-profile 
analysis would be more appropriate.

Finally, the example presented in Figures 10.4 and 10.5 shows that the regulation struc-
ture and regulatory interactions are important in determining the behavior of a biological 
system. Here, the key component in Figure 10.4 is not a specific reaction or topology, but 
the interaction between the response (R) and the first step in the pathway. As will be shown 
in the next section, the correct description of this regulation structure in tissue energy 
metabolism can be used to reassess the Warburg effect and identify potential therapeutic 
targets (i.e., sensitive parameters in the system).

10.4  CASE STUDy: MATHEMATICAL MODELING 
OF TISSUE ENERGy METABOLISM

10.4.1  Modeling Approach for Tissue Energy Metabolism

The dynamic modeling of metabolism is an established method in various fields such as 
biomolecule production, environmental engineering, food processing, and, more recently, 
in health sciences. This approach has been applied (specifically for energy metabolism) to 
many cellular systems such as Escherichia coli (Chassagnole et al. 2002), yeasts (Duarte, 
Herrgard, and Palsson 2004), muscle cells (Korzniewski and Zoladz 2001; Lambeth and 
Kushmerick 2002), blood cells (Holzhütter 2004), and brain tissue (Aubert and Costalat 
2005; Cloutier et al. 2009), just to name a few. In that regard, a considerable amount 
of tools, kinetic equations, parameters, etc., are available from the literature and allow 
the rigorous development and application of these models. A common approach is to 
first develop the model based on available knowledge (reaction stoichiometries, kinetic 
properties of enzymes, and overall systems properties) and then to refine the modeling 
by comparing it to first-hand experimental data in an iterative loop (see Figure  10.3). 
In this section, the method will be presented for a generic modeling of tissue energy 
metabolism.

Figure 10.6 presents an overview of the major pathways and mechanisms that we will 
consider here for energy metabolism and energy-related signaling in mammalian tissues. 
This model describes:

• Glycolysis (reduced to four reactions, with regulation mechanisms on HK, PGI, PFK, 
and PK)

• Mitochondrial oxidation of pyruvate (lumped in one reaction, but accounting for the 
supply of O2, PYR, and ADP)

• Phosphocreatine (PCr) buffering

• Exchanges of GLC, LAC, and O2 with the blood flow

• Energy consuming processes (lumped in one ATPase reaction)
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• Adenylate kinase (ADK) equilibrium

• AMP activated protein kinase (AMPK) signaling for glucose transport (GLUT) and 
phosphofructokinase (PFK)

Further discussion of modeling hypotheses and complete presentation of the model’s 
equation is found in the Appendix to this chapter.

As was the case for our simple example in the previous section, the mass balances of 
metabolic reactions are represented as a set of ODE. As an example, the differential equa-
tion for the rate of change of GLC will be the difference between uptake (νGLUT) and con-
sumption by the hexokinases (νHK):
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In a dynamic modeling approach, we will consider the kinetic equations and regulation 
of the transporter and hexokinases rates by the following equations:
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where the GLC transport is represented by the reversible Michaelis–Menten kinetic with 
an activation (i.e., similar to an increase in enzyme concentration) represented by the 
AMPK* term. This term represents the action of phosphorylated AMPK in releasing 
GLUT4 transporters during high demand periods. The hexokinase rate is a multiplicative 
Michaelis–Menten kinetic that accounts for the two substrates of the reaction (GLC and 
ATP). The last term represents the inhibition of hexokinases by their product (KI,G6P ≈ 
0.6 mM). Inhibition of HK by its product is an important mechanism to consider here, as 
it is affected in cancer cells, where HK2 binds to mitochondria, which removes the prod-
uct inhibition.

This process of building mass balances and kinetic equations can thus be expanded 
to all the species and fluxes in Figure 10.6, which results in a model with 10 differential 
equations and 12 kinetic fluxes equations. The complete set of ODE, kinetic equations, 
and parameters is found in the Appendix. With well-defined kinetic equations, param-
eters, and initial conditions (i.e., resting metabolite concentrations) representative of the 
system, it is possible to start a numerical integration routine and obtain time profiles of 
GLC, νGLUT, νHK … and so on. The abundant literature and databases on enzyme kinetics, 
cell physiology, and other experimental and theoretical insights can be integrated in the 
modeling. Any information on steady-state metabolite concentrations and fluxes can also 
be implemented in the model. If quantitative experimental time profiles of metabolites or 
fluxes are available, the kinetic parameters of the model can be finely tuned to produce a 
realistic representation of specific conditions. Simulation results presented in this study were 
obtained using the Systems Biology Toolbox for Matlab (Schmidt and Jirstrand 2006).

There is recent interest in energy-related signaling, as links between energy and disease 
are reported and reviewed more and more frequently (Buttgereit, Burmester, and Brand 
2000; Pedersen 2007). Interestingly, no mathematical modeling work has been done on the 
links between energy metabolism and cellular signaling. However, it is plausible that this 
kind of modeling will appear at some point, especially as mathematical models are now 
available for apoptosis signaling (Eissing et al. 2004), or cell cycle signaling (Novak and 
Tyson 2004). Links between energy metabolism and cancer-related processes will also be 
possible, as ODE models are available for tumor development (Spencer et al. 2004) or the 
apoptotic pathway (Bentele et al. 2004).
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In that regard, the AMP dependent protein kinase (Figure 10.6: AMPK and AMPK* in 
its active form) will be key in connecting the cellular subsystems for energy management 
and the underlying biochemical pathways. AMPK signaling could potentially be a central 
player in disease development, as it is involved in many stress responses such as apopto-
sis, low glucose, and hypoxia, and in turn it up- or downregulates many signals related to 
cell growth, protein metabolism, and carbohydrates metabolism (Hardie 2007, 2008). This 
central cellular signal is thus included here for the regulation of glucose transport and will 
allow description of important regulatory effects in energy homeostasis.

10.4.2  Biochemical Regulation, Signaling, and Energy Homeostasis

Using the model presented in Figure 10.6, simulations show how the modeling can describe 
normal dynamic behavior when the energy load is increased (i.e., increase in νATPase rate). 
Figure 10.7 presents simulated time profiles of metabolites and fluxes in response to a 
1-, 5-, or 10-fold increase in energy demand for 30 minutes (i.e., similar to the effect of 
exercise in muscle cells). The νATPase rate is thus used here as an “input” signal and we will 
analyze how the biochemical system responds to that input in order to maintain energy 
homeostasis.
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As can be seen, the model can represent typical observations from cell physiology. First, 
even in the presence of large changes in energy demand, the ATP concentration remains 
fairly stable, with only a ≈ 1% to 2% drop in the case of a 10-fold increase in νATPase rate. This 
is reported in many studies (Korzeniewski and Zoladz 2001; Lambeth and Kushmerick 
2002). This almost perfect energy homeostasis is achieved here by the sharp regulation of 
the PFK, a known “pace-making” enzyme in glycolysis and also by regulation of the mito-
chondrial oxidation rate (νPFK and νmito in Figure 10.7). In this model, the regulation of vPFK 
was achieved by considering AMP signaling (simulated profiles not shown here) and the 
results (fluxes and concentrations in Figure 10.7) are physiologically realistic.

The observation of an overshoot in LAC during intense metabolic activity is consistent 
with observations of mammalian tissues submitted to large changes in energy demand such 
as muscle cells (see black line for LAC profile). Interestingly, this model can also predict 
LAC consumption by the cells if the increase in energy demand is low (see light grey line 
for LAC in Figure 10.7). From the biochemical regulation, mitochondrial activity is more 
sharply regulated at low energy loads, thus being able to consume PYR, favoring equilib-
rium toward LAC consumption. This type of regimen is observed in the brain (Pellerin 
and Magistretti 1994) and in the heart (Stanley 1991) and is suspected to be important for 
energy homeostasis.

The timescale for the simulation, with a 30 minute increase in ATPase rate (from 1 to 
1.5 hours) is relatively short and represents what would happen at the biochemical regula-
tion level (i.e., no genetic regulation). These results thus show the importance of energetic 
regulation for the fast response of the organism to an energy stress. The AMPK signaling 
(included in this model) does increase the amount of GLUT4 transporters. However, this 
increase is not necessarily at the genetic level, as the GLUT4 are stored in vesicles to allow 
a fast adaptation. Obviously, genetic regulation could also be included in longer simula-
tions, as it is reported that AMPK signaling can increase the expression of mitochondrial 
enzymes and other genes related to energy stress.

10.4.3  The Warburg Effect Revisited

From the previous remarks on the Warburg effect, a simulation can be implemented to try 
and reproduce this typical phenotype. As the mtDNA and overall mitochondrial activity 
are known to be affected in cancer cells, a possible way to implement a cancer phenotype 
is to reduce the maximum reaction rate of mitochondrial oxidation (see νmax,mito in the 
Appendix, Table A2). This will induce a lower maximal capacity for mitochondrial oxida-
tion, while keeping the possibility of observing mitochondrial regulation by external effec-
tors (PYR, ADP/ATP, O2). Thus, it must be stated here that, for example, a 50% reduction 
of νmax,mito will not necessarily result in a 50% decrease of the actual mitochondrial rate, 
as the reduction of the rate will induce PYR and/or ADP accumulation which will partly 
compensate for the loss of maximal capacity.

This approach thus represents what would happen in vivo when the mtDNA is dam-
aged and mitochondrial oxidation cannot be performed correctly, with a cascade of events 
that leads to a reorganization of metabolites and fluxes. Results for a gradual lowering of 



178    ◾    Mathieu Cloutier

mitochondrial capacity are presented in Figure 10.8. In that regard, three simulations are 
performed, with a gradual reduction of 50%, 80%, and 95% of mitochondrial maximal 
capacity over a period of 500 days.

As can be seen from these simulations (and consistent with previous observations) the 
system is relatively robust to perturbations. A 50% loss of maximal mitochondrial capacity 
results in relatively small changes in ATP and other metabolite levels. As was the case for 
changes in energy demand (Figure 10.7) the adjustment of mitochondrial activity is sharp 
enough to react to small changes in ATP/ADP (see νmito in the Appendix, Table A2). This 
could explain why some cancer tumors will not necessarily express a detectable Warburg 
phenotype, as impaired mitochondrial activity, if it is low enough, will have undetectable 
effects. However, the simulation shows (quantitatively) that this cellular adaptation has its 
limits. For 80% loss of mitochondrial capacity (dark grey lines in Figure 10.8), significant 
changes in ATP, PYR, LAC, and fluxes are observed. These are consistent with the Warburg 
effect, that is, glycolytic flux (vPFK) is increased, LAC is produced in higher concentrations, 
and O2 consumption is decreased, regardless of sufficient O2 availability, as vmito is lower. 
The black lines, showing the effect of a 95% loss of maximal mitochondrial capacity, repro-
duce what would be a “worst case” scenario, where the glycolytic flux produces 40% to 
50% of the energy output of the cell. A similar proportion of glycolytic derived ATP was 
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reported by Warburg for fast growing tumors. In that situation, the GLC inflow is even 
becoming limiting, as simulated GLC level (black line for GLC in Figure 10.8) is lower than 
the Km value of hexokinase for GLC (0.1 mM).

As was mentioned previously, the expression and binding of a hexokinase isoform (HK2) 
to mitochondria was identified as a key mechanism in the development of the Warburg 
effect (Pedersen 2007). This mechanism increases the glycolytic flux by reducing or remov-
ing the inhibition of HK2 activity by its product, G6P. This inhibition is important in gly-
colysis, as it limits the inflow of GLC if G6P is accumulated. It thus acts as an “upper limit” 
to avoid pushing too much GLC in the cell if it is not needed.

Since the model used in this study does describe this inhibition mechanism, removing 
the inhibition—the (1 + (G6P/KI)nH)−1 in vHK kinetics—would emulate the switch to HK2 
isoform. Simulations of this transition are shown in Figure 10.9 with potential contribu-
tions of both impaired mitochondria and HK2 isoform in the Warburg effect.

Figure  10.9 shows that HK binding to mitochondria and removal of G6P inhibition 
alone can induce the Warburg metabolic phenotype, as it increases glycolytic rate (light 
grey line for vPFK) while the mitochondrial rate is slightly reduced because of a higher 
energetic state (light grey lines for vmito and ATP). As a comparison, the 80% loss of mito-
chondrial activity is also shown in Figure 10.9 (dark grey lines).
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Interestingly, the combination of both factors (black lines in Figure 10.9) will not neces-
sarily add up in a linear fashion to deregulate tissue metabolism. The Warburg phenotype 
of higher glycolytic flux is indeed worse with a combination of the two factors (black line 
for vPFK). However, the ATP level is in fact slightly higher with HK binding (black line for 
ATP) when compared to the case of mitochondrial loss only (dark grey line). Thus, the 
expression and utilization of the HK2 isoform might induce an energetic advantage to can-
cer tumors which would promote their survival and proliferation. This observation from 
model simulations would, however, require further validation at the experimental level.

Interestingly, in all the simulations presented in Figures 10.8 and 10.9, the tissue was 
able to metabolically adapt to the imposed perturbations, as a physiological steady state is 
reached in each case. So, for example, even with 95% damage to mitochondria, the tissue 
is still able to produce sufficient energy output (ATP concentration is reduced, but only 
slightly). The same can be said for the switch to HK2 where the metabolic state is perturbed 
but still within physiological range. A case where the tissue would exhibit significant meta-
bolic problems would show ATP levels going to 0 and/or fluxes being reduced significantly 
(≈0), which is clearly not the case here.

Simulation results (not shown here) show that “metabolic death” can be induced if 
mitochondrial activity is impaired further (>95%). In that case the cells reach a limit in 
GLC transport capacity and a general degradation of metabolic state ensues (fluxes and 
metabolites going to 0). However, it is most probable that tumor cells have regulation 
mechanisms to avoid such a fate. Acidification of the tissue and increased cell prolifera-
tion, which are not modeled here, would probably be key mechanisms to promote tumor 
survival. However, the model presented here is still consistent with the observation of 
acidification, as LAC concentration is increased, and higher concentrations of glycolytic 
intermediates are observed (PYR in Figure 10.8), which would allow faster cell growth 
from increased availability of precursors. Thus, even though the energy modeling does 
not include growth and proliferation mechanisms, the simulation results observed here 
are consistent with current observations in tumor proliferation. Long-term simulations 
could also be improved by considering glycolytic gene expression levels, which are known 
to change during tumor development. However, the current study shows that the purely 
biochemical and signaling “management” of energy homeostasis is far from negligible in 
cancer.

10.4.4  Tumor Metabolic Control Analysis

Metabolic control analysis (MCA; Kascer and Burns 1973; Fell 1997) is a framework to 
analyze how a small perturbation on a metabolic system (i.e., change in enzyme level or 
metabolite concentration) can affect the metabolic system locally and globally. In that 
framework, the percent changes in fluxes (Fi) after a percent change in enzyme concentra-
tion (Ej) can be calculated as follows:
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where ΔFi/Fi,0 is the relative change in flux i and ΔEj/Ej,0 is the relative change in enzyme 
j concentration. Thus, FCCj

i is the control coefficient that enzyme j has on reaction i. An 
FCC ≈ 1 would mean that a 10% increase in enzyme concentration would induce a 10% 
increase in flux. Note that this framework can be implemented experimentally, by using 
gene knock-out/over-expression or inhibitors. At the theoretical level, the implementation 
is straightforward, as model parameters can be easily changed and simulated fluxes can be 
compared to the original (unperturbed) behavior.

While this approach might seem highly theoretical, it is actually used extensively in 
bioprocess research (see Fell 1997 for a few examples) and, more recently, in health sci-
ences. Effectively, the process of finding molecular targets for drug development is quite 
similar to the MCA framework, as a good drug target is a mechanism that induces a 
locally sensitive response in the cell (high FCC on a target reaction) with minimal effect 
on the rest of the system (low FCC on other cellular processes). Potential applications of 
MCA to disease and drug discovery have been discussed by Cascante et al. (2002) and 
success in applying MCA to limit tumor proliferation has been reported (Comin-Anduix 
et al. 2001).

As we have established models of “healthy” and “cancerous” phenotypes, applying the 
MCA framework to both would allow identifying possible differences in FCC. In that 
regard, an enzyme that has a high FCC in the disease phenotype, but a low FCC in the 
healthy phenotype would constitute an excellent drug target, as it would be more likely to 
affect cancer cells without inducing undesirable effects in normal cells.

Since tumor cells rely on glycolytic energy much more than normal cells, we will calcu-
late the control coefficients of model parameters (enzymes and physiological parameters) 
on the glycolytic flux (i.e., vPFK). Thus, a high FCCj

PFK would mean that a change in the 
parameter j will affect the glycolytic flux, while a low value indicates that the flux is not 
affected. Results for this MCA assessment of the difference between normal and cancerous 
cells are presented in Figure 10.10.

First, we see that some parameters have positive FCC (increase in parameter leads to a 
rise in glycolytic flux), while others have negative FCC (inverse effect). As tumors rely on 
glycolysis, a decrease in the glycolytic flux would be desirable (i.e., negative FCC); however, 
it must be kept in mind that a parameter that has a positive FCC could also be interesting, 
in the sense that it shows that this parameter might have an aggravating effect in cancer 
development (as it helps increase the glycolytic flux). Also, it is clear that parameter val-
ues could also be reduced rather than increased (−1% instead of +1% here). In that case, a 
parameter that has a positive FCC (in Figure 10.10) could still be manipulated to induce a 
reduction in glycolytic flux.

As shown in Figure 10.10, the metabolic sensitivity of cancer cells is quite different than 
that of normal cells. First, cancer cells will be much more sensitive to arterial GLC, which 
is expected as they rely on high GLC inflow. Interestingly, low GLC diets are used to treat 
brain tumors in some situations (Seyfried and Mukherjee 2005), and many reports indi-
cate a positive correlation between obesity (i.e., more likely to have high arterial GLC) and 
cancer. Thus, without being a root cause in carcinogenesis, high arterial GLC might be an 
aggravating factor and the MCA framework shows it.
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Not surprisingly, the mitochondrial reaction of the model is also a sensitive parameter. 
The maximum reaction rate of mitochondrial oxidation (vmax,mito) has a highly negative 
effect on the glycolytic flux. Interestingly, the healthy phenotype is much less affected by 
a change in vmax,mito. This shows that the mitochondria are indeed a good target to attack 
tumors, an observation that is coherent with the recent findings on dichloroacetate, a ver-
satile cancer tumor “killer” (which has side effects, however). The sensitivity of mitochon-
drial affinity for PYR (Km,PYR) also exhibits that difference between phenotypes. Parameters 
related to energy signaling, such as the activation constant for AMP (Ka,AMP) or the adeny-
late kinase equilibrium constant (QADK), also affect tumor metabolism more aggressively, 
showing that energy signaling might also be a good target for drug design.

Finally, the glycolytic flux can also be either insensitive to certain parameters (vmax,HK, 
vmax,PK) or it can show similar sensitivities in both healthy and disease cases (vmax,PFK, KI,ATP). 
These parameters would thus probably be much less promising targets for treatment.

10.4.5  Observations from the Modeling of Energy Metabolism

All the observations reported here from the simulation of energy metabolism are con-
sistent with the current knowledge on tumor metabolism. The modeling presented here 
is among the first detailed mathematical description of the Warburg effect. Previous 
attempts concentrated on spatiotemporal aspects, with little detail at the metabolic 
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level (Astanin and Preziosi 2009; Venkatasubramanian, Henson, and Forbes 2006). 
Metabolically speaking, it seems that cancer cells are more adapted for growth in an 
environment where GLC is plentiful and they do so without requiring a high inflow of 
O2 (but tumors still require a minimal amount of O2). Moreover, the modeling and MCA 
results showed that tumors might be more prone to environmental perturbations. Being 
more adapted for a specific condition (i.e., growth in a GLC-rich environment) usually 
comes at the price of losing flexibility. This shows that targeting energy metabolism and 
energy signaling will offer new possibilities to develop efficient and versatile therapies. 
Again, caution will be required as it is necessary to find targets that affect cancer cells 
and not normal cells, which is not straightforward given the complexity of energy regu-
lation. As was shown here, the MCA framework could be used to that end.

10.5  CONCLUSIONS AND FUTURE OPPORTUNITIES
When studying a complex dynamical system it is extremely relevant to consider the energy 
balance. It allows analysis of the limits in terms of stability and operability. In engineering sci-
ences, many examples can be found with energy as the underlying factor for a rigorous systems 
analysis (Wellstead 1979). So far, this approach is nowhere near being mainstream in any field 
of biological sciences and bioenergetics is still considered as a separate and relatively minor 
field. With large-scale, high-throughput experimental techniques and systems biology, there 
is a need for tools to integrate diverse biological processes. In that regard, it is clear that energy 
must be considered as the universal, underlying factor that links all the cell’s components.

As was shown in this chapter, an energy-based modeling approach can be applied to gain 
a better understanding of cancer development. The simulation results show the importance 
of the energetic context in carcinogenesis. Mathematical modeling of energy metabolism 
allows identifying fundamental differences between healthy and disease phenotypes. This 
modeling could thus be further used to assess the importance of energy metabolism in 
specific cellular processes involved in cancer such as apoptosis, cell cycle, signaling path-
ways, or genetic regulation.

The approach presented here relies on our current understanding of energy metabolism 
in cancer cells and a dynamic modeling framework, using ODE to describe the major cel-
lular processes in energy management. As the ODE model becomes a repository of available 
biological knowledge (see Figure 10.3) its power as an analytical tool will increase and it 
will be possible to make predictions and improve experimental design. Thus, the modeling 
approach presented here is not an end in itself, but rather a tool that can be refined depend-
ing on the specific issue to be addressed. Future work should thus be organized around the 
mathematical modeling of the energy balance in cellular processes involved in cancer. This 
approach will eventually offer unique opportunities to develop new and efficient therapies.
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APPENDIx

MODEL DESCRIPTION
Mass balances for the 10 metabolic species of the model are presented in Table A1, with 
reported steady-state concentrations taken for muscle tissue. Note here that conserva-
tion relations are used to reduce the number of model states. So for example, the mass 
balance on phosphocreatine (PCr) is described and creatine is calculated from the con-
servation of a total PCr + Cr = 35 mM. Table A2 presents the 11 kinetic equations of the 
model and Table A3 contains the model parameters that were either taken from the lit-
erature and/or adjusted to represent available knowledge on dynamic metabolic behav-
ior (i.e., response to muscle contraction). All fluxes and names refer to Figure 10.6.

TABLE A1 Variables, Steady-State Concentrations, and Mass Balances of the Model

Variable

Steady-State 
Concentration 

(mM) Differential Equation
GLC Glucose 1 ∂

∂
= −GLC

t
v vGLUT HK

G6P Glucose-6-P 0.8 ∂
∂

= −G6P
HK PGIt

v v

F6P Fructose-6-P 0. 2 ∂
∂

= −F6P
PGI PFKt

v v

GAP Glyceraldehyde-3-P 0.03 ∂
∂

= ⋅ −GAP
PFK PKt

v v2

PYR Pyruvate 0.1 ∂
∂

= − −PYR
PK mito LDHt

v v v

LAC Lactate 1 ∂
∂

= −LAC
LDH MCTt

v v

O2 Intracellular O2 0.13 ∂
∂

= − ⋅O
O mito

2
2 3

t
v v

ATP Adenosine 
triphosphate

8.2
∂

∂
=

⋅ − − +

+ ⋅ + −
ATP mito ATPase HK PFK

PK CK AMP
t

v v v v

v v v

15

2 KK

dAMP
dATP













⋅ −





−

1
1

            with ATP + ADP + AMP = ANP
PCr Phosphocreatine 30 ∂

∂
= −PCr

CKt
v

            with PCr + Cr = 35 mM
AMPK* AMP activated 

kinase
(active form)

1e-4 ∂
∂

=AMPK
AMPK

*
t

v

with AMPK + AMPK* = 0.1 mM
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TABLE A2 Kinetic Equations for Metabolic Fluxes

Reaction Kinetic Equation
GLC transport

v V GLC
GLC K

GLCa
GLC KT T

GLUT max,GLUT
GLC GLCa

= ⋅
+

−
+



 , ,





 ⋅











AMPK
K

*
.

AMPK

0 5

Hexokinase
v V GLC

GLC K
ATP

ATP Km m P
HK HK

GLC AT
= ⋅

+








 ⋅

+



max,

, ,





 ⋅ + 















−

1 6
4 1

G P
KI ,G6P

Phosphoglucose isomerase
v V G P

G P K
V F

f
m

rPGI PGI
G6P

PGI= ⋅
+









 − ⋅max ,

,
max ,

6
6

6PP
F P Km6 +











, ,F6P PGI

Phosphofructokinase 
v V ATP

ATP K
F P

F P Km m
PFK PFK

ATP F6P
= ⋅

+








 ⋅

+max,
, ,

6
6 ,,PFK

act inh








 ⋅ ⋅AMP ATP

Pyruvate kinase
v V GAP

GAP K
ADP

ADP KPK PK
m m

= ⋅
+









 ⋅

+



max,

, ,GAP ADP





 ⋅ ATPinh

Mitochondrial oxidation of 
pyruvate v V PYR

PYR K
ADP

ADP Km m
mito max,mito

PYR A
= ⋅

+








 ⋅

+, , DDP O2









 ⋅

+










⋅
+ ⋅















O
O K

ATP
ADP

m

2

2

1

1 10

,




Lactate dehydrogenase v k PYR k LACf rLDH LDH LDH= ⋅ − ⋅, ,

Lactate transport
v V LAC

LAC K
LACa

LACa KT T
MCT MCT

LAC LAC
= ⋅

+
−

+






max,

, , 


O2 transport
v

PS
V

K Hb OP
O

c

nh

2

1

1= ⋅ ⋅ −






−












−
cap

O2
2

2O
O.

/

Creatine kinase v k PCr ADP k Cr ATPf rCK CK CK= ⋅ ⋅ − ⋅ ⋅, ,

ATPase
v V ATP

ATP Km
ATPase max,ATPase

,ATP
= ⋅

+










AMPK reaction v k AMPK k AMPKf rAMPK AMPK AMPK= ⋅ − ⋅, , *

(continued)
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TABLE A2 Kinetic Equations for Metabolic Fluxes (Continued)

Reaction Kinetic Equation
Adenylate kinase equilibrium

ADP ATP Q uADK= ⋅ − + 2
  

with u Q Q ANP
ATPADK ADK= + ⋅ ⋅ −





2 4 1

dAMP
dATP

Q u

Q ANP
ATP u

= − + − ⋅

+ ⋅
⋅

1
2

0 5ADK

ADK

.

 

AMP = ANP – ATP – ADP

Energy signaling (for vPFK and vPK)

ATP
n

inh
ATP

ATP
K

ATP
K

I ATP

I ATP

=
+ ⋅

+













1
1

4

,

,  
AMP

nact

AMP
K

AMP
AMP

K

a AMP

a AMP

=
+

+ ⋅













1
1

4

,

,

TABLE A3 Model Parameters

Parameter Name Value Description Units
Vmax,GLUT 4.95 Reaction rate constant for glutamine synthase mM·h−1

Vmax,HK 141.3 HK maximum reaction rate mM·h−1

Vmaxf,PGI 82.2 PGI maximum forward reaction rate mM·h−1

Vmaxr,PGI 86.4 PGI maximum reverse reaction rate mM·h−1

Vmax,PFK 115 PFK maximum reaction rate mM·h−1

Vmax,PK 2.2·105 PK maximum reaction rate mM·h−1

Vmax,mito 175.1 Mitochondrial maximum reaction rate mM·h−1

Vmax,ATPase 36.9 ATPase reaction rate mM·h−1

KLDH,f 19 Forward reaction rate for LDH h−1

KLDH,r 1.8 Reverse reaction rate for LDH h−1

Vmax,MCT 0.4 Maximum LAC transport rate mM·h−1

KT,GLC 0.5 Affinity constant for GLC transport mM
Km,GLC 0.105 Affinity constant for intracellular GLC mM
Km,ATP 0.05 Affinity constant for ATP mM
Km,ADP,PK 0.0013 Affinity constant of PK for ADP mM
Km,ADP,mito 0.005 Affinity constant of mitochondria for ADP mM
Km,G6P 0.5 Affinity constant for G6P mM
KI,G6P 0.6 Inhibition constant for G6P mM
Km,F6P,PGI 0.15 Affinity constant of PGI for F6P mM
Km,F6P,PFK 0.058 Affinity constant of PFK for F6P mM
Km,GAP 0.5 Affinity constant for GAP mM
Km,PYR 0.6 Affinity constant for PYR mM
Km,O2 0.01 Affinity constant of mitochondria for O2 mM
KO2 0.0897 Transport constant for O2 mM·h−1

KT,LAC 1 Affinity constant for LAC transport mM
KCK,f 3.7·103 Forward reaction rate for CK h−1

KCK,r 35.8 Reverse reaction rate for CK h−1

(continued)
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Kinetic equations, parameters, and experimental insights and steady-state concen-
trations for glycolysis were taken from Heinrich and Schuster (1996), Korzeniewski and 
Zoladz (2001), Lambeth and Kushmerick (2002), and Liguzinski and Korzeniewski (2006). 
Mitochondrial function (synthesized into one reaction) is based on works by Aubert 
and Costalat (2005) and experimental insights on the regulation by ADP/ATP ratio were 
taken from Heldt, Klingenberg, and Milovancev (1972). Adenylate kinase equilibrium was 
treated as described in Heinrich and Schuster (1996). Energy signaling and AMPK kinetics 
is based on works by Carling (2004) and insights reviewed in Hardie (2007).

TABLE A3 Model Parameters (Continued)

Parameter Name Value Description Units
KI,ATP 1 Inhibition constant for ATP mM
Ka,AMP 0.0005 Activation constant for AMP mM
nATP 0.25 Inhibition constant for ATP regulation —
nAMP 0.25 Activation constant for AMP regulation —
Kf,AMPK 19 Forward reaction constant for AMPK activation h−1

Kr,AMPK 1.8 Reverse reaction constant for AMPK 
deactivation

h−1

KAMPK 1·10-4 Activation constant for AMPK mM
GLCa 5 Arterial glucose mM
O2a 8.34 Arterial O2 mM
LACa 0.3 Arterial LAC mM
ANP 8.212 Total energy shuttles concentration mM
Vc 0.7 Volumetric fraction of cells in tissue —
nh 2.7 Reaction order constant for O2 transport —
PScap 0.11 Capillary transport constant —
Hb.OP 8.6 Oxygenated hemoglobin mM
QADK 1.03 Adenylate kinase equilibrium constant —
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C h a p t e r  11

Cancer Gene Prediction 
Using a Network Approach

xuebing Wu and Shao Li

11.1  INTRODUCTION
Cancer is a genetic disease (Vogelstein and Kinzler 2004). Decades of research in molecu-
lar genetics have identified a number of important genes responsible for the genesis of vari-
ous types of cancer (Futreal et al. 2004) and drugs targeting these mutated cancer genes 
have brought dramatic therapeutic advances and substantially improved and prolonged 
the lives of cancer patients (Huang and Harari 1999). However, cancer is extremely com-
plex and heterogeneous. It has been suggested that 5% to 10% of the human genes probably 
contribute to oncogenesis (Strausberg, Simpson, and Wooster 2003), while current experi-
mentally validated cancer genes only cover 1% of human genome (Futreal et  al. 2004), 
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suggesting that there are still hundreds or even thousands of cancer genes that remain to 
be identified. For example, in breast cancer, known susceptibility genes, including BRCA1 
(Miki et al. 1994) and BRCA2 (Wooster et al. 1995), can only explain less than 5% of the 
total breast cancer incidence and less than 25% of the familial risk (Oldenburg et al. 2007). 
The same challenge is also faced by other types of cancer and other complex diseases, such 
as diabetes (Frayling 2007) and many brain diseases (Burmeister, McInnis, and Zollner 
2008; Folstein and Rosen-Sheidley 2001). There is a long way to go from changes in genetic 
sequence to visible clinical phenotypes. The complex molecular interaction networks, 
together with environmental factors, further lower the penetrance of a single causal gene 
and complicate the relationship between genes and diseases. This high complexity and low 
penetrance might explain why so many disease genes remain unidentified.

Traditional gene mapping approaches, such as linkage analysis and association stud-
ies, have limited resolution to localize the causal genes in the genome, and the resultant 
region often contains hundreds of candidate genes (Altshuler, Daly, and Lander 2008). The 
functional testing and validation of causative genes are time consuming and laborious. The 
priority of candidate genes is usually determined by expert judgment based on the gene’s 
known functions (Pharoah et al. 2007), which are often biased and limited by the scope of 
the expert. Alternatively, with the increasing availability of genome-wide sequence, genom-
ics, proteomics, and epigenomics data, computational methods are exploited to predict and 
prioritize disease genes (Oti and Brunner 2007; Zhu and Zhao 2007), significantly reducing 
the number of candidate genes for further testing. Computational prediction and prioritiza-
tion is complementary to genetic mapping, in terms of integrating existing knowledge on 
disease biology and relatively unbiased whole genome measurements.

More recently, large-scale molecular interaction network data have become available, 
and it turns out to be particularly powerful for disease gene prediction when used alone 
(Kohler et al. 2008; Oti et al. 2006) or combined with other data sources (Karni, Soreq, and 
Sharan 2009; Lage et al. 2007; Mani et al. 2008; Wu et al. 2008). Molecular interaction net-
works depict the basic skeleton of cellular processes, and network analysis has the ability to 
model the complex interactions among multiple genes and their higher-level organizations 
(Barabasi and Oltvai 2004; Han 2008; Zhu, Gerstein, and Snyder 2007). In this chapter, we 
will focus on network-based approaches for cancer gene prediction. Many of the methods 
discussed here are designed for general disease instead of cancer. Nonetheless, they can be 
applied to predict cancer genes as a special case, and most of these network-based methods 
have been demonstrated by applying them to various types of cancer.

11.2  MOLECULAR NETWORkS AND HUMAN DISEASES
Before going into the details of network-based gene prioritization methods, we will briefly 
introduce some basic concepts about molecular networks, the data sources and tools for build-
ing networks, and the working principles for network approaches in predicting disease genes.

Network is a simple but efficient abstraction of biological systems (Barabasi and Oltvai 2004). 
Nodes/vertices in a molecular network represent biomolecules, such as genes, proteins, and 
metabolites. Edges/links between nodes indicate physical or functional interactions, includ-
ing transcriptional binding, protein-protein interaction, genetic interaction (such as synthetic 
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lethal), biochemical reactions, and many others. An edge on a network (if it happens in the cell) 
shows that two molecules are functionally related to each other, and the distance on a network 
is correlated with functional similarity (Sharan, Ulitsky, and Shamir 2007). Network/graph 
theory provides multiple definitions and tools to measure the distance/proximity between two 
nodes on a network, which makes network analysis particularly suitable to the quantitative 
modeling of gene-gene and gene-disease relationships (see Box 11.1 for basic graph concepts).

Box 11.1  BASiC gRAph ConCEpTS

A graph is a pair G(V,E), where V is a set of nodes (or vertices) and E is a set of edges (or links, 
or interactions) connecting pairs of nodes. On molecular interaction networks, the nodes 
represent molecules such as genes or proteins, and the edges represent interactions such as 
protein-protein interaction, transcriptional binding between protein and DNA.

A graph can be represented by an adjacent matrix A, where Aij = 1 if there is an edge 
between nodes i and j; otherwise Aij = 0.

A path from node A to B is a sequence of nodes started with A and ended with B, such 
that from each of its nodes there is an edge to the next node in the sequence.

The length of a path is the number of edges in the path.
The distance of two nodes is usually defined as the length of the shortest path between 

the nodes. More complex definitions of graph distance are discussed in the main text.
The kth-order neighbor of a node is the node whose distance from it is k.
The centrality of a node measures how centrally a node is located in a given graph. Four com-

monly used centrality measures are degree, betweenness, closeness, and eigenvector centrality. 
The degree of a node is the number of edges it is connected with. 
The eigenvector centrality is a weighted version of the degree centrality, such that xi of 

node i is proportional to the sum of the centralities of its neighbors: 

 
x A xi ij j

j

n

= −

=
∑λ 1

1

Let the vector x =( x1, x2, ..., xn) be the centralities of the nodes; then we have 

 λx Ax=

where x is an eigenvector of the adjacency matrix A with eigenvalue λ. Theoretical results 
show that there is only one eigenvector x with all centrality values non-negative and this is 
the unique eigenvector that corresponds to the largest eigenvalue λ. Eigenvector centrality 
assigns each node a centrality that not only depends on the quantity of its connections, but 
also on their qualities.

The closeness of a node measures the centrality of a node based on how close it is to 
other nodes in the network. It can be calculated by inverting the sum of the distances from it 
to other nodes in the network.

The betweenness of a node is the number of shortest paths between other nodes that run 
through the node of interest. Betweenness centrality characterizes the control of a node over 
the information flow of the network.



194    ◾    xuebing Wu and Shao Li

Until now, widely used large-scale human gene/protein networks have been generated 
mainly by four approaches: high throughput technology for large-scale screening of genetic 
interaction or protein-protein interaction, manual curation of high-quality interaction data 
from published small-scale experiment results, automatic text mining to extract gene inter-
actions from the published literature, and computational prediction by integrating mul-
tiple genomics data. Generally, high-throughput technology such as yeast-2-hybrid (Fields 
and Song 1989; Fields and Sternglanz 1994) can yield relatively unbiased protein interac-
tion data, but the false positive rate can reach 50% (Sprinzak, Sattath, and Margalit 2003; 
von Mering et al. 2002). In addition, though the interactomes (a full list of interactions) 
for species like yeast (Ito et al. 2001), worm (Li et al. 2004), and fly (Giot et al. 2003) have 
been extensively mapped using high-throughput technology, data generated in this way for 
human (Ghavidel, Cagney, and Emili 2005; Rual et al. 2005) composes only a small part 
of the known human interactome data. On the other hand, the most reliable experimental 
data comes from manual curation of interaction data reported by traditional small-scale 
experiments, and most of these data has been included in manually curated databases such 
as HPRD (Peri et al. 2003), BIND (Bader, Betel and Hogue 2003), and BioGRID (Breitkreutz 
et al. 2008). Occasionally traditional pathway-based databases are also used, including KEGG 
(Kanehisa and Goto 2000) and Reactome (Vastrik et al. 2007). Despite the intensive effort 
in mapping the human protein network, the current human interactome is far from com-
plete (Hart, Ramani, and Marcotte 2006). Automatic literature mining techniques have also 
been developed to identify putative interacting relationships between human genes/proteins 
described in the published biomedical literature, such as the GENEWAYS system (Rzhetsky 
et al. 2004). Literature mining also has the advantage that is allows the construction of con-
text-specific networks, such as the prostate cancer specific gene network (Ozgur et al. 2008) 
and angiogenesis network (Li, Wu, and Zhang 2006). In the LMMA (Li, Wu, and Zhang 
2006) approach, we have also shown that the systematic integration of microarray data sig-
nificantly refines the literature mined network and yields more biological insights. Finally, 
multiple computational approaches (Franke et al. 2006; Jansen et al. 2003; Lage et al. 2007; 
Rhodes et al. 2005; Xia, Dong, and Han 2006) have been developed to predict a comprehen-
sive human interactome map, usually by integrating a number of unbiased genome-wide 
annotation data, such as sequence, expression, functional annotation, known interaction 
data, and many others. Among these datasets, homologous mapping is commonly used to 
transfer protein interactions from other organisms to human by sequence conservation. 
Typical high-quality interaction databases for other organisms include: BioGrid (Breitkreutz 
et al. 2008), BIND (Bader, Betel and Hogue 2003), MIPS (Mewes et al. 2004), DIP (Salwinski 
et al. 2004), MINT (Chatr-aryamontri et al. 2007), and IntAct (Kerrien et al. 2007). STRING 
(von Mering et al. 2005) and OPHID (Brown and Jurisica 2005) are two of the widely used 
databases hosting predicted interactions.

With all these network data available, studies on model organisms have shown that cen-
tral positions on the network implicate important roles in cellular processes. For example, 
in yeast, the number of partners of a gene is positively correlated with lethal phenotypes 
(Jeong et al. 2001). With the increasing availability of human protein interaction data, 
network analysis has also shed light on human diseases. For example, consistent with the 
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observation from yeast, human disease genes tend to have higher network centrality, such 
as higher degrees, compared to nonessential and nondisease genes (Feldman, Rzhetsky, 
and Vitkup 2008; Goh et al. 2007; Xu and Li 2006), and cancer genes are found to be even 
more central than other disease genes (Goh et al. 2007; Jonsson et al. 2006). Besides, con-
sistent with the long-held assumption that genes that are closely related are more likely to 
cause the same or similar diseases, network analysis shows that genes causing the same 
or similar diseases are likely to interact directly or indirectly with each other (Lim et al. 
2006; Oti et al. 2006; Oti and Brunner 2007; van Driel et al. 2006). For example, Lim et al. 
(2006) show that many ataxia-causing proteins share interacting partners and form a small 
tightly connected subnetwork. Recent genome-wide cancer mutation screen studies sug-
gest that, though ~80 mutations can be found in a typical cancer, they tend to fall into a 
few functional pathways (Wood et al. 2007). The functional relatedness of genes causing 
similar diseases seems to be very general for human diseases, and network analysis pro-
vides powerful tools to fully exploit its potential in human disease study. Recently various 
network-based approaches have emerged to predict disease genes based on the observa-
tions described above, generally achieving much better performance than traditional dis-
ease gene prediction approaches.

11.3  NETWORk APPROACH FOR CANCER GENE PREDICTION
For clarity we first give the typical settings for a network-based disease gene prediction 
method (Figure 11.1). Given a list of N candidate genes which is assumed to contain at least 
one disease gene, the goal is to pick out the true disease gene or to rank it at top Mi, where 
M is much smaller than N. The candidate genes can be genes within a linkage interval 
having been associated with the disease under study. Or, if there is no genetic mapping 
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FIGURE 11.1 (See color insert following page 332.) Sketch map of network-based candidate gene pri-
oritization and prediction. A list of candidate genes such as those in a linkage interval or all the human 
genes are mapped onto a human gene/protein network, and if applicable, known disease genes and other 
information (such as sequence characteristics and mRNA expression) are also mapped onto the net-
work. A scoring scheme is used to score each candidate gene based on current data and outputs a rank 
list of all candidate genes. Genes ranked above a certain position are predicted as disease causative. 
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information, one can simply use the entire human genome as the candidate list. Next, all 
candidate genes are mapped to a human gene/protein network, the construction of which 
is described in the previous section. If applicable, known disease genes and other informa-
tion are mapped to the network too. After that, a scoring scheme scores each candidate 
gene according to its relative position on the network and additional information. The 
score is assumed to reflect the probability of the candidate gene to cause the disease under 
study, given the observed data sources. Finally, all candidate genes are ranked according 
to the score, and the top 1 or top M genes are predicted to be disease causing. The pre-
dictability of this score or the performance of the proposed approach is often assessed by 
cross-validation with known gene-disease relationships (the ability to rediscover known 
disease genes).

The scoring scheme is the key to a disease gene prediction method. In the follow-
ing section, we will review different scoring functions used by different methods. To be 
clearer, we group these methods by the basic principles underlying their scoring schemes 
(Table 11.1).

11.3.1   Prioritize by Network Proximity

The common principle underlying all methods in this category is “guilt-by-proximity,” 
that is, genes that lie closer to each other on the network are more likely to lead to the same 
disease. If some genes are already known to be related to the disease under study, then basi-
cally one can use the inverse of the distance (proximity) to these disease genes as the score. 
Otherwise, distance between candidate pairs is used. The methods described below differ 
in the way they define the distance measure and how the distance is combined with other 
information to rank candidate genes.

11.3.1.1   Proximity to Known Disease Genes of the Same Disease
Roughly about half of the diseases in the OMIM database (McKusick 2007) have at least 
one gene known to be involved in the particular disease. For these diseases, the most 
straightforward way to score and rank candidate genes is to use the proximity to known 
disease genes as the measure of the disease causing probability. If a candidate is more 
closely related to a known disease gene, it is more likely to be a disease gene too; there-
fore, it should get a higher score. If multiple disease genes are already known, then the 
final score will be the sum of scores across all known disease genes. This procedure can 
be viewed as a propagation of disease signal: known disease genes serve as the source of 
disease signal and this signal is propagated along paths on the network to other nodes, and 
the signal gradually damps as it travels to more distant nodes. Now the problem is how to 
define distance between two nodes in a network. Three types of distance measure can be 
found in disease gene finding approaches: direct neighbor, shortest path length, and global 
distance defined by diffusion kernel or random walk.

11.3.1.1.1  Direct Neighbor  In this type of measure, nodes that are directly connected have 
a distance of 1; otherwise they have a distance of infinity. Approaches employing this mea-
sure are actually doing neighbor counting: candidates with more neighbors causing the 
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disease are more likely to be related to the disease. For example, Oti et al. (2006) predict 
candidate genes as those that directly interact with known causative genes of the same 
disease, and they validate this method against 289 diseases with at least two known disease 
genes in OMIM. Though the performances vary for different protein network datasets, all 
are much better than random selection. By applying this method to diseases with both 
known genes and uncharacterized loci, they are able to predict 300 novel disease candi-
date genes, of which 10% are confirmed by literature evidence outside OMIM. The same 
strategy is used in the CPS method in the study of George et al. (2006). When benchmark-
ing with protein interaction data from OPHID, the method has a sensitivity of 0.42 and a 
specificity of 1.0. In another study on cancer gene prediction, Aragues, Sander, and Oliva 
(2008) define the cancer linker degree (CLD) of a gene as the number of its neighbors that 
are known to be involved in cancer. They find that CLD of a gene is a good indicator of the 
probability of being a cancer gene.

TABLE 11.1 A Summary of Network-Based Disease Gene Prediction Methods
Method Disease Tested Network Data Sources
Proximity-based
 Direct neighbor
 Oti et al. 2006 General HPRD, DIP
 CPS (George et al. 2006) General OPHID
 Aragues et al. 2008 Cancer HPRD, DIP, MIPS, MINT, BioGrid, IntAct
 Furney et al. 2008a Cancer DIP, MIPS
 ENDEAVOUR (Aerts et al. 2006) General BIND
 Shortest path
 Krauthammer et al. 2004 Alzheimer’s disease Literature mining by GENEWAYS
 Liu et al. 2006 Alzheimer’s disease Inferred from multiple dataset
 Radivojac et al. 2008 General HPRD, OPHID
 Prioritizer (Franke et al. 2006) General Inferred from multiple dataset
 Diffusion kernel
 Kohler et al. 2008 General HPRD, BIND, BioGrid, STRING, DIP, 

IntAct
 Chen et al. 2009 General HPRD, BIND, BioGrid
Similarity-assisted
 Ala et al. 2008 General Coexpression
 Miozzi et al. 2008 General Coexpression
 Lage et al. 2007 General MINT, BIND, IntAct, KEGG, Reactome
 CIPHER (Wu et al. 2008) General HPRD, OPHID
 AlignPI (Wu et al. 2009) General HPRD
Centrality-based
 Ozgur et al. 2008 Prostate cancer Literature mining by GIN (Ozgur et al. 2008)
 Ortutay and Vihinen 2009 Immunodeficiency HPRD
 Gudivada et al. 2008 Cardiovascular disease Genomic-phenomic Semantic web
Others
 Mani et al. 2008 Cancer B-cell interactome, Co-expression
 Karni et al. 2009 General HPRD
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Similar results are obtained by Furney et al. (2008b). By integrating protein interaction 
data with protein sequence conservation, protein domain, gene structure, and regulatory 
data, Furney et al. train Bayesian classifiers to prioritize proto-oncogenes and tumor sup-
pressor genes. For protein interaction data, they use the number of interactions and the 
number of interactions with cancer genes, assuming that cancer genes have a higher degree 
and are more likely to interact with other cancer genes. The study by Furney et al. is a 
typical data integration strategy for gene prioritization. First, a number of data sources/
evidences are collected for each candidate gene, and then some machine learning algo-
rithms are used to integrate these features and generate ranking scores. Often data sources 
are explored in a relatively simple fashion. Another example is provided by Aerts et al. 
(2006). In this study, up to 12 data sources, including protein interaction data in the data-
base BIND (Bader, Betel and Hogue 2003), are used separately to calculate the similarity 
between training genes (known disease genes) and candidate genes, yielding 12 ranking 
lists. A rank aggregation algorithm based on order statistics is used to combine these rank 
lists into a single rank. Again, only direct neighbors are considered for protein interaction 
data, but instead of neighbor counting, Aerts et al. use the number of common neighbors 
as the similarity score between known disease genes and candidate genes.

11.3.1.1.2  Shortest  Path  Length  The direct neighbor strategy has some limitations. It is 
quite possible that two functionally related genes do not interact directly with each other. 
For example, they may function in different steps of a signaling cascade, yet still lead to the 
same disease (Brunner and van Driel 2004; Wood et al. 2007). The direct neighbor strategy 
is more likely to be true for cases where two genes function in the same protein complex 
(Lage et al. 2007), instead of a pathway. To make use of indirect interactions, one can take 
higher-order neighborhoods into consideration. The shortest path length measure of dis-
tance considers the influence between nodes that are reachable. The length of the shortest 
path between two biomolecules in molecular interaction networks is assumed to be related 
to the speed of information communication and/or the strength of the functional associa-
tion between the two molecules. Thus, the shortest path length is a good measure of func-
tional relatedness, as demonstrated by its correlation with functionally similarity (based on 
Gene Ontology) (Sharan, Ulitsky, and Shamir 2007). One of the pioneering works to apply 
shortest path analysis to gene prioritization is from the Rzhetsky group, with a method 
called Molecular Triangulation (Krauthammer et al. 2004). They use an automatic litera-
ture mining system to construct a network around four Alzheimer’s disease (AD) genes, 
and then calculate the shortest path length between all other nodes to these four seed genes. 
The statistical significance of the distance serves as the final score. The method performs 
well in predicting additional AD gene candidates identified manually by an expert. This 
approach was later extended by Liu et al. (2006) by applying shortest path length scoring on 
a brain-specific gene network, and based on the same four AD seed genes, they were able to 
rank 37 AD associated genes within the top 46 high-scoring genes.

Like the direct neighbor approach, shortest path analysis has also been used in data 
integration methods to transform protein interaction data into feature sets. Radivojac et al. 
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(2008) integrate human protein interaction network, protein sequence, function, physico-
chemical and structural properties to train Support Vector Machines (SVM) that are able 
to predict gene-disease associations with relatively high accuracy. Protein network data 
are used to calculate the distance between candidate proteins and disease causing pro-
teins, which serves as one important feature for the classifier. A case study for leukemia is 
given in this study. The training set contains 80 genes associated with leukemia, which are 
manually curated from OMIM, Swiss-Prot (Boeckmann et al. 2003), and HPRD. Cross-
validation shows an accuracy of 77.5% and 15 novel genes are predicted to be associated 
with leukemia. The authors are able to find from the published literature strong association 
for 8 of the 15 predictions. One limitation of this approach is that the SVM requires at least 
10 known disease-related genes to train the model and to predict novel disease genes.

11.3.1.1.3  Global Distance Measure  The problem with shortest path length is that it consid-
ers only one of the shortest paths, ignoring the contribution of other shortest paths and 
other paths with longer length. Most of the time there will be more than one path and even 
more than one shortest path between two nodes, and the existence of these paths shows 
additional relatedness between two genes. Another defect is that the shortest path length 
lacks resolution: the lengths are integers and the longest path in a biological network is 
typically very small, due to the small world property of biological networks (Jeong et al. 
2000; Watts and Strogatz 1998). The so-called global distance measure, mainly diffusion-
type distance measure, overcomes these drawbacks by considering the topology of the 
entire network (see illustrations in Kohler et al. 2008). The diffusion kernel K of a graph 
G is defined as K = e−βL, where β controls the magnitude of the diffusion. The matrix L 
is the Laplacian of the graph, defined as D − A, where A is the adjacency matrix of the 
interaction graph and D is a diagonal matrix containing the nodes’ degrees. The inverse 
Laplacian takes into account all powers of diffusion and thus incorporates all paths along 
the network. Kohler et al. (2008) propose using the following scoring function to quantify 
the association between a candidate gene j and a disease:

 
S Kj ij

i

=∑
where i represents known disease genes. By applying this approach and another simi-
lar random walk approach to an assembled human protein-protein interaction network, 
they show that methods based on global distance measure significantly outperform those 
based on local distance measure and non-network approaches. This result is consistently 
observed for monogenic disorders, polygenic disorders, and cancer. Similar random walk 
algorithms have been widely used in social- and Web-network analysis to find important 
nodes (persons or web pages) on the network, such as the PageRank algorithm (Brin and 
Page 1998) used by Google to rank web pages. By fixing known disease genes as root nodes, 
some of these algorithms have recently been exploited to prioritize disease genes based on 
protein network (Chen, Aronow, and Jegga 2009).
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11.3.1.2   Proximity of Candidate Gene Pairs: Enabling de Novo Discovery
All the approaches discussed above require at least one disease gene known to cause the 
disease under study, which covers only about half of human diseases. For genetically unrec-
ognized diseases, these methods do not work. We call methods that do not rely on known 
disease genes of the same disease de novo methods. To enable de novo prediction, one has to 
add some other disease-specific information, such as disease similarity, to use genes caus-
ing a similar disease as a surrogate. We will discuss this type of information later. Here we 
introduce another method, called Prioritizer (Franke et al. 2006), which does not rely on 
such phenotype information. Prioritizer assumes the disease-specific information is pro-
vided when the candidate genes are available, for example, from a linkage locus associated 
with the disease. Prioritizer takes at least two genomic regions as input, each containing 
many candidate genes. Each of the regions is supposed to contain at least one gene causing 
the disease under study. Assuming the two disease genes should be close to each other on 
the network, the scoring scheme is designed such that a candidate gene has a higher score 
if it has a smaller distance to genes in another region. A permutation test is introduced to 
correct the topology differences and yield a p-value based on which all candidate genes 
are prioritized. Theoretically Prioritizer can be used in de novo discovery of disease genes 
when multiple genetic regions are given, and this is demonstrated by a case study on breast 
cancer. Ten 100-gene artificial loci are constructed around 10 known breast cancer genes, 
and Prioritizer is able to rank 2 to 4 of the 10 breast cancer genes in the top 10 of each locus, 
when using different gene networks. When the candidate genes in a region are fixed to some 
known disease genes, this method is essentially the shortest path analysis discussed in the 
above section. Another method employing this principle is CPS (George et al. 2006), which 
predicts genes directly interacting with genes from another locus as disease genes.

11.3.2   Phenotype Similarity-Assisted Methods

A natural generalization of the “guilt-by-proximity” principle is that genes causing similar 
(instead of the same) diseases are likely to be closely related. The additional information 
provided by similar diseases enables de novo prediction of causative genes for diseases 
without known causative genes, and will also improve the performance for those with 
known causative genes. Then two questions remain to be addressed: (1) how to define and 
compute the similarity between diseases, and (2) how to incorporate disease similarity into 
disease gene prediction approaches.

11.3.2.1   Calculating and Validating Phenotypic Similarity
A disease can be represented by a set of terms describing its clinical symptoms, namely, 
phenotypes. The phenotypic similarity between two diseases quantifies the overlap or 
semantic similarity between two sets of terms (Brunner and van Driel 2004; Oti and 
Brunner 2007). Four different approaches (Care et al. 2009; Lage et al. 2007; Robinson et al. 
2008; van Driel et al. 2006) have been proposed to calculate the phenotypic similarity for 
diseases in OMIM.

van Driel et al. (2006) use a text mining technique to map OMIM disease records to 
a set of standardized terms, that is, terms defined in MeSH (Medical Subject Headings; 
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Lowe and Barnett 1994), and then a vector is created for each disease, with each element in 
the vector representing the number of times the term occurs in the disease record. After 
adjusting for the hierarchical relationship between different terms, the relative frequency 
of terms, and size of each record, each disease is represented by a high dimension feature 
vector of weighted MeSH terms. The similarity between any two diseases is then calculated 
as the cosine of the angle between the two vectors. Essentially, the method amounts to 
detecting standardized terms that are (1) common to the description of both diseases, and 
(2) do not occur too frequently among all diseases such that they are informative about the 
disease under study. Lage et al. (2007) propose a similar method, and the major difference 
is, instead of using MeSH as the standard vocabulary, they use UMLS (the unified medical 
language system; Bodenreider 2004), a more general system containing MeSH and several 
other vocabularies.

Different approaches have been proposed to evaluate the quality of the calculated dis-
ease similarity data. Instead of directly assessing the quality of disease similarity, van Driel 
et al. (2006) correlated the similarity with the functional relatedness between disease genes. 
They find that the genes that lead to more similar diseases are more likely to have similar 
protein sequences, more likely to interact with each other, and more likely to share Pfam 
domains and Gene Ontology annotations, thus demonstrating that the phenotypic simi-
larity reflects real biological knowledge. Lage et al. (2007) directly evaluate the phenotypic 
similarity score by comparing it with a putative golden positive set of ~7000 disease pairs. 
A disease pair is included in this set if one disease is referred to in the text record of another 
disease. One hundred disease pairs randomly selected from the putative golden positive set 
are subject to expert OMIM curators’ evaluation, and over 90% of them are judged to have 
a high degree of phenotypic overlap. The phenotypic similarity is then evaluated by calcu-
lating the percentage of disease pairs attaining at least a given similarity threshold pres-
ent in the putative golden positive set. Recently, Care et al. (2009) proposed to use a more 
stringent golden putative set by only accepting disease pairs with reciprocal references, 
resulting in a set of about 4000 disease pairs. However, this set has not been evaluated by 
expert OMIM curators. Interestingly, based on this stringent disease pair set, Care et al. 
find that the mapping of free text to standard vocabulary is not necessary, as a simple word 
counting method outperforms the UMLS-based method. However, if the disease ID is also 
counted as terms, the evaluation procedure will prefer the word counting method; thus the 
comparison is biased. Further studies are needed to exclude this bias and show whether 
simple word counting is also more powerful than MeSH and other standard vocabularies. 
All these three phenotypic similarity datasets (Care et al. 2009; Lage et al. 2007; van Driel 
et al. 2006) have been used in disease gene prioritization, and all show significant improve-
ment compared to methods that do not employ phenotypic similarity data.

More recently, the Human Phenotype Ontology (HPO) was created to standardize the 
annotation of OMIM diseases (Robinson et al. 2008). Ontology is a special type of stan-
dard vocabulary that is particularly suited for knowledge representation and computa-
tion, and the usefulness of ontology in biology is evidenced by the great success of Gene 
Ontology (GO) (Ashburner et al. 2000). GO annotation is now widely accepted as the rep-
resentation of gene functions, and various methods have been developed to calculate the 
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functional similarity between genes using GO annotations (Xu, Du, and Zhou 2008). Most 
of these methods can be applied to calculating disease phenotypic similarity using HPO, 
because HPO is designed to have the same structure as GO (Robinson et al. 2008). In fact, 
along with the publication of HPO, Robinson et al. (2008) also applied a classic approach 
(Lord et al. 2003) for calculating gene functional similarity to generate an HPO-based 
phenotypic similarity for 727 OMIM diseases, which have been classified into one of 21 
physiological disorder classes (Goh et al. 2007). Though this similarity data has not been 
evaluated using the same methods as the UMLS-based disease similarity data, the HPO-
based disease similarity network shows a pattern consistent with the physiological disorder 
classes. Compared to MeSH and UMLS, HPO has several potential advantages for compu-
tational phenotype analysis. First, HPO is specifically designed for the needs of describing 
human hereditary diseases and their phenotypes, and second, as demonstrated by GO, the 
ontology framework may be more powerful in knowledge representation and computa-
tion. Finally, instead of annotating diseases using automatic text mining, HPO experts 
have manually annotated almost all the OMIM diseases. It is expected that the phenotypic 
similarity calculated based on HPO will provide more strong support for disease gene pri-
oritization, though so far no such study is available.

11.3.2.2   Modeling with Molecular Network and Phenotype Similarity
The hypothesis underlying most if not all similarity-assisted methods is that similar diseases 
are caused by functionally related genes. Methods of this type differ in the way to model such 
correlation and how they incorporate phenotypic similarity information into the model.

11.3.2.2.1  Group  Diseases  by  Similarity  The simplest way to exploit phenotypic similar-
ity perhaps is to treat diseases showing a certain level of similarity as the same disease; 
thus more known disease genes are available for model training or seed propagation. For 
example, van Driel et al. (2006) have shown that, for the MeSH-based similarity score, bio-
logically meaningful relationships were mostly detected in disease pairs with a similarity 
score equal to or greater than 0.4. Ala et al. (2008) use this phenotype similarity data, and 
group diseases according to this threshold. They then employ essentially a neighbor count-
ing strategy, together with a human-mouse conserved coexpression network, to predict 
disease genes. A similar procedure has been applied to a different dataset (Miozzi et al. 
2008).

11.3.2.2.2  Weighted  Neighbor  Counting  Lage et al. (2007) propose a Bayesian model to 
systematically integrate the UMLS-based similarity score with a weighted human protein-
protein interaction network. Basically, for each candidate gene, all the direct neighbors 
are annotated with, if any, diseases associated with them, and weighted by the similarity 
to the disease under study. At the same time, all the edges are weighted with a confidence 
score. Based on these observed data and a uniform priori, the posterior probability of the 
candidate gene to be associated with the disease under study is obtained via the Bayesian 
formula. This is essentially a weighted version of neighbor counting: the neighbors of the 
gene under consideration are weighted by the confidence of the edges (protein-protein 
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interactions), and the similarity between the disease they lead to and the disease under 
study. The more reliably a gene is connected to neighbors associated with diseases similar 
to the disease under study, the more likely the gene is involved in the disease. When apply-
ing this approach to 669 genetic loci with known disease genes, they are able to rank the 
disease gene as the top candidate in 298 loci, significantly outperforming all other methods 
compared in this study. As the first study to incorporate phenome-wide disease similarity 
information into disease gene prioritization, it clearly demonstrates the benefits of phe-
notype data. They then apply the method to 870 genetic loci without the known causative 
genes and predict a list of 113 candidates for 91 loci, 24 of which are likely to be true predic-
tions according to the recently published literature.

11.3.2.2.3  Prioritize by Interactome-Phenome Correlation  Using the same type of data (phe-
notypic similarity and protein networks), we have proposed a novel method, CIPHER 
(Correlating protein Interaction network and PHEnotype network to pRedict disease 
genes), with drastically different formulation (Wu et al. 2008). We choose to directly model 
the correlation between disease phenotypic similarity and gene functional relatedness, and 
use the correlation to prioritize candidate genes. We hypothesize that the phenotypic simi-
larity between any two diseases p and p′ can be explained by the proximity of their disease 
genes on the network:
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where Cp and βp,i are constants for a fixed disease p, and i and i′ indicate disease genes of p 
and p′, respectively. Li,i′ is the graph distance between gene i and i′, which is transformed 
into proximity by a Gaussian kernel function. The distance measure can be any of the 
direct neighbor (CIPHER-DN), shortest path (CIPHER-SP), or diffusion kernels.
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is defined as the proximity between gene i and disease p′ by summing the gene proxim-
ity over all known disease genes of p′. This is the classical measure used in shortest path 
analysis to prioritize candidate genes (Franke et al. 2006; Krauthammer 2004), which do 
not rely on the phenotypic similarity information. Instead, we choose to evaluate the abil-
ity of gene-disease proximity in explaining the disease similarity for a pair of genes and 
diseases (i, p). We create a phenome-wide vector for each gene i: Φ Φi i p= ′( ),,  and each 
disease p: S Sp p p= ′( ),,  with p′ varying for all human diseases. Then we use the correlation 
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between these two vectors as the final score for association between gene i and disease p. 
The usefulness of this score is validated by both systematic large-scale cross-validation, 
and a case study for breast cancer. We have shown that the proposed CIPHER approach 
can accurately pinpoint the true disease genes from linkage loci or from the whole genome. 
Further analysis shows that CIPHER is robust to noise in the phenotype similarity data 
and the protein network data. Without any modification, CIPHER can be applied to de 
novo discovery, that is, to diseases without known disease genes (without mapped locus or 
with mapped but uncharacterized loci).

A case study for breast cancer is presented to demonstrate CIPHER’s ability in de novo 
discovery of breast cancer genes. Sixteen known breast cancer genes are treated as non-breast 
cancer genes and then the whole human genome is prioritized by CIPHER. When using a 
shortest path length measure of distance (CIPHER-SP), the well-characterized breast cancer 
gene BRCA1 is ranked at the top, and 10 of the 16 genes are ranked in the top 300, roughly 
the top 1% of the human genome (Table 11.2). In addition, among the top 10% of the pri-
oritized human genome the same de novo prioritization identifies 15 genes that have been 
suggested recently to be novel breast cancer genes, including AKT1, ranked at 27, a novel 
oncogene, and recently a transforming mutation was identified in human breast, colorectal, 
and ovarian cancers (Carpten et al. 2007). The case study also shows that, though direct 
neighbor distance measure (CIPHER-DN) works better on ranking known breast cancer 
genes than CIPHER-SP, it fails to assign ranks to many of the novel susceptibility genes.

All the advantages of CIPHER enable us to perform genome-wide candidate gene pri-
oritization for almost all human diseases, leading to a comprehensive genetic landscape of 

TABLE 11.2 The Ranks and Percentages of Known 
Breast Cancer Susceptibility Genes in Genome-Wide 
de Novo Prioritization

Known Breast 
Cancer Gene

Rank by 
CIPHER-SP

Rank by 
CIPHER-DN

BRCA1 1 2
AR 3 3
ATM 19 4
CHEK2 66 19
BRCA2 139 49
STK11 150 21
RAD51 174 36
PTEN 188 24
BARD1 196 41
TP53 287 45
RB1CC1 798 6360
NCOA3 973 343
PIK3CA 1644 367
PPM1D 1946 7318
CASP8 4978 2397
TGF1 7116 3502
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human diseases. Automatic clustering and enrichment analysis of the landscape reveal the 
modularity of human disease and gene relationships (Wu et al. 2008).

11.3.2.2.4  Network Alignment  To fully explore the modularity of the human disease genetic 
landscape, Wu, Liu, and Jiang (2009) borrow ideas from the study of conservation in protein 
networks (Sharan et al. 2005), or network alignment. Sharan et al. propose a local align-
ment technique to identify conserved modules between two or more protein interaction 
networks. To apply this technique, Wu, Liu, and Jiang (2009) created a human disease net-
work by linking diseases with a phenotypic similarity score larger than a given threshold, 
resulting in a human disease similarity network. Then they used the network alignment 
technique to compare the human disease network and human protein network, and identify 
39 disease modules together with corresponding gene modules, or bimodules. Examining 
the functions of genes and categories of diseases, they show that these bimodules represent 
disease families and their common pathways. After validating the bimodule identification 
method, they propose to use it for disease gene prediction. Essentially, they predict a candi-
date gene to cause a disease if it is linked to the disease in a bimodule. This approach, named 
AlignPI (Wu, Liu, and Jiang 2009), attains similar performance with CIPHER.

11.3.3   Prioritize by Network Centrality

The working principle for methods in this category is totally different from those discussed 
above. Here we assume that genes with higher centrality on a network are more likely to 
cause disease. To be more informative, the network is often specially designed.

11.3.3.1   Centrality in a Context-Specific Gene Network
Ozgur et al. (2008) introduce a sophisticated automatic literature mining approach to con-
struct a disease-specific gene interaction network, in their example, a prostate cancer net-
work. Hypothesizing that genes with high centrality in a disease-specific network are likely 
to be related to the disease, they used several network centrality measures to rank genes in 
the prostate cancer network, and found that two measures, degree and eigenvector, were 
highly informative of known prostate cancer genes. Specifically, 19 of the top 20 genes 
returned by the approach have supportive evidence from either OMIM or PGDB (Prostate 
Gene DataBase; Li et al. 2003), a curated database of genes related to prostate cancer. 
One limitation of the approach is that, similar to the Molecular Triangulation approach 
(Krauthammer et al. 2004), it relies on a list of seed genes (genes known to be involved in 
the disease) to construct the network, yet to what extent the choice of seed genes influences 
the results is not discussed. In a second study, Ortutay and Vihinen (2009) create a human 
immune gene interaction network by linking curated immune genes with interaction data 
from HPRD, and use multiple centralities, including degree and closeness, to prioritize 
candidate genes for immunodeficiencies.

11.3.3.2   Centrality in a Genomic-Phenomic Network
So far we have focused on networks whose nodes are genes or proteins. There are also other 
network approaches using more complicated networks. For example, Gudivada et al. (2008) 
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create a network of various concepts, with edges representing the association between genes 
and Gene Ontology annotations, pathways, mouse phenotypes, and human clinical fea-
tures, therefore establishing a semantic web of integrated genomic and phenomic knowl-
edge. Assuming that disease-causing genes tend to play functionally important roles and 
share similar biochemical characteristics with genes causing diseases with similar clinical 
features, the authors use a Google-like search and ranking algorithm (Mukherjea 2005) to 
prioritize candidate genes. The efficiency of the proposed approach is tested in prioritizing 
candidate genes for cardiovascular diseases.

11.3.4   Other Methods

Here we discuss several interesting and promising approaches that do not fall into the 
above categories. These methods are interesting because they do not rely on known disease 
gene or disease similarity, yet still are able to find the causal gene based on the genome-
wide secondary response.

Mani et al. (2008) propose a method called Interactome Dysregulation Enrichment 
Analysis (IDEA) to predict oncogenes. Using interactome and microarray data, they first 
identify dysregulated interactions, that is, gene pairs with annotated interaction but sig-
nificantly changed correlation according to gene expression profiling of normal and tumor 
samples. Then genes with an unusually high number of dysregulated interactions in their 
neighborhood are predicted as oncogenes. The assumption is that genes implicated in can-
cer initiation and progression will show dysregulated interactions with their molecular 
partners. In three B-cell tumor phenotypes, the method correctly identifies the known 
genes in the top 20 candidates out of about 8000 genes. The IDEA method exploits direct 
neighbors only. As demonstrated by other examples discussed in previous sections, short-
est path-based analysis might yield higher coverage and more novel predictions that are 
not so obvious from protein interaction data.

A more sophisticated network-based approach has been proposed to solve a problem with 
similar settings. With the protein interaction network available, Karni, Soreq, and Sharan 
(2009) attempted to predict the causal gene from expression profile data assumed to be per-
turbed by the gene. They first identified a set of disease-related genes whose expression is 
changed in the disease state, then, based on a parsimonious assumption, an algorithm sought 
the smallest set of genes that could best explain the expression changes of the disease-related 
genes in terms of probable pathways leading from the causal to the affected genes in the 
network. Experiments with both simulated and real knock-out data show that the proposed 
approach attains very high accuracy. Further validations on expression data from different 
types of cancer show high accuracy in pinpointing known oncogenes. For example, using 
expression profiles for a subset of acute leukemias involving chromosomal translocation of 
the mixed leukemia gene (MLL), the algorithm correctly assigns MLL an average rank of 1.5, 
out of 168 genes in the neighboring region. When applying the algorithm to four breast can-
cer datasets, the major causal genes BRCA1 and BRCA2 are ranked very high. They are also 
able to show that the algorithm outperforms a naive algorithm that ranks disease-associated 
genes according to their shortest path length in the network to the directly affected genes.
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11.4  DISCUSSION
Five years after the first network-based candidate gene prioritization method (Krauthammer 
et al. 2004), now there are more than 20 available in the published literature (Table 11.1), 
calling for a comprehensive comparison among them. Unfortunately, a systematic and 
rigorous direct comparison is very difficult and seldom occurs in the literature, mostly 
because different methods use different types of data sources, and are trained and tested 
on customized datasets which are often unavailable to others. For methods running with 
the same type of data sources, one can re-implement different methods proposed by other 
groups, and compare them using one dataset that is probably not the original dataset on 
which most methods were tested. Such a comparing scheme is only feasible for compar-
ing methods that are easy to implement. For example, Kohler et al. (2008) implemented 
four algorithms that are purely network based and compared their performance, showing 
the superiority of global distance measures. For situations where methods are not easy to 
implement, researchers often compare self-reported performances along with the original 
publications. Self-reported performances are often transformed into so-called (average) 
fold enrichment, that is, the average fold of enriching the true disease genes among a short 
top list, compared to random selection (Lage et al. 2007; Wu et al. 2008). According to this 
criterion, disease similarity-assisted methods significantly outperform previous methods, 
and we are able to show that CIPHER works even better, especially for higher recall. The 
problem with the fold enrichment criterion is that it is influenced by the total number of 
candidate genes and the size of the top list, while these numbers often vary across different 
methods. For comprehensive comparison, a community-wide effort is needed, to establish 
a publicly available data platform, including widely used different data sources, a train-
ing dataset of known gene-disease associations, and a blinded test dataset. Such efforts 
have recently been performed in a related field, the mouse gene function prediction (Pena-
Castillo et al. 2008).

Most of the methods discussed here are not designed particularly for cancer, though they 
can be applied to cancer without any modification. Here we discuss some cancer-specific 
issues. Though these issues are not particularly related to network-based approaches, it 
will be important for us to realize their impact. First, prediction methods generally do not 
differentiate two types of cancer genes that are different in many aspects and thus fail to 
generate more testable hypotheses that could guide further experimental validation. Genes 
that can initialize tumorigenesis are traditionally divided into oncogene and tumor sup-
pressor gene, though more recently stability gene has been proposed to be a further type 
of cancer gene (Vogelstein and Kinzler 2004). Study has shown that a classifier using pro-
tein conservation, gene sequence, protein domains, protein interactions, and regulatory 
data is able to differentiate oncogenes from tumor suppressor genes (Furney et al. 2008a). 
Specifically, they show that tumor suppressor genes have higher degree than oncogenes, 
while oncogene evolution appears to be more highly constrained (Furney et al. 2008a). 
Together, these results imply that oncogenes and tumor suppressor genes may be inherently 
different. Taking the difference into consideration may further improve the prediction of 
cancer genes. In addition, the experimental procedures to verify oncogenes and tumor 
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suppressor genes are different; computational prediction will facilitate the verification if it 
can tell an oncogene from a tumor suppressor gene. Another special issue for cancer gene 
prediction is that there are several cancer-specific genome-wide data sources which may 
greatly advance the prediction of cancer genes. For example, large-scale sequencing of the 
human cancer genome has identified thousands of genes carrying nonsilent mutations in 
breast or colon cancer samples (Sjoblom et al. 2006; Wood et al. 2007), while array-based 
techniques, such as array comparative genomic hybridization (aCGH; Pinkel et al. 1998) 
and representational oligonucleotide microarray analysis (ROMA; Lucito et al. 2003), have 
been developed to localize genes with altered copy numbers (amplified or deleted) in can-
cer samples. Combining candidate genes identified from the above large-scale screen and 
computational cancer gene prioritization methods will greatly facilitate the discovery of 
human cancer-causing genes.

With the development of high-throughput techniques in exploring the human cancer 
genome, and the increasing quality in large-scale detection of protein interactions, net-
work-based cancer gene discovery will remain promising and continue to be an active 
research area. Progress in this area will also benefit from other network-based research, 
such as the network-based prediction of protein functions (Sharan, Ulitsky, and Shamir 
2007), especially functions of cancer genes (Hu et al. 2007), and the discovery of novel drug 
targets for cancer (Campillos et al. 2008; Huang and Harari 1999), since the formulations 
are similar; thus novel methods developed for one problem may also apply to the other. We 
expect that network analysis will provide both systems thinking and methodology advan-
tages on our way to understanding the complexity of life.
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C h a p t e r  12

Cancer Genomics 
to Cancer Biology

Maria Luz Jaramillo and Chabane Tibiche

12.1  EVOLUTIONARy THEORy OF CANCER
Development of cancer consists of a step-wise accumulation of DNA mutations and 
other genetic alterations resulting in a dysregulation of cell growth. As a consequence, 
cells become progressively more abnormal as more genes become altered, thus leading 
to the transformation of these cells into the neoplastic or malignant state (Nowell 1976). 
The abnormal behaviors demonstrated by these “transformed” cancer cells are largely the 
result of a series of mutations in key regulatory genes: oncogenes, which positively regu-
late cell growth, and tumor suppressor genes, which negatively regulate cell growth. In 
addition, the genes that are in control of DNA repair often become damaged themselves, 
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resulting in cells that are capable of generating increasing levels of genetic chaos to which 
they can become even more susceptible, fueling a vicious cycle.

Most cancers are considered to descend from a single mutant precursor cell. As that cell 
divides, the resulting generation of cells may acquire genetic and nongenetic modifica-
tions possibly resulting in different biological behaviors over a period of time. If alterations 
result in an advantage with respect to increased cell division and/or resistance to cell death, 
these altered cells will overgrow the population. As a consequence of these alterations, 
tumor cells acquire a wide range of behaviors or phenotypes that are not characteristic of 
their normal cell counterparts. These phenotypic changes will be outlined further in the 
section on cancer cell biology (Section 12.4).

12.2  CANCER GENOMICS
DNA can be altered in several ways. Mutations can consist of a single nucleotide change to the 
protein coding sequence resulting in a missense mutation (causing a single amino acid change) 
or a frameshift or nonsense mutation (causing premature truncation or a nonfunctional pro-
tein). In cancer, somatic mutations that frequently occur in the coding regions of protoon-
cogenes, such as Ras and Myc, often result in activation (gain of function) and increase their 
ability to stimulate cell growth or inhibit cell death. On the other hand, mutations in tumor 
suppressor genes generally result in a loss of function, as in the case of mutated p53 or APC 
genes. Mapping of tumor mutations is important in the analysis of the genetic changes that 
lead to cancer (as discussed further below). It is also possible to analyze germ-line mutations in 
order to identify dysfunctional genes leading to the development of a familial form of cancer.

Larger regions of DNA alterations encompassing many genes, as seen in translocations, 
gene amplification, inversions, duplications, and deletions or even entire chromosomes, are 
often generated during tumor progression. All of these genetic mechanisms can contribute 
to the programming of the neoplastic state. Whole genome profiling (such as comparative 
genome hybridization or high density single nucleotide polymorphism arrays) has shown 
that a variety of genomic changes generally occur during tumor initiation and progres-
sion. Examples of physical loss or gain of chromosomal regions which occur in epithelial 
cancers include human epidermal growth factor receptor 2 (HER2) amplification in breast 
cancer and loss of PTEN (tumor suppressor) in neuroblastoma.

In addition, gene expression can also be altered by epigenetics, which involve nonge-
netic changes at the level of the DNA (such as promoter methylation) or chromatin (such 
as histone acetylation). Although these types of alterations were originally linked to devel-
opment, they are also clearly associated with tumorigenesis as evidenced by the hyper-
methylation induced silencing of the promoter regions of certain tumor suppressors such as 
PTEN and p16 INK4 (Chang, Huang, and Wang 2008; Lopez et al. 2009; Ohm et al. 2007). 
Efforts have now begun to analyze epigenetic changes at a global level (He et al. 2008).

In summary, every step of the gene expression pathway is subject to modification, resulting in 
dysregulation (Figure 12.1). The mapping of such changes which translate into altered levels or 
functions of proteins involved in cellular homeostasis forms the basis of cancer genomics (Carr 
et al. 2004). By linking a particular genotype (genetic constitution) to the cancer phenotype, or 
biological manifestation of the disease, this type of profiling can lead to “signatures” that can be 
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used as predictive diagnostic (identification of disease), prognostic (clinical outcome), and ther-
anostic (ability to predict therapeutic response) markers (Jain 2007; van’t Veer and Bernards 
2008). For example, in the case of non-small cell lung cancer (NSCLC), activating mutations in 
ErbB1/EGFR better predict the ability of patients to respond to EGFR targeted inhibitors rather 
than EGFR expression level alone (Kancha et al. 2009; Lynch et al. 2004). Along similar lines, 
the presence of an activating Ras mutation, which lies downstream of EGFR, is predictive of 
nonresponsiveness (Massarelli et al. 2007). In other cases, overexpression of family member 
ErbB3 is linked to resistance toward EGFR targeted inhibitors (Fujimoto et al. 2005).

Initially, genomic studies concentrated on global mRNA expression-based profiling due 
to the rapid development of microarray technology and its relative ease of use. These stud-
ies have focused on transcriptional changes that occur in large numbers of tumor types for 
the purpose of classifying tumors and predicting clinical outcome. As an example, in addi-
tion to standard clinical and histopathological markers, a 70-gene signature now forms the 
basis of a diagnostic test approved by the U.S. Food and Drug Administration (FDA) to help 
assess risk and optimize treatment strategies in certain breast cancer patients (Glas et al. 
2006). However, among the assortment of known breast cancer gene expression signatures 
linked to poor prognosis to date, there exists little overlap. The existence of a variety of 
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gene signatures serves to illustrate the diversity of gene expression patterns associated with 
the cancer phenotype. In general, the heterogeneity of cancer, both genetic and nongenetic 
in origin, can severely complicate diagnosis and treatment.

The sequencing of the human genome has led to several initiatives that aim to comprehen-
sively sequence tumor genomes from a wide variety of tissue types. Notably, not all mutations 
are necessarily associated with cancer progression and cancer “driver” mutations are opera-
tionally distinguished from cancer “passenger” gene mutations by their ability to be func-
tionally selected for during evolution of the tumor (Haber and Settleman 2007). Recently, 
global gene mutation studies have started to reveal some interesting results (Greenman et al. 
2007). Large-scale comprehensive sequencing of the 30,000 or so genes found in human 
genomes thus far have suggested that there exists a large heterogeneity of gene mutation 
among tumor samples, with an average of 14 to 15 driver mutations per patient and very 
little overlap (Sjoblom et al. 2006). Whereas some gene mutations have a high frequency, the 
majority of them have a low mutation frequency. In addition to transcriptomics and genom-
ics, proteomic approaches have been utilized to try to better generate molecular descrip-
tors of the transformed state of the cell. Proteomics offers the possibility to globally study 
protein level, posttranslation modification, including phosphorylation, and enzyme activity 
(Latterich, Abramovitz, and Leyland-Jones 2008; Preisinger et al. 2008).

Taken together, these unbiased approaches can lead to a descriptive understanding of 
the differences that occur between normal and tumor cells. However, difficulties arise due 
to the inherent complexity associated with cancer and its heterogeneity, genetic or other-
wise. This all points to a need for a systems biology approach to reveal the underlying logic 
focusing on the involvement of a limited number of signaling pathways. Using an innova-
tive approach to tackle this problem, Cui et al. (2007) mapped all cancer driver-mutating 
genes on a human signaling network. This important study demonstrated the utility of 
such an approach and revealed the presence of 12 major clusters of signaling interactions 
which are implicated to various extents in different kinds of cancer.

To overcome problems in determining changes specifically associated with the neoplastic 
state, large-scale functional studies are beginning to be used to isolate and determine the 
functional relevance of cancer-specific changes (Kim and Hahn 2007; Liu 2008). Typical 
functional genomics studies include gain-of-function screens by expressing cDNA libraries 
or loss-of-function screens using siRNA-mediated silencing in a variety of functional assays 
that are believed to be relevant to the cancer phenotype. Examples using these approaches 
have recently been exploited and have led to the identification of a variety of genes that are 
causally implicated in the growth of several cancer cell lines (Luo et al. 2008).

12.3  SIGNALING PATHWAyS
In biology, cell signaling is based on the ability of a cell to give a proper response to its 
environment. The resulting activation of a series of signal transduction pathways involves 
an ordered sequence of biochemical reactions inside the cell, which are carried out by 
enzymes, activated by second messengers, and which result in a biological response or 
phenotype. These signals are essential to many cellular processes, such as control of cell 
growth, cell survival, differentiation, metabolism, and migration. Although often depicted 
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as separate and linear pathways, a lot of cross-talk occurs among the signaling cascades, 
particularly at the level of cytoplasmic effectors such as kinases and adaptors as well as 
nuclear signaling components, mainly transcription factors.

Most signal transduction involves the binding of extracellular signaling molecules (or 
ligands) to cell surface receptors that are localized to the plasma membrane (Figure  12.2). 
Intracellular receptors also exist, including steroid receptors which bind lipophillic hormones 
that can cross the plasma membrane. In addition to binding soluble peptide or protein ligands, 
signaling cascades can also be triggered through cell-substratum interactions, as is the case 
for the integrins, cell surface integrin receptors which bind constituents of the extracellular 
matrix (ECM).

Several classifications of cell surface receptors exist: multipass transmembrane proteins, 
such as ion channel-lined receptors or G-protein coupled receptors (GPCR) or single trans-
membrane protein such as growth factor receptors. In the case of GPCR, signaling is linked to 
heterotrimeric G proteins. In contrast, single transmembrane receptors exemplified by recep-
tor tyrosine kinases (such as EGFR) and Ser-Thr receptor kinases (such as the transforming 
growth factor-β receptor family) have integral kinase activity. Upon binding of ligand, the 
kinase domain of these receptors is activated, initiating the phosphorylation of downstream 
cytoplasmic effector molecules, which generally results in the activation of transcription.

To illustrate the complexity of these pathways and the signaling connections involved, 
we have outlined the EGFR/erbB family signal transduction in Figure 12.3. The epidermal 
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growth factor receptor (EGFR also known as ErbB or human EGF receptor HER) family 
consists of four tyrosine kinase receptors, designated ErbB1 (EGFR, HER1), ErbB2 (HER2), 
ErbB3 (HER3), and ErbB4 (HER4), all of which bind a specific set of ligands including epi-
dermal growth factor (EGF), transforming growth factor (TGF)-α, epiregulin, betacellulin, 
amphiregulin (Areg), heparin-binding EGF-like growth factor (HB-EGF), heregulin, and 
the neuregulins. The nature and strength of the signal transduction pathway depend on 
the availability of ligands (input layer) and/or receptor molecules (Yarden and Sliwkowski 
2001). Upon ligand binding, homo- or heterodimerization of these receptor pairs results 
in kinase activation and tyrosine phosphorylation of various downstream substrates, such 
as PLCγ or adaptor proteins such as Grb7. Consequently, these effector molecules transmit 
the signal through the cytoplasm, which results in the translocation or activation of tran-
scription factors in the nucleus, which ultimately concludes in a coordinated biological 
response, such as growth or differentiation (output layer). Notably, the wiring and biologi-
cal consequence of most signaling pathways are plastic in nature and may be alternatively 
configured in distinct cell types and under different conditions such as during develop-
ment or tumor progression. Moreover, transactivation of EGFR can be triggered by other 
receptor systems, rendering the EGF receptor, an important intersection between various 
signaling systems (Hynes and MacDonald 2009; Yarden and Sliwkowski 2001; Yen et al. 
2002).

12.4  CANCER CELL BIOLOGy
As detailed in an excellent paper “The Hallmarks of Cancer” by Hanahan and Weinberg 
(2000), a minimum of six biological traits or phenotypes is necessary in order for a tumor 
to undergo malignant growth. In this model of cancer growth and spread, several biologi-
cal changes must occur which act to overcome the normal anticancer defense mechanism 
that is built into normal cells. This is in accordance with the generally accepted theory that 
tumor cells evolve progressively via a series of premalignant states into invasive cancers 
(Foulds 1954). Experimental in vitro models of immortalization and malignant transfor-
mation indicate that the disruption of a limited number of cellular pathways is sufficient 
to transform a normal cell into a malignant one (Hahn 2002). Many tumor studies in 
mice also support the premise that tumorigenesis involves multiple rate-limiting steps. 
Although most of these characteristics are shared by most cancer types, this analysis will 
focus mainly on the acquired capabilities involved in the development of carcinomas, a 
tumor derived from epithelial cells. These cancer types encompass those originating from 
cells that line the surface of our skin and organs such as lung, breast, and colon, and rep-
resent about 80% to 90% of all cancer cases reported in North America (American Cancer 
Society 2008).

12.4.1  Immortalization: The Ability to Undergo an 
Unlimited Number of Cell Divisions

The fact that normal cells can only divide a finite number of times before entering a state 
of permanent growth arrest, termed replicative senescence, is a strong barrier to cellular 
transformation. This cellular “aging” occurs largely due to the fact that each cell division 
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results in a shortening of the ends of their chromosomal DNA, called telomeres (Braig 
and Schmitt 2006). In contrast to normal cells, the majority of immortalized cells express 
telomerase activity that functions to maintain the integrity of the chromosomes during 
cell division. One form of irreversible growth arrest, also referred to as cellular senescence, 
can be induced following either oncogene activation, loss of tumor suppressor signaling, or 
in response to DNA damage. Oncogene-induced senescence has recently been recognized 
as a tumor-suppressive mechanism in vivo, both in human lesions and in several mouse 
tumor models (Prieur and Peeper 2008). In all these cases inactivation of other pathways 
involving the p53 and retinoblastoma (Rb) proteins, which act at the level of cell cycle 
checkpoints, is necessary to overcome senescence and achieve immortalization.

It should be noted that although immortalization is necessary, it is not sufficient by itself 
to result in transformation into a tumorigenic state (Hahn and Meyerson 2001). This is sup-
ported by the fact that although many tumor-derived cell lines appear to be immortalized 
(i.e., capable of being propagated in perpetuity in tissue culture) they do not necessarily 
form tumors in animals. Notably, the requirements for human versus mouse cancer trans-
formation differ significantly, in that the induction of tumors in mouse models of cancer 
requires fewer genetic changes in mouse versus human models of cancer (Hahn 2002).

12.4.2  Growth Signal Self-Sufficiency

Most cells require external cues in order to undergo cell proliferation. Normally, cells will 
not divide unless they receive extracellular signals, such as those from growth factors and 
hormones, which cause the cells to enter into the cell cycle. Another form of growth signal 
dependence arises from the interaction of integrin receptors on the cells with components 
of the extracellular matrix (Walker and Assoian 2005). In contrast, tumor cells invariably 
show reduced dependence on exogenous growth stimulation.

This growth factor independence often occurs as a result of constitutive activation of a 
growth factor receptor signaling pathway, such as EGFR. In some cases, the ligands of these 
pathways are overexpressed in the tumor cells, resulting in autocrine stimulation (Rusch, 
Mendelsohn, and Dmitrovsky 1996) . In some cases, growth factor receptors are vastly overex-
pressed, such as HER2 in breast cancer (Natali et al. 1990), or mutated, such as EGFR in glio-
blastoma (Gan, Kaye, and Luwor 2009), rendering them ligand-independent in their signaling. 
Commonly, critical components of the signaling pathways are dysregulated, such as the case 
of Ras, which is activated by genetic mutations in more than 25% of human cancers.

12.4.3  Insensitivity to Antigrowth Signals

The failure of cancer cells to respond to “stop” signals, including those from soluble factors 
coming from both the tumor cells and from neighboring cells in their microenvironment, 
is an important factor in their ability to become tumorigenic. Customarily, cancer cells 
also fail to undergo contact inhibition, the growth inhibition that results from physical 
contact with adjacent cells. Contact inhibition was one of the earliest cell-based mecha-
nisms identified during transformation (Nelson and Daniel 2002) and forms the basis of 
the transformation-tumorigenicity focus forming assay which was used to identify many 
oncogenes, such as Ras (Pulciani et al. 1982). Transforming growth factor-β (TGF-β) is 
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one of the best known soluble signaling molecules involved in growth inhibition. Secreted 
by many cell types, TGF-β acts by preventing the phosphorylation of Rb, through the sup-
pression of Myc expression or the synthesis of cyclin/CDK blockers p15/Ink 4B or p21Cip/
WAF1, thus blocking advance through the G1 phase of the cell cycle (Moses, Yang, and 
Pietenpol 1990). In some cases, resistance to antigrowth signals may involve downregula-
tion or mutations in TGF-β receptors. Alternatively, components of the TGF-β signaling 
pathways, such as Smad4, or the cell cycle machinery, such as p15/Ink 4B or CDK4, may 
lose expression or become unresponsive through mutations (Massague and Gomis 2006). 
Finally, Rb itself may be the ultimate target, either by mutation of the gene or functional 
inactivation through sequestration by viral oncoproteins, such as the E7 protein expressed 
by the human papilloma virus.

In addition to the acquisition of a quiescent state from which the cell can reemerge at 
a later point in time, an alternative means to permanently stop cell division is by induc-
ing differentiation, which is associated with the post-mitotic state. Although its links to 
the cell cycle regulation are not well worked out, the differentiation process involves the 
coordinated regulation of gene expression that results in differential morphological and 
biological properties for the cells, often resulting in cells that have very limited potential 
for cell division.

12.4.4  Evasion of Apoptosis

The ability of a tumor cell population to expand in number depends on both its ability 
to divide as well as its ability to undergo cell death. Programmed cell death, otherwise 
known as apoptosis, represents a major mechanism by which cell attrition is achieved. It 
is involved in a wide diversity of tissue-homeostatic, developmental, and oncogenic pro-
cesses. Present in virtually all cell types, the apoptotic regulatory machinery senses both 
soluble and ECM- or membrane-bound signals which influence whether a cell should live 
or die. The ability of epithelial cells to undergo apoptosis in response to detachment from 
their surroundings as well as cell-cell adherence-based survival signals, known as anoikis, 
contributes to the ability of cells to maintain their bona fide architecture and location in 
situ. Notably, the ability of cells to survive (and grow) when detached from other cells and 
their extracellular matrix underlies another well-known transformation assay, namely, 
anchorage-independent growth (Chiarugi and Giannoni 2008). This assay, in which cell 
growth is assessed following suspension into a semisolid medium, correlates well with 
the tumorigenicity of tumor cells in animal xenograft transplantation models (Shin et al. 
1975).

The process of apoptosis is controlled by a diverse range of cell signals, which may origi-
nate either extracellularly (via extrinsic inducers) or intracellularly (via intrinsic induc-
ers). Examples of the “sensor” components which respond to extrinsic inducers include 
receptors that bind to survival ligands such as IGF-1 or IGF-2 or IL-3 or death-inducing 
ligands such as FAS ligand or TNF-α (Ashkenazi and Dixit 1998). Intracellular sensors 
also exist which transduce abnormal signals from DNA damage, oncogene activation, or 
hypoxia into cell death. The apoptotic machinery comprises the bcl2 family of proteins, 
which can be either pro-apoptotic or anti-apoptotic, acting on an array of intracellular 
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proteases named caspases, which execute the death program through the destruction of 
cellular structures and the genome (Sanfilippo and Blaho 2003).

Resistance to apoptosis can occur through p53 tumor suppressor mutation, which occurs 
in more than 50% of human cancers, resulting in resistance to apoptosis in response to 
DNA damage as well as other intracellular signals (Joerger and Fersht 2008). Resistance 
to signals emanating from extracellular inducers involves the use of nonsignaling death 
decoy FAS receptors (e.g., TRAIL) as well as alterations in the prosurvival PI3 kinase/Akt/
PTEN pathways which lie downstream of IGF-1/2 or IL-3 receptors (Fulda 2009).

12.4.5  Productive Interaction with the Microenvironment, 
Including Vascular Remodeling

While tumor cells play a prominent role in tumorigenesis, the role of supporting stromal 
cells within the microenvironment should not be overlooked. During carcinoma forma-
tion, cancer cells release various cytokines and growth factors into their surroundings and 
recruit and reprogram fibroblasts, endothelial cells, and infiltrating inflammatory cells 
that make up the stromal cell compartment of the tumor mass in order to establish a tumor 
microenvironment. Heterotypic interactions between various cell types are likely to oper-
ate in the majority of solid tumors, considering the instructive role of paracrine signal-
ing in the regulation of tumorigenicity and metastatic potential of immortalized cancer 
cells. Furthermore these tumor-associated cells may co-evolve with the neighboring trans-
formed epithelial cells in order to sustain tumor growth (Polyak, Haviv, and Campbell 
2009). Recent studies have identified new roles for cancer-associated fibroblasts in promot-
ing tumor progression, through stimulation of inflammatory pathways and induction of 
extracellular matrix-remodeling proteases (Radisky and Radisky 2007). The interactions 
that take place between immune and cancer cells are rather complex, involving multi-
ple cascades of cytokines, chemokines, and/or growth factors (Sheu et al. 2008). The link 
between inflammation and cancer is nonetheless well documented (Coussens and Werb 
2002) and the presence of immune cells, particularly macrophages, has been shown to 
stimulate tumor cell motility and metastasis as well as angiogenesis through the release of 
inflammatory cytokines by immune cells, in response to the presence of tumor cells (Sica, 
Allavena, and Mantovani 2008).

All cells, particularly fast growing tumor cells, need a constant source of oxygen and 
nutrients, such as glucose, from their blood supply. In addition, successful tumors need 
to be able to recruit endothelial cells to induce the formation of blood vessels in a process 
termed angiogenesis (Kerbel 2008). Angiogenesis is carefully controlled by counterbalanc-
ing positive and negative signals resulting in an angiogenic switch occurring in early to 
mid-stage tumor development (Persano, Crescenzi, and Indraccolo 2007), just before the 
onset of rapid clonal expansion that can be seen in macroscopic tumors. Angiogenesis pro-
moting signals are best exemplified by vascular endothelial growth factor (VEGF) which 
acts through the tyrosine kinase receptor VEGFR1 or 2. Currently, strategies to inhibit 
VEGFR or VEGF, through neutralizing antibodies such as bevacizumab, are proving to be 
quite successful in a variety of clinical trials, highlighting the importance of the neovascu-
larization step during tumor progression.



Cancer Genomics to Cancer Biology    ◾    225

12.4.6  Tumor Metastasis

Tumors that are capable of invading into adjacent tissues and spreading to other sites to 
form metastases account for over 90% of deaths due to cancer (Sporn 1996). In this pro-
cess, tumor cells must leave the initial or primary tumor and travel through the blood 
or lymphatic system to reach and eventually colonize a distant location. Normally, cells 
sense their role, both in relation to their spatial location and place in time within the body 
such that their presence, architecture, and function remain beneficial to the organism as a 
whole. The invasion-metastasis cascade that occurs during metastasis breaches this barrier 
in a complex process that is not genetically or biochemically completely understood.

The ability of cells to undergo an epithelial-to-mesenchymal transition (EMT) appears 
to be fundamental to the ability of epithelial cells to detach from the primary tumor and 
invade adjacent tissue. This process is similar to the differentiation process, which plays 
a key role in many steps during embryogenesis such as mesoderm formation and neural 
tube formation (Baum, Settleman, and Quinlan 2008). In this process, epithelial cells lose 
some of their markers, such as the cell adhesion molecule E-cadherin, and gain character-
istics of mesenchymal cells such as the ability to migrate and invade surrounding tissue. 
Induction of EMT occurs via a diverse set of stimuli, including growth factor signaling, 
tumor-stromal cell interactions and hypoxia and several pathways involving EGF, TGF-β, 
Src, Ras, Ets, integrins, Wnt/beta-catenin and Notch, culminating in the expression of spe-
cific transcription factors, including Snail1, Snail2/Slug, and Twist (Moustakas and Heldin 
2007). Originally discovered through the study of developmental genetics, the expression 
of many of the transcription factors, such as Twist, is often correlated with invasiveness of 
tumors (Yang, Mani, and Weinberg 2006).

In addition to the loss of E-cadherin, which acts as a metastasis suppressor by inhibit-
ing epithelial cell to cell adhesion, the appearance of certain other cell adhesion molecules 
such as N-cadherin appears to play a functional role in motility and invasion (Hazan et al. 
2004). As well as changes in cell-cell adhesion molecule composition, changes in integrin 
expression often occur which correlate with altered binding to the tumor-associated ECM 
environment. Proteases also serve a vital function in metastasis by degrading extracellular 
matrix proteins, thus facilitating invasion across basement membranes, into nearby stroma 
and across endothelial cells (VanSaun and Matrisian 2006). A more detailed overview of 
the signaling pathways involved in EMT is not presented here, but is the subject of another 
chapter in this book (Chapter 13).

12.4.7  Genomic Instability, an Accelerator for Tumor Evolution

Taking into consideration that many of the changes that are required in the evolution of a 
tumor involve mutations and other forms of stable genetic alteration, there needs to be an 
accelerated means to produce the mutations that are selected for in this selection process. 
Under normal circumstances, DNA damage is sensed, resulting in either cell cycle arrest to 
allow for repair or apoptosis if the damage is extensive. To produce the genomic instability 
and variability needed for the selective advantage, the machinery of the DNA repair sys-
tem, including the sensors of damaged DNA, such as the p53 system, is commonly affected 
in tumors (Jeggo 2005).
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12.4.8  Cell-Based Assays to Study Tumor Progression

As summarized above, various biological hurdles must be overcome in order for a cell 
to become cancerous. Traditionally, two-dimensional monolayer cell growth assays have 
been relied upon in preclinical studies designed to assess the efficacy of chemotherapeu-
tics and other molecularly targeted inhibitors. These assays generally measure relatively 
short-term growth of carcinoma cell lines, usually through the evaluation of metabolic 
activity using reducing dyes such as MTT. These monolayer growth assays fail to measure 
anchorage-independent survival and growth, one of the distinguishing features of trans-
formed cells (Walker, Fournier, and Assoian 2005). On the other hand, assays performed 
under anchorage-independent conditions, such as colony-forming or clonogenic assays, 
tend to measure more accurately the in vivo tumorigenic potential of tumor cell lines (Shin 
et al. 1975).

An additional limitation of both monolayer and anchorage-independent tumor cell 
growth assays is their failure to take into account the effect of inhibitors on processes related 
to metastasis, such as motility and invasion. It has been proposed that increased cell motil-
ity and invasion may impact not only metastasis, but also growth at the primary tumor site. 
This “self-seeding” hypothesis postulates that cell motility may contribute to the high cell 
density, rapid growth rate, and large primary tumor size of more aggressive tumors (Norton 
and Massague 2006). Accordingly, effects of inhibitors on primary tumor growth may also 
be underestimated if effects on motility and invasion are not assessed. In support of this more 
comprehensive approach to cell-based assay testing, we utilized anchorage-independent cell 
growth as well as motility assays and demonstrated that these tests detect the effects of two 
epidermal growth factor receptor (EGFR) inhibitors, the small molecule inhibitor AG1478 
and the ligand-blocking antibody 225 mAb, on A549 non-small cell lung cancer cells more 
sensitively than monolayer growth assays (Jaramillo et al. 2008). These results explain, in 
part, why these cells are sensitive to EGFR inhibitors in in vivo xenograft animal models, but 
are relatively resistant in conventional in vitro monolayer growth assays.

To take into account the role of the tumor microenvironment, heterotypic assays involv-
ing two or more cell types in three-dimensional (3D) tissue extracellular matrix microen-
vironments are beginning to be developed (Hu et al. 2009; Karnoub et al. 2007; Zahir and 
Weaver 2004). These types of approaches are leading to some interesting microenvironment-
based therapeutic targets, such as COX-2 and CCL-5 (Hu et al. 2009; Karnoub et al. 2007).

12.5  A BIOINFORMATICS APPROACH TO CANCER BIOLOGy
To connect the plethora of signaling pathways that are being characterized to the roles that they 
play in the development of cancer, we attempted to link a number of gene ontology (GO) terms 
to a large selection of biological pathways associated with cancer. The GO terms were selected 
from Amigo, a Gene Ontology database, which consists of a collection of three structured con-
trolled vocabularies of terms that describe gene products in terms of their associated biological 
processes, cellular components, and molecular functions. Eight cancer-associated GO terms 
were selected from the AMIGO database to reflect the biological phenotypes first described by 
Hanahan and Weinberg (2000) as outlined above. Table 12.1 lists the GO terms chosen for the 
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analysis as well as the total number of genes associated with each GO term at the time of analy-
sis. It should be noted, however, that the AMIGO gene ontology database is constantly being 
updated in regard to both GO terms and the gene products associated with them.

We used the Ambion database of signaling pathways (http://www.ambion.com/tools/
pathway/) as a source for signaling pathways that are involved in a variety of biological 
and biochemical processes. To date, more than 3700 gene products are involved in the 
387 signaling pathways listed. Among those, we selected a subset of 64 pathways that are 
known to be related to cancer, containing 777 genes, of which 214 have associated GO 
terms, thereby representing 27.5% of pathway genes. We then performed a search for the 
particular GO terms associated with each of the biological phenotypes under investigation 
among the genes of these cancer selected pathways in order to gauge their involvement in 
a particular phenotype associated with cancer (such as cell proliferation or anti-apoptosis). 
In the final overview, after conducting statistical analysis in which the degree of enrich-
ment of each pathway in a given phenotype is compared to that which would be expected 
randomly, 64 pathways were identified whose genes were found to be associated with one or 
more of the six cancer biological phenotypes. Of those, we eliminated pathways that were 
redundant or only peripherally related to cancer, resulting in a net total of 37 pathways. 

TABLE 12.1 Annotated Genes in GO Terms Associated with Cancer Hallmarks

Cancer 
Hallmarks

GO Term 
Definition GO Term

Number of 
Annotated 
Genes with 

This GO Term 
(Whole 

Genome)

Annotated 
Genes in 
Selected 
Cancer 

Pathways (64)
Limitless 
replicative 
potential

Cell aging GO:0007569 29 5

Insensitivity to 
growth 
inhibitors

Positive 
regulation of 
cell 
proliferation

GO:0008284 314 98

Growth signal 
self-sufficiency

Negative 
regulation of 
cell 
proliferation

GO:0008285 286 54

Sustained 
angiogenesis

Angiogenesis GO:0001525 164 40

Tissue invasion 
and metastasis

Epithelial to 
mesenchymal 
transition

GO:0001837 334 70

Cell motility GO:0048870

Evasion of 
apoptosis

Anti-apoptosis GO:0006916 192 67
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This novel approach is shown schematically in a heat map in which the signaling pathways 
are listed horizontally, the biological phenotypes listed vertically, and the significance of 
the association, q value, indicated by color (as indicated, Figure 12.4). This global approach 
was designed to provide a global overview of the relative contributions of many pathways 
to the cancer state. Undoubtedly, such an approach will undoubtedly improve over time 
as the boundaries of pathways become better defined and gene ontology of many of the 
involved genes becomes better annotated.

When we performed our analysis, we found that most pathways are involved in more 
than one phenotype, suggesting that the majority of these phenotypes are associated 
with each other, to a certain degree. The EGFR/ErbB cascade is an example of a path-
way that ties into several phenotypes such as growth, motility, and differentiation, which 
act together to generate a complex cancer phenotype. EGFR/ErbB signaling is generally 
linked with the development of the majority of solid cancers through its effects on both 
the MAPK pathway, leading to cell cycle progression, and the PI3K pathway, causing cell 
survival. As a consequence, many EGFR antagonists (such as cetuximab and Iressa) have 
been developed for cancer treatment. Similarly, the TGF-β pathway appears to be quite 
pleotropic in nature, acting through a variety of effector molecules and on a variety of 
cell types, including epithelial cells, fibroblasts, and immune cells. Another interesting 

Limitless
replicative
potential

Insensitivity
to growth
inhibitors

Self-sufficiency
in growth

signals
Sustained

angiogenesis
Tissue invasion
and metastasis

Evasion of
apoptosis

14–3–3 Induced Apoptosis
Activation of NF–KappaB by PKR
Apoptotic Pathways Triggered by HIV1
BCR Pathway
CD40 Signaling
CMV and MAPK Pathways
CNTF Signaling
EGF Pathway
ErbB2–ErbB3 Heterodimers
FLT3 Signaling
GDNF–Family Ligands and Receptor Interactions
Growth Hormone Signaling
IL–1 Pathway
IL–10 Pathway
IL–2 Gene Expression in Activated and Quiescent
IL–2 Pathway
IL–22 Pathway
IL–3 Pathway
IL–4 Pathway
IL–9 Pathway
LPS Stimulated MAPK Signaling
Murine METS Protein Signaling
NF–kappaB Activation by Viruses
NGF Pathway
OSM Pathway
PDGF Pathway
Prolactin Signaling
RANK Pathway
TGF–Beta Pathway
�rombopoietin Pathway
TLR–TRIF Pathway
TNF Signaling
TNFR1 Pathway
TNFR2 Pathway
TRKA Signaling
UVC–Induced MAPK Signaling
VEGF PathwayqValue < = 0.05

qValue > 0.15
0.05 < qValue < = 0.15

FIGURE 12.4 (See color insert following page 332.) Heatmap demonstrating associations of can-
cer-linked GO terms (linked to cancer hallmarks) in various signaling pathways. Significance value 
q < 0.05 (red in color) implies more significant association whereas q > 0.15 (green in color) implies 
less significant association.
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feature of this type of analysis is the participation of many cytokine pathways, such as 
those involving interleukins, in several of the cancer phenotypes. Produced by a variety 
of cells and originally identified by their ability to select, attract, and activate leukocytes, 
interleukins play an important role in a number of tumor-related processes, thereby high-
lighting the role of the tumor microenvironment in many of these processes.

Our analysis also links the tumor metastasis phenotype with a variety of other cancer 
cell phenotypes. In addition to the self-seeding hypothesis which states that cell motility 
in cancer plays an important role in the ability of a primary tumor to repopulate both 
itself and distant organs, several recent studies link the ability of tumor cells to undergo 
EMT with other biological processes. Traditionally associated with metastasis, a recent 
study indicates that EMT may also participate in the early stages of tumor development 
by preventing oncogene-induced cellular senescence during the initial cell transforma-
tion. In particular, transcription factors capable of inducing EMT, for example, Twist-1 
and Twist-2, were found to be capable of overriding Ras oncogene-induced premature 
senescence by abrogating key regulators of the p53- and Rb-dependent pathways (Ansieau 
et al. 2008). Cells that have undergone an EMT are also more resistant to anoikis, which is 
consistent with the ability of disseminated cells to survive in the bloodstream during the 
metastatic process. Several of the features of cells undergoing an EMT, including resis-
tance to chemotherapeutics and anoikis, are similar to the characteristics of cancer stem 
cells (Polyak, Haviv, and Campbell 2009). This pluripotent subpopulation of tumor cells 
generates tumors through the processes of self-renewal and differentiation into multiple 
cell types and is linked to the ability of a tumor to relapse and metastasize. Several lines of 
evidence are beginning to emerge regarding the relevance and importance of the signaling 
pathways that converge on the EMT phenotype during all stages of tumorigenesis.

12.6  CONCLUDING REMARkS
From cancer genomics to signaling pathways to cancer biology, the increase in complex-
ity is apparent as one increases the scale of view. However, it is necessary to take both the 
heterogeneity and complexity of cancer signaling into account in order to gain a better 
understanding of the overall process and allow for the design of better and more specific 
cancer therapeutics. Bioinformatics is an absolute necessity in order to deal with these 
large volumes of information, and will likely lead the way to the next generation of cancer-
based studies and drug development.
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13.1  INTRODUCTION
Epithelial cells usually form tightly connected sheets of monolayers, which occurs as a result 
of the subcellular distribution of cadherins, specific integrins, cell-cell junctions (desmo-
somes, tight junctions, adherens junctions, and gap junctions), as well as the polarized orga-
nization of the cytoskeleton. This organization establishes an apical-basal polarity through 
their association with a basement membrane, which, under normal circumstances, allows 
cells to move laterally within the epithelial layer (Birchmeier, Birchmeier, and Brand-Saberi 
1996) but prevents their entrance into the underlying extracellular matrix (ECM).

Epithelial-to-mesenchymal transition (EMT) has long been known to play an important 
role in the generation of mesenchymal cells from the primitive epithelium during metazoan 
embryogenesis. In contrast to epithelial cells, mesenchymal cells do not form organized 
layers, are not associated with a basement membrane, and maintain only focal contacts 
with neighboring mesenchymal cells. In addition, mesenchymal cells in culture tend to be 
highly motile, either as chains or as individual cells moving around using the mechanism of 
“extension-adhesion-retraction” or amoeboid crawling (Thiery and Chopin 1999). The con-
cept of EMT was proposed in the 1960s in studies using chicken embryos (Krug, Mjaatvedt, 
and Markwald 1987; Trelstad, Hay, and Revel 1967; Trelstad, Revel, and Hay 1966). However, 
it was not until the mid 1980s that Krug and co-workers (1987) used the word combination 
“epithelial-to-mesenchymal transition” in the context of a cellular change induced by the 
ECM and that the EMT process was recognized as a discrete cellular program (Greenburg 
and Hay 1982, 1986, 1988). Currently EMT is defined, although not strictly, by the occur-
rence of three phenotypic changes in the epithelial cell: (1) acquisition of a spindle-shaped 
morphology; (2) repression of epithelial markers [such as E-cadherin, occludin, e.g., Zona 
Occludens 1 (ZO-1), and cytokeratins] and gain of mesenchymal markers (e.g., vimentin, 
N-cadherin, and fibronectin); and (3) increased motility and the capacity to invade the 
ECM, which is considered to be a functional hallmark of EMT (Cui et al. 2007).

For EMT to occur the epithelial cell requires a series of complex changes in its architec-
ture and behavior. These changes are driven by the extracellular signals the cell receives and 
then processes into a well-orchestrated integrated response (Figure 13.1). The EMT process 
is in many cases reversible and cells can undergo a so-called mesenchymal-to-epithelial 
transition (MET). This reciprocal process, which provides important cellular flexibility 
that is necessary during tissue construction in normal development (Chaffer, Thompson, 
and Williams 2007), has recently also been implicated in pathological processes such as 
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cancer (Boyer and Thiery 1993; Davies 1996). In addition to the idea that EMT is impera-
tive for the escape of tumor cells from the primary tumor, these observations support the 
notion that the reverse MET process allows these tumor cells to form secondary tumors 
(Chaffer et al. 2005, 2006).

13.2  EMT AND MET IN DEVELOPMENT
As previously mentioned, EMT and MET are two important events which orchestrate 
the interconversion between epithelial and mesenchymal cell morphology, thus allowing 
for the reorganization of germ layers and tissues during embryonic development (Shook 
and Keller 2003). The first EMT occurs in the very early stages of development during the 
formation of mesoderm from the primitive ectoderm, whereas the first MET takes place 
even earlier during the pre-implantation stage when the trophectoderm is formed. At later 
stages, additional EMT conversions occur during the establishment of (1) the neural crest 
(Kuriyama and Mayor 2008; Snarr, Kern, and Wessels 2008), (2) the heart valves (Snarr, 
Kern, and Wessels 2008), (3) the sclerotome (Hay 2005), (4) coronary vessel progenitor cells 
(Wessels and Perez-Pomares 2004), (5) the secondary palate (Kang and Svoboda 2005), 
and (6) during male Müllerian duct regression (Arias 2001; Klattig and Englert 2007). It is 
interesting to note that, even though the mechanisms of EMT underlying these processes 
are quite well understood through the use of cultured cell models (Arias 2001; Savagner 
2001), the entire development process has yet to be characterized within a single species. 
More details regarding the mechanisms, mechanics, and function of EMTs occurring in 
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early development can be found in an excellent review that was published in 2003 by Shook 
and Keller. However, to illustrate the role of EMT in embryonic development we will fur-
ther outline two examples: (1) the mesoderm formation in early development, and (2) the 
formation of the heart valves at a later stage of development.

13.2.1  EMT during Mesoderm Formation during Gastrulation

Most of our current knowledge of the EMT program guiding the gastrulation process 
was generated using fruit fly, fish, amphibian, and bird model systems (Kimelman 2006). 
Nonetheless, most of the principles described for these model organisms also apply to the 
embryonic development of mammals (Viebahn 1995). Prior to implantation, the embryonic 
blastocyst consists of the mesenchymal inner cell mass (embryoblast) which is surrounded 
by the trophectoderm, and which is considered to be the first epithelial structure that is 
formed in a mammalian embryo (Nishioka et al. 2008). Around 16 days post-fertilization, 
ectoderm cells invade the embryoblast, causing the inner cell mass to be divided into the 
epiblast and hypoblast lineages. The epithelial-shaped epiblast cells then undergo EMT, 
invade the basal membrane, and migrate along the narrow space underneath the ectoderm, 
thereby forming the mesoderm (Arnold and Robertson 2009; Nakaya and Sheng 2008; Tam 
and Beddington 1987; Tam, Williams, and Chan 1993). As outlined above, the mamma-
lian gastrulation process results in the formation of three primitive embryonic germ layers, 
the endoderm, ectoderm, and mesoderm. Multiple signaling pathways tightly regulate this 
process. For example, the bone morphogenetic proteins (BMPs) play an important role in 
early embryonic patterning, a process that is responsible for establishing three-dimensional 
polarities (Kishigami and Mishina 2005). In addition, fibroblast growth factor receptor 1 
(FGFR1) was shown to orchestrate the epiblast EMT and morphogenesis of the mesoderm 
by controlling the expression of the transcription factor Snail1 and the adherens junction 
protein E-cadherin (Ciruna and Rossant 2001). The importance of Snail1 in this process 
was confirmed by the observation that mouse embryos deficient in this transcription factor 
display a morphologically abnormal mesoderm (Carver et al. 2001). Furthermore, expres-
sion of a glycogen synthase kinase (GSK)-3β mediated proteasome degradation resistant 
form of β-catenin in oocytes caused a premature EMT of the epiblast, thereby generating 
mesenchymal cells lacking E-cadherin (Kemler et al. 2004).

13.2.2  EMT during Heart Valve Development

The embryonic development of mammalian heart valves requires the formation of endo-
cardial cushions. These structures are formed in the atrioventricular (AV) canal and out-
flow tract (OFT) regions of the heart as a result of the secretion of a hyaluronan- and 
chondroitin sulfate proteoglycan-rich ECM by the myocardial cells. During embryonic 
development, and as the result of a signal that is produced by the myocardium of the 
AV and OFT regions, endocardial cells undergo EMT (Bolender and Markwald 1979; 
Markwald, Fitzharris, and Manasek 1977), causing these cells to invade the proteoglycan-
rich ECM, also known as cardiac jelly (Markwald, Fitzharris, and Manasek 1977), and 
to fill the cushion space, thereby establishing the rudimental onset for the formation of 
the cardiac septa and valves (Eisenberg and Markwald 1995; Person, Klewer, and Runyan 
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2005). Experiments have shown that several of the transforming growth factor (TGF)-βs 
and BMPs (Nakajima et al. 2000; Okagawa, Markwald, and Sugi 2007; Stevens et al. 2008; 
Townsend et al. 2008; van Wijk, Moorman, and van den Hoff 2007; Yamagishi, Ando, 
and Nakamura 2009), and Notch receptor signaling (Bailey, Singh, and Hollingsworth 
2007; Krebs et al. 2000) play critical roles in the regulation of this EMT during cardiac 
development.

13.2.3  MET during Development

Processes such as embryonic development and organogenesis are very dynamic and the 
cells that are involved therefore have a need to be able to rapidly switch between a sessile 
epithelial and a motile mesenchymal cell state. While EMT induces epithelial cells to adopt 
a mesenchymal phenotype, MET allows cells to revert back from a mesenchymal to an 
epithelial cell state. MET occurs on several occasions during embryonic development, and 
is responsible for generating the first embryonic epithelium (Larue and Bellacosa 2005). 
Also, later in development, processes such as kidney organogenesis (Ekblom 1989) and 
somitogenesis (Christ and Ordahl 1995), rely heavily on MET. The MET process appears 
to be active during adult life as well. For example, mesenchymal stem cells (MSCs) are fre-
quently found in adult tissues, and the isolation and subsequent in vitro culturing of these 
cells results in the generation of a variety of mature cell types. This demonstrates the high 
degree of plasticity these cells display and raises the question as to whether the assump-
tion that EMT/MET transitions are absent in the adult organism is incorrect (Zipori 2004, 
2006). The molecular mechanism by which these MSCs regulate their capacity to transdif-
ferentiate remains, however, largely unsolved, although several cell adhesion molecules, 
growth factors, signaling pathways, and transcription factors have been implicated in the 
MET process (Chaffer, Thompson, and Williams 2007).

13.3  EMT IN HOMEOSTASIS
We have seen that, even though EMT is crucial for and very common in normal embry-
onic development, there are indications that the process continues to play a role during 
adult life. For example, the replacement of cells necessary for the proper functioning of tis-
sues and organs relies strongly on EMT-like events. The cells involved in this maintenance 
function are made up of a small population of immortal stem cells, which, under spe-
cific culture conditions, display a long-term capacity to self-renew as well as differentiate. 
The embryonic stem cell (ESC), which originates from the epiblast, is probably the most 
and best-studied mammalian stem cell type (Thomson et al. 1998). As mentioned earlier, 
epiblast cells are highly epithelial, are not motile, and are engaged in E-cadherin-mediated 
cell-cell interactions (Vestweber et al. 1987). Nonetheless, isolation and the subsequent 
maintenance of these ESCs under feeder-free culturing conditions results in the appear-
ance of mesenchymal-like cells at the periphery of the established colonies. These cells do 
not express E-cadherin, but do express β-catenin, N-cadherin, and vimentin. In addition, 
they are motile and have upregulated the expression of EMT-related transcription factors 
Snail1 and Snail2/Slug (Ullmann et al. 2007), suggesting that the highly epithelial epiblast 
cells have undergone EMT.
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13.4  EMT AND MET IN DISEASE
It is widely accepted that the strategies that cells employ during embryonic development, 
such as the induction of EMT, are also exploited in a variety of disease states. For example, 
emerging evidence suggests that EMT is an important event in fibrosis (Wynn 2008), as 
illustrated by its role in fibrotic disease of the kidney (Bedi, Vidyasagar, and Djamali 2008). 
EMT is important also in the progression of cancer, especially in the case of carcinomas, 
which make up the vast majority of solid human tumors and which share an epithelial 
origin. To illustrate the role of EMT in disease we will further outline the process in the 
context of kidney fibrosis and cancer progression. In addition, a section is dedicated to the 
recent discussion of the role of MET in tumor development.

13.4.1 EMT in kidney Fibrosis

Fibrosis can be defined by the overgrowth, hardening, and/or scarring of various tissues as 
a result of excess deposition of ECM components, and is the end result of chronic inflam-
matory reactions. These can be induced by many different stimuli, such as autoimmune 
and allergic responses, persistent infections, and tissue injury (Wynn 2008). During the 
fibrosis process it is the myofibroblasts that play a central role. For example, renal damage 
is characterized by tubular atrophy and peritubular capillar loss. It has long been known 
that EMT is an important event in kidney development (Hay and Zuk 1995), but recently 
the process has also been attributed a role in interstitial fibrosis (Burns, Kantharidis, and 
Thomas 2007), during which the accumulation of myofibroblasts results in the overpro-
duction of interstitial ECM. The accumulation of these interstitial myofibroblasts is still 
somewhat controversial, in that these cells can originate from different sources: (1) through 
activation and proliferation of resident renal fibroblasts, (2) from circulating bone marrow 
precursors, or (3) from tubulo-epithelial cells that have undergone EMT and transformed 
into myofibroblasts. The latter process can be induced by a range of growth factors and 
cytokines, such as, for example, via TGF-β, and the subsequent induction of integrin-
linked kinase (ILK) and the Smads. In addition, connective tissue growth factor (CTGF; 
Burns et al. 2006), angiotensin II (Carvajal et al. 2008; Mezzano, Ruiz-Ortega, and Egido 
2001), and various interleukins (Pesce et al. 2006; Reiman, Mauldin, and Neal Mauldin 
2008; Wynn et al. 1995) have all been shown to play their part in these EMT processes (Li 
and Liu 2007; Ziyadeh 2008). It is interesting to note that TGF-β is pivotal in the induction 
of fibrosis, in that it is also involved in the development of pulmonary (Willis and Borok 
2007) and hepatic fibrosis (Gressner et al. 2002).

13.4.2  EMT in Cancer

The transformation of a normal epithelial cell into a tumor cell is a highly stochastic pro-
cess. Benign noninvasive and nonmetastatic tumor cells acquire attributes that allow these 
cells to penetrate the surrounding tissues and eventually metastasize, transit in the blood 
or lymphatic vessels, extravasate, and finally proliferate in a distant organ (Chambers, 
Groom, and MacDonald 2002). Tumor cells can use different strategies to invade their 
surroundings. One strategy is by adopting a mesenchymal morphology through the EMT 



Epithelial-to-Mesenchymal Transition (EMT)    ◾    239

process. The elongated mesenchymal-like cells produce increased amounts of matrix met-
alloproteinases (MMPs) which degrade the surrounding ECM thereby creating a “trail” 
through which the tumor cells can migrate, likely through a mechanism that involves 
activation of the Rho family of GTPase 1 (Rac1) and inhibition of Ras homolog gene fam-
ily member A (RhoA) GTPase at the cell’s leading edge (Kurisu et al. 2005; Yamazaki, 
Kurisu, and Takenawa 2009). Cell motility and invasion mechanisms have mostly been 
studied using in vitro cell culture systems. Accordingly, it has therefore been difficult to 
translate the information that is generated to in vivo situations. Nonetheless the most 
convincing evidence is the fact that several known in vitro EMT regulators have also 
been found to enhance tumor formation and/or infiltration and metastasis in vivo (Hugo 
et al. 2007; Thiery 2002). For example, cells at the invasive edge of colon carcinomas, but 
not those in the center, display a strong nuclear β-catenin staining (Brabletz et al. 1998; 
Hlubek et al. 2007) and express high levels of the EMT related transcription factor Snail1 
(Franci et al. 2006). Snail1 can also be detected in a subset of human clinical tumor sam-
ples (Becker et al. 2007) and can be linked to decreased survival (Waldmann et al. 2008). 
Despite these observations the involvement of EMT in the dissemination of human can-
cers is still being critically debated (Tarin, Thompson, and Newgreen 2005; Thompson, 
Newgreen, and Tarin 2005). Nevertheless, the presence of EMT markers specifically at the 
tumor-host interface is strong evidence that EMT is involved in the regulation of tumor 
cell invasiveness.

13.5  MET IN CANCER
In addition to its role in development, MET also appears to be critical for a metastatic 
tumor cell to be successful in its endeavor to repopulate distant organs (Hugo et al. 2007). 
This idea is best illustrated by the fact that the epithelial gatekeeper E-cadherin can be 
found in many carcinoma metastases. Also, the fact that implantation in the mouse mam-
mary fat pad of the aggressive E-cadherin negative MDA-MB231 mammary tumor cell 
line leads to the formation of E-cadherin positive lung metastasis (reported as unpub-
lished data in Vincan et al. 2007; Vincan, Whitehead, and Faux 2008; Wells, Yates, and 
Shepard 2008). Similar observations were made following the implantation of the human 
LIM1863-Mph colon (Vincan et al. 2007; Vincan, Whitehead, and Faux 2008) and a panel 
of TSU-Pr1 bladder carcinoma cell lines (Chaffer et al. 2005, 2006) into nude mice, as well 
as when the human DU145 prostate cell line was co-cultured with hepatocytes (Yates et al. 
2007). These results imply that disseminated tumor cells must also undergo MET, hence 
the re-expression of E-cadherin, in order to successfully initiate tumor growth at the site 
of metastasis.

Another hypothesis explaining these results is that the E-cadherin positive cells found 
at the site of metastasis have originated from cells that have simply escaped or were shed 
by the primary tumor (Bockhorn, Jain, and Munn 2007), and have successfully formed 
secondary tumors (Paget 1989; Ribatti, Mangialardi, and Vacca 2006). One has to wonder, 
though, how these cells would be able to exit the blood or lymphatic vessels. Cells could 
squeeze through pores, adopting an amoeboid phenotype, which is an extremely rapid pro-
cess that does not require protease activity for degradation of the ECM, or other processes 
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that are required for EMT. On the other hand, the cells may not have to do any of this. 
Some studies suggest that tumor cells simply get stuck in the capillaries and this allows 
them to proliferate in an organ. Although these are intriguing possibilities, there is cur-
rently enough evidence to suggest that the loss of E-cadherin correlates strongly to tumor 
cell dissemination (Jeanes, Gottardi, and Yap 2008; Kopfstein and Christofori 2006), and 
that MET is required for the successful development and growth of metastases (Sabbah 
et al. 2008; Wells, Yates, and Shepard 2008).

13.6  SIGNALING CASCADES INVOLVED IN EMT
The canonical signaling pathways and cross-talk between these signaling pathways regu-
lating EMT in cancer have mostly been defined by what is known from developmental 
studies and the use of in vitro cell culture models. Sabbah et al. (2008) published an excel-
lent overview of the molecular signatures that are involved in EMT. A simplified schematic 
of the most important signaling cascades inducing EMT that will be further discussed in 
detail below is shown in Figure 13.2. It should be noted that this overview will not discuss 
the signaling cascades involved in tumorigenesis, since these are the subject of another 
chapter in this book (Chapter 12).
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FIGURE 13.2 (See color insert following page 332.) Schematic overview of the major signal trans-
duction pathways that induce epithelial-to-mesenchymal transition (EMT).



Epithelial-to-Mesenchymal Transition (EMT)    ◾    241

13.6.1  TGF-β
Many publications have shown that TGF-β is a key inducer of EMT during cancer devel-
opment (Cui et al. 1996; Derynck, Akhurst, and Balmain 2001). The ability of TGF-β1 to 
induce an EMT was first described by Miettinen et al. (1994), whereas similar observations 
were later made for the other TGF-βs, TGF-β2 (Piek et al. 1999) and TGF-β3 (Valcourt et al. 
2005). TGF-β transmits its signal over the cell membrane through a heteromeric complex 
of the transmembrane serine-threonine kinase TGF-β Type I (TβRI) and Type II (TβRII) 
receptors. Receptor dimerization leads to the recruitment and phosphorylation of receptor 
Smad2 and Smad3 (Wrighton, Lin, and Feng 2009), which trimerize with common Smad4 
and this complex then translocates to the nucleus where the interaction with transcription 
factors ultimately regulates gene transcription (Figure  13.2; see also Feng and Derynck 
2005). Transcription factors such as Snail1 and Snail2/Slug, ZEB1/δEF1 and ZEB2/SIP1, 
those that belong to the high mobility group A2 (HMGA2) family, and members of the 
basic helix-loop-helix (bHLH) family such as E12, E47, Twist1, and Id1-3, are all involved 
in the regulation of the EMT process, either in a Smad-dependent or -independent man-
ner (Peinado, Olmeda, and Cano 2007). Smad activation of these transcription factors can 
ultimately result in the loss of desmosomes, tight and adherens junctions, and the gain of 
mesenchymal attributes such as N-cadherin, β5-integrin, and fibronectin. Even though 
Smad signaling is crucial, a complete TGF-β-induced EMT response also depends on the 
activation of non-Smad signals. These signals can either be directly or indirectly induced 
by the TβRs and provide control over additional processes such as survival, migration, and 
proliferation. An extensive overview of the signaling cascades activated during the TGF-
β-induced EMT can be found in an excellent review recently published by Xu, Lamouille, 
and Derynck (2009). For example, the TβRs trigger migration signals by directly activating 
Rho GTPases and phosphoinositide 3-kinase (PI3K), whereas the inactivation (degrada-
tion) of Rho GTPases by the E3 ubiquitin ligase Smurf1 relies on the activation of Par6. 
In addition, survival signals such as those generated by the p38- and c-Jun N-terminal 
kinases (JNK) are induced by TRAF and TAK1, whereas proliferation can be controlled 
through Shc-induced activation of Erk mitogen-activated protein kinase (MAPK).

In this context it is noteworthy to mention that TGF-β signaling is actively involved in 
the regulation of the balance between a cancer cell and its microenvironment (Naber, ten 
Dijke, and Pardali 2008).

13.6.2  Jagged and Delta-Like

Notch signaling is involved in the maintenance of the balance between cell proliferation 
and apoptosis, but also has a role during development and in the function of many organs. 
There are four mammalian Notch receptors (Notch1-4), integral membrane proteins that 
can be activated through the ligands Jagged (Jag1 and Jag2), and Delta-like (Dll-1, Dll-3, 
and Dll-4) that are expressed on the cell surface of neighboring cells. Upon ligand bind-
ing, Notch is proteolytically cleaved within its transmembrane domain by Presenilin-1, the 
enzymatic component of the γ-secretase complex. This cleavage gives rise to the so-called 
Notch intracellular domain (NIC) which enters the nucleus, binds transcription factor 
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RBPJK/CBF1/Su(H), and finally activates the hairy and enhancer of split (Hes), and the 
Hes-related repressor (Hesr, also known as Hey, Herp, Hrt, CHF, or Gridlock) gene fami-
lies. A review describing the mechanistic aspects of Notch signaling was recently published 
by Kopan et al. (Kopan and Ilagan 2009).

Notch signaling is known to play an important role in embryonic development and in 
disease through the induction of EMT. For example, activation of Notch signaling during 
heart valve development leads to TGF-β2 expression which, via the induction of Snail1, 
causes the repression of E-cadherin and consequently leads to EMT (Person, Klewer, and 
Runyan 2005; Zavadil et al. 2004). Inversely, TGF-β can also induce Jag1, which itself in 
turn can induce EMT through activation of Notch (Niimi et al. 2007; Zavadil et al. 2004).

Notch is also involved in cancer progression (Balint et al. 2005; Postovit et al. 2008; 
Wang et al. 2008; Zavadil et al. 2004). In epithelial and carcinoma cells, Notch signaling 
can be activated by oncogenic Ras, whose activity leads to an increase in NIC levels and 
the upregulation of Dll-1. This upregulation and the consequent activation of Notch, in 
cooperation with TGF-β signaling, then result in the downregulation of E-cadherin and 
the induction of EMT (Grego-Bessa et al. 2004).

13.6.3  Wnt

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are the cause of 
the familial adenomatous polyposis (FAP) syndrome, and are an early causative event in the 
development of sporadic cancer. It has been shown that not only a mutated (dysfunctional) 
APC gene but also mutations in the axin-1 and -2, and β-catenin genes result in a genetic 
predisposition to cancer (Fodde, Smits, and Clevers 2001; Giles, van Es, and Clevers 2003; 
Reya and Clevers 2005). Wnt ligands bind initially to the LDL receptor-related proteins (LRP) 
5 and 6. This ternary complex then interacts with the G-protein-coupled receptors Frizzled 
and axin. The following recruitment and activation of the phospho-protein Dishevelled (Dsh) 
results in the inhibition of the axin/GSK-3β/APC complex (Nathke 2004), thereby causing 
the pool of cytoplasmic β-catenin to stabilize and translocate to the nucleus where its inter-
action with TCF/LEF family transcription factors promotes the gene expression of a set of 
genes implicated in EMT, including c-Myc, cyclin D1, fibronectin, MMP7, Id2, CD44, axin-2, 
and TCF-1 (Huelsken and Behrens 2002). Free β-catenin is usually rapidly phosphorylated by 
GSK-3β and subsequently degraded by the ubiquitin-proteasome pathway. However, during 
tumorigenesis in the presence of a nonfunctional APC, this degradation does not take place, 
causing β-catenin to accumulate, resulting in its constitutive translocation to the nucleus and 
activation of its target genes (Brabletz, Schmalhofer, and Brabletz 2009; Guaita et al. 2002; 
Huang et al. 2008; Jamora and Fuchs 2002; Vincan and Barker 2008). Wnt signaling also 
inhibits E-cadherin-mediated cell adhesion through the induction of Snail1. Furthermore, 
Snail1 in turn can also induce the expression of TCF causing a repression of E-cadherin 
through the β-catenin/TCF complex (Guaita et al. 2002; Jamora and Fuchs 2002).

13.6.4  Endothelins

A role for endothelin 1 (ET-1) in the induction of EMT was demonstrated in ovarian car-
cinoma cells. Activation of endothelin A receptor (ETAR) in HEY and OVCA 433 ovarian 
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carcinoma cells activated an ILK-mediated signaling cascade causing the downregulation 
of E-cadherin and β-catenin and the upregulation of N-cadherin, and the inhibition of 
GSK-3β. The latter consequently resulted in the stabilization of both Snail1 and β-catenin, 
events that culminated in the regulation of transcriptional programs that control EMT 
and caused these cells to acquire a fibroblastoid and invasive phenotype (Rosano et al. 
2005, 2006).

It has also been shown that ET-1 activation of ETAR increases TGF-β1 production, which 
ultimately drives EMT during pulmonary fibrosis (Jain et al. 2007).

13.6.5  ErbB Receptors

The epidermal growth factor receptor (EGFR) family consists of four different tyrosine 
kinase receptors, designated ErbB1 (EGFR, HER1), ErbB2 (HER2), ErbB3 (HER3), and 
ErbB4 (HER4), all of which bind a specific set of ligands, including epidermal growth 
factor (EGF), amphiregulin (Areg), heparin-binding EGF-like growth factor (HB-EGF), 
transforming growth factor (TGF)-α, betacellulin (BTC), epigen, epiregulin (EPR), and 
neuregulin 1-3 (NRG1-3). Binding of these ligands induces either the homo- or heterodi-
merization of the ErbB receptors and leads to the activation of specific signaling path-
ways (Lemmon 2009; Sorkin and Goh 2009) that regulate a plethora of cellular processes, 
including proliferation, apoptosis, cell polarity, migration, and invasion.

The ErbB receptors have been shown to be involved in the initiation and progression of 
a number of human cancers (Feigin and Muthuswamy 2009). For example, overexpression 
of EGFR is linked to poor prognosis in breast cancer patients, whereas chronic exposure 
to EGF and TGF-α is correlated to EMT (Barr et al. 2008; Cattan et al. 2001; Shrader et al. 
2007; Sok et al. 2006) either through activation of the Janus-activated kinase and activator of 
transcription 3 (Jak/Stat3) cascade and the upregulation of the transcription factor Twist (Lo 
et al. 2007). In addition, expression of the truncated variant of the EGF receptor, EGFRvIII 
has been correlated with the invasive potential of the tumor and was identified in patients 
with non-small lung cancer carcinoma (NSCLC), advanced head and neck squamous cell 
carcinoma (HNSCC), and glioblastoma (Shrader et al. 2007; Sok et al. 2006).

Overexpression of another member of the ErbB receptor family, ErbB2, can be observed 
in approximately 18% to 20% of breast cancers. Although more frequently observed in 
estrogen and progesterone receptor negative tumors, ErbB2 overexpression is associated 
with a higher rate of recurrence and mortality in patients with newly diagnosed breast 
cancer who do not receive adjuvant therapy. Signaling induced by the oncogenic ErbB2 in 
combination with upregulation of transcription factor Twist can induce a complete EMT, 
allowing tumor cells to disseminate and avoid apoptosis (Ansieau et al. 2008).

13.6.6  Fibroblast Growth Factor

Fibroblast growth factor (FGF) signaling is initiated by its association with heparan sulfate 
proteoglycan which mediates the subsequent interaction with the FGF receptors (FGFR). 
As a result, the receptor undergoes dimerization, its intrinsic tyrosine kinase is activated, 
and signaling cascades involving MAPK, phospholipase Cγ (PLCγ), and PI3K/Akt are acti-
vated (Dailey et al. 2005; Kouhara et al. 1997). FGF signaling is implicated in the control of 
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cellular proliferation, differentiation, migration, and survival. Through its crosstalk with the 
Wnt cascade FGF is involved in, for example, human colorectal carcinogenesis and mouse 
mammary tumor virus (MMTV)-induced carcinogenesis, but also early embryogenesis and 
body-axis formation (Katoh and Katoh 2006). Moreover, FGFR1 has been shown to be over-
expressed in ~40% of poorly differentiated prostate adenocarcinomas (Ozen et al. 2001), 
while the prolonged activation of FGFR1 can be linked to EMT in an inducible mouse model 
of prostate cancer (Acevedo et al. 2007; Freeman et al. 2003). Recently, Lehembre et al. (2008) 
published a paper showing that the FGFR can cause cells to remain sessile or become motile. 
On one hand, activation of FGFR by FGF results in protein kinase (PK)Cα-mediated activa-
tion of PLCγ and triggers a short burst of Ras/MAPK activity, which results in cell adhesion 
and proliferation. On the other hand, complex formation of FGFR with neural cell adhesion 
molecule (NCAM) and PLCγ causes activation of the Raf-kinase PKCβII and consequently 
a sustained MAPK activation. Upregulation of NCAM, as a result of E-cadherin loss dur-
ing EMT, causes an NCAM subpopulation to move into lipid rafts where they interact with 
p59Fyn resulting in the phosphorylation of the focal adhesion kinase (FAK), the assembly of 
focal adhesions, and cell migration.

13.6.7  Platelet-Derived Growth Factor

There are five distinct dimeric platelet-derived growth factor (PDGF) isoforms: PDGF-AA, 
-AB, -BB, -CC, and -DD (Heldin, Eriksson, and Ostman 2002) which, by binding to the 
PDGF α- and β-receptors, cause receptor dimerization and tyrosine autophosphorylation. 
This then leads to the activation of signaling molecules such as c-Src, PLC-γ, PI3K, and the 
growth factor receptor-bound protein 2 (Grb2)/son of Sevenless (Sos) complex (Heldin, 
Ostman, and Ronnstrand 1998).

PDGF is a strong chemoattractant for mesenchymal cells (Monypenny et al. 2009), and 
has been shown to increase cell migration and prevent apoptosis (Schneller 2001). In addi-
tion, PDGF ligands and receptors play an important role in the development of the cranial 
and cardiac neural crest, blood vessel development, and hematopoesis (Andrae, Gallini, 
and Betsholtz 2008; Battegay et al. 1994). In a pathological setting PDGF signaling has 
been implicated in the development of certain gliomas, sarcomas, and leukemias, whereas 
its role in the progression of epithelial cancers appears to be at the level of angiogenesis and 
tumor pericyte recruitment (Ostman 2004). Its role as an EMT inducer is still somewhat 
uncertain. Expression of PDGF has been correlated to bad prognosis in breast carcinoma 
(Seymour, Dajee, and Bezwoda 1993), whereas the increased expression of PDGF specific 
genes has been correlated to EMT (Jechlinger et al. 2003). Also, PDGF was shown to main-
tain EMT and promote metastasis in mouse mammary carcinomas possibly through acti-
vation of Stat1 (Jechlinger et al. 2006). Recently, it was also reported that TGF-β causes 
the upregulation of the PDGF-A ligand and the PDGFα and β receptors (Gotzmann et al. 
2006), and the nuclear accumulation of β-catenin in malignant fibroblastoid hepatocytes, 
thereby conferring stem cell characteristics to these cells (Fischer et al. 2007). Lastly, over-
expression of PDGF-D was shown to induce changes in cellular morphology and motility 
in PC3 human prostate cancer cells, and includes the loss of E-cadherin and ZO-1 and the 
gain of vimentin, all of which are considered to be EMT-related events (Kong et al. 2008).
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13.6.8  Vascular Endothelial Growth Factor

The most important member of the vascular endothelial growth factor (VEGF) family 
is VEGF-A, also known as just VEGF. This ligand binds the VEGF receptor 1 (VEGFR/
Flt-1), a tyrosine kinase receptor, thereby activating the MAPK and PI3K/Akt cascades. 
VEGFR-1 signaling is a critical mediator of both developmental and physiologic angio-
genesis (Fong et al. 1995) and was recently also described as a functional mediator of the 
increased invasion and migration of tumor cells (Fan et al. 2005; Wey et al. 2005). Similar 
to FGF, long-term VEGF-A and VEGF-B exposure of L3.6pl human pancreatic cancer cells 
resulted in an EMT phenotype that was characterized by, for example, the acquisition of a 
spindle-shaped morphology, the loss of ZO-1, and the relocalization of membrane-bound 
E-cadherin and β-catenin to the cytoplasm and nucleus (Yang et al. 2006). In addition, 
EMT characteristics could also be observed when transfecting the well-differentiated 
MCF-7 and T47D human breast tumor cells with a VEGF-A construct. These cells, which 
normally grow in islands, gave rise to single cells with membrane ruffles that were budding 
off the islands of clustered cells, and increased the levels of Snail1, Snail2/Slug, and Twist, 
whereas a reduction of E-cadherin could be detected (Wanami et al. 2008).

13.6.9  Insulin-Like Growth Factors

Insulin-like growth factors (IGF-1/somatomedin C and IGF-2) have a role in embryonic 
as well as cancer development (Baserga 2009a, 2009b). For example, in vivo overexpres-
sion of insulin-like growth factor receptor 1 (IGFR1) in the transgenic Rip1Tag2 mouse 
model for pancreatic cancer resulted in increased metastasis to various organs (Lopez and 
Hanahan 2002). This is similar to observations in human primary tumors in which the 
overexpression of IGFR1 can be correlated to an increased incidence of metastasis (Gydee 
et al. 2004; Jiang et al. 2004). IGF is secreted not only by cancer cells but also by stromal 
cells (Kawada et al. 2006), soft tissue and bone (Stearns et al. 2005), causing auto- and 
paracrine activation of the IGFR1. The interaction of IGF with IGFR1 activates not only 
the PI3K/Akt and Ras/MAPK cascades, which are responsible for the anti-apoptotic and 
mitogenic effects, but also FAK. FAK activation results in changes in cell adhesion and 
migration, possibly through the modulation of ZO-1, and RhoA GTPase, Rac1 and cell 
division cycle 42 (Cdc42; Mauro et al. 2003). Recently it was also shown that IGF1 stimula-
tion of the MCF-10A breast cancer cell line transfected with IGFR1 causes EMT through 
the specific activation of Akt1 but not Akt2 (Graham et al. 2008; Irie et al. 2005). Other 
evidence supporting the role of IGF in EMT comes from studies involving the androgen 
refractory prostate cell line (ARCaP) in which exposure to IGF causes the upregulation of 
transcription factor ZEB1 and the concomitant loss of E-cadherin and gain of N-cadherin 
and fibronectin (Graham et al. 2008).

13.6.10  Hepatocyte Growth Factor

Hepatocyte growth factor (HGF), also known as scatter factor (SCF), binds to the dimeric 
c-MET tyrosine kinase receptor resulting in receptor activation and downstream signal-
ing of intracellular transducers comprising Ras/MAPK, PI3K, PLC-γ, Src-related tyrosine 
kinases, and growth factor receptor-bound protein-2 (Grb-2)-associated binder 1 (Gab-1). 
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The induction of EMT-related properties, in particular the dissolution of adherens junc-
tions and scattering leading to metastasis, is regulated through the Rac-independent acti-
vation of the PI3K/Akt cascade in a manner, provided that there is basal MAPK activity 
(Bardelli et al. 1999; Khwaja et al. 1998), which leads to the upregulation of Snail1 (Grotegut 
et al. 2006). Recently it was also reported that activation of RON, a close relative of the 
c-MET receptor, causes a decrease in cell surface E-cadherin and the nuclear translocation 
of β-catenin in pancreatic L3.6pl tumor cells exposed to macrophage stimulating protein 
(MSP). The use of blocking RON mAbs prevented these EMT features in vitro as well as a 
more than 50% reduction in the subcutaneous and orthotopic tumor growth of these cells 
in mice (Camp et al. 2007).

13.6.11  Integrins

The integrin glycoproteins are transmembrane heterodimeric combinations of transmem-
brane α- and β-subunits, which bind to the ECM via a globular extracellular domain. Their 
cytoplasmic portion associates with several intracellular signaling molecules and to the 
cytoskeleton in a manner similar to E-cadherin. Ligand-induced clustering of integrins 
leads to the recruitment of adaptor proteins such as Shc and intracellular kinases such as 
FAK, Src, and ILK. Once activated, these proteins then trigger the Rho family of GTPases, 
and the Ras/MAPK and PI3K/Akt cascades (Giancotti and Ruoslahti 1999; Valles, Beuvin, 
and Boyer 2004). In addition, activated Src can phosphorylate paxillin which, with adap-
tor protein Crk, forms a paxillin/Crk/DOCK180 complex that is responsible for activation 
of Rac1 and which controls cell migration and EMT (Valles, Beuvin, and Boyer 2004). 
β-integrins can also induce EMT via the activation of ILK either through the engagement 
of the integrins with the ECM, or as a downstream effector of growth factor receptors 
(Streuli and Akhtar 2009), such as TGF-β (Bhowmick et al. 2001; Galliher and Schiemann 
2006; Kim et al. 2009). ILK phosphorylates targets such as Akt and downregulates GSK-3β 
which causes activation of the Wnt/β-catenin cascade leading to an increase of Snail1 and 
the induction of EMT (Novak et al. 1998; Somasiri et al. 2000).

13.7  NEW PLAyERS IN THE EMT FIELD
In the past few years, mostly through the use of global analysis approaches such as gene 
expression microarrays and proteomics, a number of novel EMT mediators have entered 
the EMT arena. Several of these new players will be discussed briefly.

13.7.1  Non-Coding RNAs

Micro (mi)RNAs consist of a large family of small 21 to 23 nucleotide (nt) RNAs 
(Wienholds et al. 2005) which are synthesized by polymerase II, and then processed into 
~70-nt stem-loop pre-miRNAs by Drosha RNase III endonuclease (Lee et al. 2003). These 
pre-miRNAs are transported out of the nucleus by exportin 5 (Lin et al. 2007), and further 
processed in the cytosol to the final ~22-nt mature miRNAs by Dicer (Hutvagner et al. 
2001). The (near) perfect complementarity with which these miRNAs target mRNAs leads 
to mRNA degradation, whereas in the case of imperfect complementarity, translation is 
repressed. MiRNAs have been implicated in embryonic development (Wienholds et al. 
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2005; Wienholds and Plasterk 2005), but have also been identified as tumor promotors or 
suppressors (Asangani et al. 2008; Huang et al. 2008; Ma and Weinberg 2008; Verghese et al. 
2008), and recognized as initiators of EMT. For example, the miR-200 (miR-200a, miR-
200b, miR-200c, miR-141, and miR-429) and miR-205 family of miRNAs (Bracken et al. 
2009; Gregory et al. 2008a, 2008b; Park and Peter 2008; Peter 2009) have been correlated to 
E-cadherin suppression during EMT, whereas a natural antisense transcript which regu-
lates ZEB2 has been described to be involved in EMT (Beltran et al. 2008). Several other 
miRs are involved in the regulation of EMT and metastasis. For example, overexpres-
sion of miR-29a, which suppresses the expression of the tristetraprolin (TTP) protein, in 
cooperation with oncogenic Ras signaling, causes EMT and metastasis, whereas the Twist-
induced expression of miR-10b can be found in breast carcinoma patients with metastasis 
(Negrini and Calin 2008).

13.7.2  Interleukin-Like EMT Inducer

It was shown that EpH4 cells (Grunert, Jechlinger, and Beug 2003; Janda et al. 2002a) 
transfected with oncogenic ras (EpRas) are tumorigenic, can undergo EMT in response to 
TGF-β (Jechlinger et al. 2006; Oft et al. 1996), but fail to metastasize from primary tumors 
established in immunocompromised mice (Jechlinger et al. 2006). Generation of several 
EpH4 cell lines expressing various Ras effector mutants showed that EMT and metasta-
sis required Ras-induced hyperactivation of MAPK and not PI3K (Janda et al. 2002b). 
Expression profiling of these cell lines, using polysome-bound mRNA, identified interleu-
kin-like EMT inducer (ILEI/FAM3C), to be upregulated. Functional studies in which ILEI 
expression levels were downregulated in the EpRas cells using RNAi before and after EMT 
prevented and reverted the TGF-β-dependent EMT, whereas stable overexpression of ILEI 
in the EpH4 and EpRas cell lines caused EMT, tumor growth, and metastasis independent 
of TGF-β. Furthermore, human metastatic breast cancer, as well as the tumor-host borders 
of invasive colon carcinomas, displayed a strongly enhanced cytoplasmic ILEI expression 
pattern (Waerner et al. 2006).

Recently it was shown that ILEI cooperates with Ras to govern a hepatocellular EMT, 
which is TGF-β independent but involves PDGFR/β-catenin and PDGFR/Stat3 signaling. 
Also, evaluation of clinical human hepatocellular cancer samples suggests that a strong 
cytoplasmic ILEI staining could serve as a predictor of poor differentiation and prognosis 
in these patients (Lahsnig et al. 2009).

13.7.3  Clusterin

Clusterin, also known as apolipoprotein J, testosterone-repressed prostate message-2, or sul-
fated glycoprotein-2, is a secreted glycoprotein that is expressed in virtually all tissues, and 
can be found in all human fluids (Gleave and Miyake 2005; Pucci et al. 2004; Trougakos and 
Gonos 2002; Trougakos et al. 2004). Clusterin is involved in many different but important, 
albeit sometimes opposite, normal physiological and cellular processes (Shannan et al. 2006, 
2007), but has also been reported to play a role in malignant situations such as tumor forma-
tion and metastasis (Kang et al. 2004; Lau et al. 2006; Miyake et al. 2000a, 2000b; Redondo 
et al. 2000, 2006; Shannan et al. 2006a, Shannan et al. 2006c; Xie et al. 2005a, 2005b).
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Even though clusterin mRNA levels are upregulated by the EMT inducing growth factor 
TGF-β (Jin and Howe 1997, 1999), there is no direct evidence to date that shows that clus-
terin is directly involved in EMT induction, but three very recent reports, however, hint at 
this possibility. First, Chou et al. (2009) presented data showing that silencing of clusterin in 
mesenchymal human CL1.0 lung adenocarcinoma cells caused a reduction in migration and 
invasion in vitro, and in vivo using an experimental metastasis mouse model. It was proposed 
that clusterin regulates EMT by modulating the transcription factor Snail2/Slug, which has 
been shown in many studies to play a seminal role in EMT. Second, we showed that a TGF-β 
induced EMT can be blocked by anti-clusterin antibodies (both in vitro and in vivo), implying 
a tumor-promoting role for secreted clusterin (Lenferinh, et al., 2009). Third, Mathias et al. 
(2009) found that normal Madin-Darby canine kidney (MDCK) cells transformed with 
oncogenic Ras undergo EMT. Secretome-based proteomic profiling of these cells revealed 
that EMT was accompanied by a significant downregulation of clusterin. The discrepancy 
between this observation and the upregulation of clusterin in tumors and tumor cell lines 
reported by many others can possibly be explained by the fact that the MDCK cell line is not 
transformed. This also implies that clusterin’s expression and associated function may be 
very different under pathological conditions such as tumor growth and metastasis.

13.7.4  Hypoxia

The growth of tumors requires an increase in the local vasculature to assure that sufficient 
nutrients and oxygen are available. In situations where this is not the case, tumor cells 
can adjust to a low nutrient and oxygen-poor milieu by switching on specific pathways 
that allow these tumor cells to survive and to even grow under these unfavorable circum-
stances (Harris 2002). One way to respond to low oxygen levels is through the hypoxia- 
inducible helix-loop-helix transcription factor 1 (HIF-1), a heterodimer consisting of the 
hypoxic response factor HIF-1α and the constitutively expressed aryl hydrocarbon recep-
tor nuclear translocator (ARNT/HIF-1β). Under low oxygen conditions HIF-1 binds to 
hypoxia-response elements (HREs), and activates the expression of hypoxia-response 
genes, such as pro-angiogenic VEGF. Induction of HIF signaling under these conditions 
has also been shown to induce EMT (Higgins et al. 2007). For example, human HK-2 and 
HKC tubular epithelial cell lines grown under hypoxic conditions showed reduced expres-
sion of E-cadherin and ZO-1, and an increase in mesenchymal markers such as vimentin 
and α-smooth muscle actin (αSMA), as a result of the HIF-1α-mediated overexpression of 
the EMT inducing transcription factor Twist. In vivo, using the rat remnant kidney, both 
Twist and HIF-1α were found to be overexpressed in tubular epithelial cells showing EMT 
(Sun et al. 2009). There is also evidence that in the context of EMT, HIF cooperates with 
other EMT inducing pathways such as TGF-β (Sanchez-Elsner et al. 2001; Zhang et al. 
2003) and Notch (Gustafsson et al. 2005; Sahlgren et al. 2008), and can also be mediated by 
the increased phosphorylation and activation of PI3K/Akt (Yan et al. 2009).

13.7.5  Matrix Metalloproteinases

The identification of the matrix metalloproteinase (MMP) family is based on the abil-
ity of the protein to specifically cleave certain components of the ECM. The expression 
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of the MMPs is under normal conditions very low and tightly regulated, but this can 
change rapidly during tissue remodeling or cancer development. Certain MMPs, includ-
ing MMP1, -2, -3, -7, -9, -11, and -14, have frequently been found to be overexpressed 
in cancer, possibly facilitating the ability of these tumor cells to invade and metasta-
size. More recently, specific MMPs, such as MMP3 (stromelysin; Lochter et al. 1998; 
Radisky et al. 2005), MMP7 (matrilysin; McGuire, Li, and Parks 2003), MMP9 (gelati-
nase B; Illman et al. 2006; Orlichenko and Radisky 2008), and MMP28 (epilysin; Illman 
et al. 2006) have also been shown to induce EMT. MMP3, for example, can induce the 
expression of an alternatively spliced Rac1 (Rac1b), which increases the cellular levels of 
ROS, causing an upregulation of Snail and induction of EMT (Jorda et al. 2005; Radisky 
et al. 2005), whereas overexpession of MMP9 in MDCK cells was held, at least in part, 
responsible for the increased invasive properties of these cells (Jorda et al. 2005).

13.8  EMT AND STEM CELLS
Several studies have revealed that tumors contain a small minority of so-called cancer 
stem cells (CSCs), stem-like cells that are capable of self-renewal and that are able to initiate 
and drive tumor growth (Reya et al. 2001). CSCs were originally discovered in hematopo-
etic cell populations (Bonnet and Dick 1997), but have since then also been identified in 
solid tumors (O’Brien, Kreso, and Dick 2009). Disseminated tumor cells may need the abil-
ity to self-renew in order to spawn micro-metastases, which has led to the hypothesis that 
EMT can generate mesenchymal-like cells that share properties in common with the less 
differentiated cancer stem cells. Indeed, Mani et al. (2008) showed that ectopic expression 
of the transcription factors Twist or Snail1 leads to the induction of EMT in immortalized 
human mammary epithelial cells (HMLEs). These cells acquired a fibroblast-like morphol-
ogy with mesenchymal characteristics such as downregulated E-cadherin and upregulated 
N-cadherin, vimentin, and fibronectin. Additional flow cytometry experiments were con-
ducted in which cells expressing the stem cell markers CD44 and CD24 were selected. The 
results of these experiments showed that the majority of the mesenchymal cells generated 
through EMT expressed high levels of CD44 and low levels of CD24, a characteristic that 
is associated with human normal and tumor breast stem cells (Al-Hajj and Clarke 2004; 
Al-Hajj et al. 2003, 2004; Sleeman et al. 2006). Similar results were obtained by the sequen-
tial introduction of the telomerase catalytic subunit (hTERT), SV40 large T and small t 
(SV40T/t), and the oncogenic allele of H-Ras, H-RasV12, into primary human mammary 
epithelial cells (Morel et al. 2008).

13.9  CONCLUSIONS AND FUTURE PERSPECTIVES
Epithelia are typically organized as single or multilayered sheets of cuboidal cells that are 
connected by cell-cell adhesive junctions. This type of organization ensures the mechani-
cal integrity of adjacent tissues and keeps organs and tissues separated. It also prevents epi-
thelial cells from autonomously changing their shape or from wandering off. Nonetheless, 
the process is active at specific stages and circumstances in the life of metazoa. EMT makes 
its first appearance in the epithelial blastoderm, where it allows, albeit in a strictly con-
trolled and timely manner, the sessile epithelial cells to change shape, to become motile 
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and initiate the morphogenesis process. At a later point during embryonic development, 
EMT is responsible for the formation of germ layers, the gastrulation process, and the 
development of tissues such as muscle and bone. Even in adult life, EMT has a role in that it 
provides plasticity to epithelial cells during regenerative processes such as wound healing. 
These are the good sides of EMT.

It is during cancer development that things turn bad. The majority of solid tumors 
(carcinomas) have an epithelial origin. There is accumulating evidence that due to their 
long-term residence in the epithelial tissues, the cancer stem cells over time accumulate 
oncogenic lesions that allow these cells to revisit and reactivate the EMT program. This 
then provides carcinoma cells with the plasticity that allows them to escape the primary 
tumor and set out on a journey in search of new grounds to populate. Even though doubt 
has been cast upon the idea, many examples in the recent literature suggest a role for EMT 
in clinical cancer. The reports that cancer stem cells contain EMT features, that cancer 
cells that undergo EMT acquire stem-like characteristics (Mani et al. 2008, Polyak and 
Weinberg 2009), the evidence that tumor cells may already be present in the circulation 
even before a primary tumor is discovered (Husemann et al. 2008), and the overwhelming 
complexity of the EMT process pose a significant barricade for the successful develop-
ment of EMT specific inhibitors with low toxicity. And this is what makes it all very ugly. 
Nonetheless there is hope. If the “self-seeding” hypothesis, which assumes that a tumor 
cell that escapes the primary tumor to “re-seed” itself in the vicinity of its primary tumor 
(Norton and Massague 2006), proves to be true, the development of therapeutics that will 
prevent further dissemination will be very beneficial. In addition, the use of a bioinformat-
ics approach to study both embryonic and tumor development will reveal the molecular 
networks that coordinate the EMT process, thus holding a promise for the development of 
new and specific cancer therapeutics.
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C h a p t e r  14

Tumors and Their 
Microenvironments

Nicholas R. Bertos and Morag Park

14.1  INTRODUCTION

14.1.1  The Tumor Microenvironment

It is becoming increasingly evident that the initiation and progression of tumors are 
dependent not only upon factors intrinsic to the tumor itself, but are also significantly 
influenced by the nature of the environment surrounding the lesion, here termed the 
tumor microenvironment or stroma and defined generally as those elements originally 
located on the distal side of the basement membrane in normal tissue. Multiple elements 
therein, both cellular and structural, act on and are acted on by the tumor in a dynamic 
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manner. These interactions can play important roles in cancer initiation, progression, 
and invasion, and represent important areas for therapeutic intervention in conjunc-
tion with strategies targeting the tumor mass per se. In this chapter, we will focus on the 
role of the tumor microenvironment as it pertains to breast cancer as a model system.

14.1.2  Breast Cancer

Among solid tumors, breast cancer has been one of the most intensively studied malignan-
cies to date. This is due to several features: it has a high incidence, and there is a significant 
but not inescapable mortality associated with this disease, which both provides additional 
incentive for research and permits the identification of prognostic factors. Surgical resec-
tion is a common therapeutic modality, permitting retrieval of samples for study. Multiple 
subtypes have been recognized at both the histological and molecular levels, rendering the 
identification of markers to direct targeted treatments, as well as the development of novel 
therapeutics, a pressing clinical issue.

The overwhelming majority of breast cancers arise from the epithelial cells lining the 
lobules and ducts of the breast. Three main subtypes of such tumors have initially been 
identified by immunohistochemistry, and the general validity of this classification scheme 
has been confirmed at the gene expression level by large-scale microarray-based gene profil-
ing studies (Perou et al. 2000; Sorlie et al. 2001; van ‘t Veer et al. 2002). Briefly, the estrogen 
receptor (ER)-positive subtype as defined by immunohistochemical techniques essentially 
corresponds to the luminal subtype at the gene expression level, while the human epi-
dermal growth factor receptor 2 (HER2)-positive subtype can also be identified by both 
approaches. The triple-negative subtype, which does not overexpress ER, HER2, or the 
progesterone receptor (PR) as assessed by immunohistochemistry, broadly corresponds 
to the basal subtype as defined by gene expression, although some tumors assigned to the 
basal class exhibit elevated expression of ER, PR, or HER2.

Each subtype is associated with differences at the biological level, as well as in prog-
nosis and treatment targeting. ER-positive disease, considered to be associated with the 
most favorable overall prognosis, is driven by estrogen-dependent signaling, which can 
be targeted using estrogen (ant)agonists or through manipulation of estrogen biosynthe-
sis using aromatase inhibitors (Eneman, Wood, and Muss 2004; Jordan and Brodie 2007; 
Patel, Sharma, and Jordan 2007). HER2-positive disease is treated using the monoclonal 
antibody trastuzumab, which binds to the orphan receptor HER2 (also known as ErbB2 
or neu; Lewis et al. 1993). The mechanism of action of trastuzumab is not completely 
clear at this time (Hudis 2007; Valabrega, Montemurro, and Aglietta 2007); its binding to 
HER2 is thought to abrogate downstream signaling pathways (Delord et al. 2005) while 
also potentially targeting HER2-expressing cells for destruction via the immune system 
(Clynes et al. 2000; Cooley et al. 1999; Gennari et al. 2004), while its role in HER2 down-
regulation remains controversial (Austin et al. 2004; Sarup et al. 1991; Valabrega et al. 
2005). Currently, there is no specific targeted therapy for the basal or triple-negative sub-
type (Rakha and Ellis 2009), which is associated with the worst prognosis among the three 
variants (Nishimura and Arima 2008).
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While the majority of previous studies have addressed breast cancer either at the level of 
the tumor cells or at that of bulk tumors, where epithelial cells represent the predominant 
element, investigations of the cellular context within which breast cancers originate and 
progress are now beginning to uncover the role played by the microenvironment. Such 
studies have established not only that the tumor and its microenvironment exist and prog-
ress in a linked manner, but that features of the microenvironment are critical in deter-
mining disease course and ultimate outcome.

14.2  COMPONENTS OF THE MICROENVIRONMENT

14.2.1  Cellular Elements

In breast cancer, the microenvironment consists of both the preexisting stromal ele-
ments, the phenotype of which may be modulated by the epithelial tumor cells, and those 
recruited by the presence of the tumor. Cell types present in the tumor-adjacent space 
include components of the vasculature (endothelial cells and pericytes); immune cells of 
the hematopoietic lineage, including macrophages, T cells, and mast cells; fibroblasts; and, 
especially prevalent in the case of mammary tumors, adipocytes (see Figure 14.1).

Additionally, it is suggested that breast tumors actively recruit bone marrow-derived 
mesenchymal stem cells, which can differentiate into a variety of cell types, including cancer-
associated fibroblasts (Mishra et al. 2008), leading to the promotion of a metastatic pheno-
type (Karnoub et al. 2007).

14.2.2  Structural Elements

The extracellular matrix (ECM) is primarily deposited by fibroblasts. It comprises both 
macromolecules, such as collagen, and polysaccharides, for example, hyaluronan, which 
are often organized into distinct structures. The most recognizable structure is the base-
ment membrane, which under normal conditions separates epithelial cells from the under-
lying stromal compartment. The ECM both acts as a physical supporting matrix for the 
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cells embedded within it, and also dynamically communicates with the cells with which 
it is in contact through multiple mechanisms, for example, integrin-mediated signaling. 
Elements of these signaling interactions have been shown to function in both the initiation 
and the maintenance of tumors (Ghajar and Bissell 2008).

14.3  IMMUNE CELLS

14.3.1  Macrophages

Macrophages generally comprise the predominant element among the tumor-associated 
immune cell population (Balkwill, Charles, and Mantovani 2005; Balkwill and Mantovani 
2001; Coussens and Werb 2002). Under normal conditions, macrophages are generally 
considered to act as positive immune mediators, acting both directly in cell and pathogen 
killing and indirectly as antigen-presenting cells (APCs) for exogenous antigens. However, 
it has been demonstrated in multiple studies that the presence of an elevated number of 
macrophages in close proximity to a tumor is commonly associated with poor disease out-
come, both in solid cancers in general and breast cancer in particular (Bingle, Brown, 
and Lewis 2002; Leek and Harris 2002). This apparent paradox may be explained by the 
multiple context-dependent functional roles that can be played by macrophages; in the 
case of breast cancer, the balance generally inclines toward tumor promotion, rather than 
antitumor activity.

Genetic studies conducted using mouse models in which macrophages were absent 
(generated by ablation of the macrophage growth factor CSF-1) demonstrated that there 
were at least two stages at which macrophages exert a tumor-promoting activity (Lin et al. 
2001, 2002). Essentially, these entail supporting the transition from a benign to a malig-
nant phenotype, as well as promoting the metastatic capacity of late-stage disease, and can 
be explained via a model in which macrophages act to increase tumor cell invasion, ini-
tially through the basement membrane and ultimately into the circulatory system, leading 
to distant metastasis (Pollard 2008).

Macrophages found in association with tumors are derived from monocytes recruited 
from the circulation via the production of chemoattractants, which are secreted either by 
the tumor or by adjacent stromal cells. These include the chemokines CCL2 (Bottazzi et al. 
1983; Matsushima et al. 1989), as well as CCL5 and CXCL1, among others (Arenberg et al. 
2000; Balkwill 2004; Mantovani et al. 2004a,b). Beyond chemokines, other factors released 
at tumor sites, including vascular endothelial growth factor (VEGF), platelet-derived 
growth factor (PDGF), transforming growth factor-β (TGF-ß), and macrophage colony-
stimulating factor (M-CSF), as well as bioactive peptides released through the actions of 
secreted proteases on the extracellular matrix, also act as monocyte/macrophage chemoat-
tractants (Coussens and Werb 2002).

Underlying the protumor role of these cells is the polarization of tumor-associated mac-
rophages (TAMs) toward an M2 rather than an M1 phenotype (Mantovani et al. 2002; Sica 
et al. 2008). Classically activated macrophages, corresponding to the M1 type, promote 
Th1-type T-cell activation and killing of intracellular pathogens, while M2-activated (also 
known as alternately activated) macrophages are involved in Th1-type T cell suppression, 
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Th2-type T cell activation, immunosuppression, wound healing, and tissue remodeling. 
Investigation of TAMs has demonstrated that, in general, they correspond more closely to 
the M2 phenotype (Mantovani et al. 2002); among the chief effectors of this polarization 
are IL-10 and hypoxia, both present in the tumor microenvironment (Mantovani et al. 
2004a,b; Sica et al. 2008). This selective pressure toward a tumor-promoting phenotype 
has been termed “immunoediting” (Lewis and Pollard 2006). Interestingly, M2-activated 
macrophages secrete IL-10 (Anderson and Mosser 2002), thus creating a positive feedback 
loop which promotes the polarization of additional macrophages along this axis.

At the tumor site, TAMs play multiple roles that contribute to tumor survival and pro-
gression. These include stimulation of angiogenesis, matrix remodeling, suppression of the 
immune response, secretion of growth factors that support tumor cell proliferation, and 
promotion of metastasis via cellular cooperation (Condeelis and Pollard 2006). This latter 
activity has recently come under intense investigation, leading to the identification of a 
paracrine loop model of interactions between tumor cells and macrophages that mediate 
tumor cell migration toward and intravasation into the vasculature. Using mouse mod-
els and a microneedle approach, it was demonstrated that tumor cells, which bear epi-
dermal growth factor (EGF) receptors, migrate along a gradient of increasing EGF, while 
CSF-1 receptor-expressing macrophages migrate toward higher CSF-1 concentrations 
(Wyckoff et al. 2004). Tumor cells secrete CSF-1, which stimulates macrophage secretion 
of EGF, thus directing macrophages to migrate from the vasculature toward the tumor, 
while tumor cells follow the reverse route (Goswami et al. 2005). Intravital imaging studies 
reveal that motility and intravasation of tumor cells occur predominantly at sites where 
perivascular TAMs are present (Wyckoff et al. 2007). Genetic ablation of CSF-1 or pharma-
cological blockage of EGF receptor activity directly reduced the number of tumor cells in 
the circulation downstream of the tumor (Wyckoff et al. 2007), demonstrating a require-
ment for both elements of this loop in the migration and intravasation process.

14.3.2  T cells

As well as macrophages, the population of T cells neighboring and/or recruited to tumors 
undergoes modifications, the nature of which has implications for disease progression. 
The presence of Th1-type T cells, involved in activation of a cytotoxic T-cell response and 
upregulation of antigen-presenting cells (Knutson and Disis 2005), is generally associated 
with good outcome in breast, lung, and colon cancers (Finak et al. 2008; Hiraoka et al. 
2006; Pages et al. 2005). On the other hand, decreased prosurvival signaling for T lympho-
cytes is observed in stroma from poor-outcome breast cancer patients (Finak et al. 2008). 
Additionally, it appears that successfully proliferating tumors recruit a mechanism nor-
mally used to mediate immune self-tolerance to evade immune surveillance. Regulatory 
T cells, known as Tregs, block the activity of multiple immune effectors (Lan et al. 2005), 
and it has been shown that levels of tumor-infiltrating Tregs are correlated with factors 
prognostic for poor outcome (Bohling and Allison 2008) and with shorter relapse-free 
and overall survival times (Bates et al. 2006). It is also interesting to note that the extent of 
pathological response to neoadjuvant (presurgery) chemotherapy also corresponds to the 
specific effect of such therapy on Treg cell numbers (Ladoire et al. 2008), suggesting that an 
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antitumor immune response can be induced by pharmacological intervention only in the 
absence of negative regulatory signals originating from the Treg cell population.

Interestingly, it has been demonstrated that the stroma of high-grade breast tumors 
exhibit a strong immune response signature, including markers of interferon signaling 
and immune cell activation (Ma et al. 2009); on the other hand, another immune response 
signature has been identified as characteristic of a subset of ER-negative breast tumors with 
significantly improved outcome (Teschendorff et al. 2006, 2007). The opposite roles played 
by different immune system-related processes and components as described here may help 
to explain these apparently contradictory results.

14.4  FIBROBLASTS
Under nontumor conditions, the principal function of fibroblasts is in extracellular matrix 
(ECM) deposition and remodeling, primarily in the contexts of development and wound 
healing. In the tumor microenvironment, cancer-associated fibroblasts (CAFs), which dis-
play a myofibroblast phenotype, promote tumor growth and invasion via multiple mecha-
nisms, several of which are similar to those previously described for TAMs (Radisky and 
Radisky 2007). As tumors progress toward an invasive phenotype, fibroblasts increase in 
both abundance and activity (Sappino et al. 1988), and the resulting deposition of fibrotic 
ECM both leads to increased disruption of the organization of the original epithelial struc-
tures and promotes proliferation (Kalluri and Zeisberg 2006).

Additionally, CAFs secrete factors that promote tumor cell survival and metastasis, 
including stromal-derived factor-1 (SDF-1, alternately termed CXCL12), which binds to 
and activates the cytokine receptor CXCR4 expressed on tumor cells (Orimo et al. 2005), 
promoting metastasis of breast cancer to bone and lung (Muller et al. 2001). Furthermore, 
secretion of SDF-1 acts to recruit endothelial progenitor cells to the tumor mass, leading to 
accelerated angiogenesis (Orimo and Weinberg 2006).

Secretion of matrix metalloproteases (MMPs) by CAFs also plays significant roles in 
promoting tumor progression. Urokinase plasminogen activator (uPA, also known as 
PLAU) is activated after binding to its membrane-bound receptor (uPAR, or PLAUR), 
which is thought to be expressed on both stromal and tumor cells (Giannopoulou et al. 
2007), although conflicting reports exist regarding the tumoral vs. stromal localization of 
its expression (Hurd et al. 2007; Meng et al. 2006; Nielsen et al. 2007). Subsequently, it can 
exert its effects on the ECM via activation of the broad-spectrum protease plasmin, which 
acts to degrade ECM components, activate MMPs, and release latent bioactive peptides 
such as TGF-β.

The production of uPA in stromal cells can be stimulated by the tumor cells via the cell 
surface glycoprotein EMMPRIN (extracellular MMP inducer) (Quemener et al. 2007), while 
uPAR-dependent signaling in tumor cells may prime these to exhibit a proliferative response 
to EGF. Interestingly, signaling via the hepatocyte growth factor (HGF) receptor, Met, 
which is overexpressed in a subset of breast cancers with poor outcomes (Garcia et al. 2007a, 
2007b), and which has been linked with increased tumorigenicity and invasiveness (Jeffers 
et al. 1996b, Rong et al. 1993, 1994), induces elevated expression of both uPA and uPAR, thus 
enhancing the generation of plasmin (Jeffers et al. 1996; Pepper et al. 1992).
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It has been demonstrated that the vast majority of gene expression changes occur in the 
transition from a normal to a preinvasive (ductal carcinoma in situ, or DCIS) breast tumor 
stroma; these consist primarily of genes associated with extracellular matrix components 
or metallopeptidase activity, while progression from preinvasive to invasive tumor growth 
is accompanied by increased expression of a number of MMPs in tumor-associated stroma 
(Ma et al. 2009). These observations serve to further illustrate the complex and intimate 
nature of the interactions between the tumor and its microenvironment involved in dis-
ease progression.

Stromal fibroblasts have been identified as sites for estrogen production as assessed via 
inducible expression of aromatase, a key enzyme in the estrogen biosynthetic pathway 
(Santen et al. 1997, 1998; Santner et al. 1997). This suggests that estrogen-dependent tumor 
cells may respond to this local production in a paracrine manner.

There have been divergent reports in the literature regarding the question of whether 
CAFs and stromal cells in general exhibit genetic alterations with respect to normal 
fibroblasts (Allinen et al. 2004; Fukino et al. 2004, 2007; Hill et al. 2005; Hu et al. 2005; 
Kurose et al. 2002; Lafkas et al. 2008; Moinfar et al. 2000; Orimo and Weinberg 2006). 
Currently, it appears that the features of CAFs are more likely to result from alterations at 
the epigenetic, rather than the genetic, level. However, it is clear that the protein and gene 
expression profiles of CAFs are distinct from those of fibroblasts in nontumor settings 
(Hawsawi et al. 2008; Sadlonova et al. 2009; Singer et al. 2008). CAFs exhibit increased 
expression of genes encoding tumor-promoting cytokines and matrix-associated pro-
teins (Singer et al. 2008), as well as increased expression of the proliferation marker Ki-67 
(Hawsawi et al. 2008).

A recent gene expression profiling study from our group suggests that gene expression 
profiles collected from morphologically normal regions of epithelium and stroma adjacent 
to breast tumors are indistinguishable from those isolated from normal mammary tis-
sue (Finak et al. 2006), suggesting that stromal changes are likely to be localized to those 
regions most intimately associated with the tumor site.

It is also interesting to note that a comparison of gene expression profiles between 
fibroblasts isolated from interlobular vs. intralobular normal mammary stroma yielded 
no significant differences, while validation at the protein level by immunohistochemical 
methods revealed that several of the proteins investigated were differentially expressed 
between the two groups (Fleming et al. 2008). This accentuates the importance of deriving 
information at multiple levels, and suggests that gene expression profiling, while useful 
in identifying overall pathways and functional assemblies of genes involved in specific 
processes, may not always reflect the level and functional activity of individual genes of 
interest.

The activities of CAFs are similar to those seen in the fibroblast response to inflamma-
tion. A gene expression signature reflecting the response of normal fibroblasts to serum 
(Chang et al. 2004), termed the wound-response signature, has independent prognostic 
value when applied to whole-tumor datasets (Chang et al. 2005), supporting the hypothesis 
that increased CAF activation and the inflammatory phenotype are associated with pro-
motion of tumor progression.



268    ◾    Nicholas R. Bertos and Morag Park

14.5  ADIPOCyTES
Adipocytes represent one of the most abundant cell types in normal mammary tissue. 
Weight gain and postmenopausal obesity constitute a major breast cancer risk factor in 
postmenopausal women (Calle et al. 2003), and obesity has been linked to poor disease 
outcome across all age groups (Stephenson and Rose 2003). It has previously been demon-
strated that the normal formation of mammary ducts requires the presence of adipose tis-
sue (Howlett and Bissell 1993; Huss and Kratz 2001; Zangani et al. 1999). The proliferation 
of estrogen-dependent tumor cell lines is dependent on the local presence of adipocytes 
both in three-dimensional culture (Manabe et al. 2003) and in mouse models (Elliott et al. 
1992), suggesting that adipocyte-secreted factors can affect the growth and development of 
specific subtypes of breast tumor cells.

Adipose tissue represents an important local source of estrogen, although it is cur-
rently unclear as to whether stromal or epithelial tumor cells are the primary producers 
of estrogen in the breast tumor environment (Miki, Suzuki, and Sasano 2007; Suzuki et 
al. 2008). Beyond steroid hormones, other factors secreted by adipocytes have also been 
shown to influence tumor cell behavior. These include collagen VI, a component of the 
ECM that has been shown to stabilize β-catenin and cyclin D1, as well as activate GSK3β- 
and Akt-dependent signaling pathways (Iyengar et al. 2003, 2005); the peptide lectin, 
which can activate the Jak/STAT3, ERK1/2, and/or PI3K pathways, enhance cyclin D1 and 
E-cadherin expression, and induce trans-activation of both HER2 and the EGF receptor 
(EGFR), as well as stimulating the expression of both aromatase and VEGF (Catalano et al. 
2003, 2004, 2009; Cirillo et al. 2008; Mauro et al. 2007); and adiponectin, levels of which 
are inversely related to obesity (Trujillo and Scherer 2005), and which exerts antiprolifera-
tive and proapoptotic effects on breast tumor cell lines, as well as affecting angiogenesis 
(Dieudonne et al. 2006; Dos Santos et al. 2008; Landskroner-Eiger et al. 2009).

Tumor cells and the tumor microenvironment may also act to modulate the behavior of 
adipocytes; for example, adipocytes proximal to the invasive front of the tumor express the 
metalloprotease MMP11, which is a potent negative regulator of adipogenesis (Andarawewa 
et al. 2005). Thus, the role of adipocytes as participants in tumor initiation and progression 
is currently an area of active investigation.

14.6  ANGIOGENESIS
Since this topic is covered in detail in another chapter of this work in the context of tumor 
progression (Chapter 15), it will not be addressed in detail here. However, it should be 
noted that the complex web of interrelationships between stromal and epithelial elements 
contains many factors that impinge upon angiogenesis, from secretion of VEGF by mac-
rophages to the recruitment of blood vessels as a consequence of tumor hypoxia.

One interesting interaction is that between the physical structure of the extracellular 
matrix and the response of the tumor vasculature to cessation of VEGF inhibition. While 
pharmacological blockade of VEGF signaling leads to the loss of a majority of tumor blood 
vessels and partial restoration of a normal vascular pattern (Bergers et al. 2003; Inai et al. 
2004; Jain 2001, 2005), the pericytes and basement membranes originally associated with 
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the regressed vessels remain present in the stroma (Inai et al. 2004). Examination of the 
consequences of inhibitor cessation in mouse models reveals that subsequent revascular-
ization is rapid and utilizes these preexisting structures, such that within 7 days the tumor 
vasculature has returned to the pretreatment state (Mancuso et al. 2006). This accentuates 
the importance of considering all aspects of stromal biology and structure when designing 
effective therapeutic combinations.

14.7  THE ExTRACELLULAR MATRIx
As a tumor progresses, sequential changes in the architecture of the extracellular matrix 
become evident, the most obvious of which is the breach of the basement membrane that 
defines the transition from a benign to a malignant phenotype. The basement membrane, 
composed of laminins, is primarily elaborated by the myoepithelial cells located between 
the polarized luminal epithelium, from which most tumors arise, and the basement mem-
brane. Interestingly, myoepithelial cells derived from normal breast tissue, but not those 
derived from breast tumor tissue, can recreate normal-appearing duct-like structures when 
co-cultured with primary breast luminal epithelial cells (Gudjonsson et al. 2002), while 
myoepithelial cells isolated from normal breast tissue could reverse the invasive potential 
of cells bearing a DCIS-like phenotype (Hu et al. 2008). The primary difference between 
these two populations was identified as a failure to synthesize laminin-1 (Gudjonsson 
et al. 2002), pointing to the importance of ECM elements in the maintenance of cell polar-
ity and tissue organization.

Beyond the role of the basement membrane in the early steps of tumor progression, 
other ECM elements play important roles. Breast tumor tissue is physically more rigid 
or stiff than normal mammary tissue (Huang and Ingber 2005; Paszek et al. 2005). This 
increased stiffness can induce clustering of β1-integrins and activation of the Rho GTPase 
and ERK pathways to induce a DCIS-like phenotype in mammary epithelial cells (Kass et al. 
2007; Paszek et al. 2005), while β1-integrin deletion significantly reduces tumor formation 
in a mouse model (White et al. 2004).

The temporal sequence of these events and their interdependence, however, is not com-
pletely clear at this time. In a mouse model where stromal collagen was increased in mam-
mary tissue, tumor formation and invasion were significantly increased (Provenzano et al. 
2008), while dense breast tissue has long been known to be a significant risk factor for 
development of breast cancer in humans (Boyd et al. 2002). Additionally, fibers in the ECM 
can act as tracks along which tumor cells can migrate in a linear manner, often following a 
chemotactic gradient (Condeelis and Segall 2003; Provenzano et al. 2006; Wang et al. 2002). 
Tumor explants tend to reorganize a collagen matrix into a radial pattern, facilitating their 
spread (Provenzano et al. 2006), once again illustrating the intimacy of the mutual interac-
tions through which tumor cells modify their microenvironment to drive progression.

In one study, matrices deposited by tumor-associated fibroblasts were compared to those 
generated by a tissue culture cell line to determine the nature of their effects on a set of breast 
epithelial cells with varying degrees of tumorigenicity and invasiveness (Castello-Cros et al. 
2009). It was observed that the two matrices induced different responses in the cell lines 
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investigated, further supporting the hypothesis that tumor ECM is significantly different 
from the normal stromal form, and that these differences can affect tumor cell behavior.

At the level of gene expression profiling, examination of the expression patterns of ECM-
related genes in whole tumor-derived datasets (containing information from both epithelial 
and stromal components) identified four ECM subclasses that correlated with differences in 
disease outcome (Bergamaschi et al. 2008). While good-outcome tumors exhibited increased 
expression of serpin-family protease inhibitors, poor-outcome tumors possessed high levels 
of expression of integrins and metallopeptidases, along with low levels of laminin chain 
expression (Bergamaschi et al. 2008). Other studies have also found that individual elements 
of the ECM are correlated with clinical differences: the expression level of collagen α(XI) is 
decreased in tumor vs. normal stroma, and was further decreased in the stroma of metas-
tasized vs. nonmetastasized breast tumors (Halsted et al. 2008). Examination of the levels 
of various ECM components before and after neoadjuvant treatment revealed that the base-
ment membrane protein collagen IV was increased while that of syndecan-1 was decreased 
after treatment, while tenascin-C levels tended to be increased in the nonresponder patient 
subset (Tokes et al. 2009). It is also interesting to note that investigations of polymorphisms 
in the ECM proteoglycans decorin and lumican identified a weak link between one variant 
of lumican and an increased risk of breast cancer (Kelemen et al. 2008). This area warrants 
further investigation to establish the links between individual variations in ECM compo-
nents and changes in both cancer risk and response to therapy.

14.8  MICROENVIRONMENT OF THE METASTATIC NICHE
In breast cancer, the vast majority of disease-associated deaths are due to the effects of 
metastases to distant organs, for example, bone, brain, lung, or liver. This pattern is charac-
teristic of breast cancer; other tumor types exhibit different preferences for sites of metas-
tasis, suggesting that the compatibility of local microenvironments at distant sites may 
play a role in determining the location of successful metastatic spread. Referred to as the 
seed-and-soil model, this was first proposed by Stephen Paget in 1889 (Paget 1889). In 
the case of breast cancer, it has become apparent that distinct cell populations in the pri-
mary tumor possess features driving preferential organ targeting, and that the microen-
vironment plays an important role in this process (Joyce and Pollard 2009). For instance, 
metastasis to bone involves the chemokine receptor CXR4, involved in homing, as well as 
elements involved in bone collagen matrix degradation, osteoclast activation, and angio-
genesis (Lu and Kang 2007), while lung homing may involve a transmembrane domain of 
metadherin (Brown and Ruoslahti 2004). Further studies of the molecular features gov-
erning site-specific metastatic targeting have demonstrated, among others, that TGF-ß-
dependent signaling plays a key role in mediating bone-directed metastasis (Kang et al. 
2003; Mourskaia et al. 2009).

The trafficking of cells and information between the initial tumor and distant sites appear 
to also be bidirectional. Soluble factors secreted by primary tumors can act to instruct cells at 
distant sites to prepare patches rich in fibronectin prior to the implantation and proliferation 
of tumor cells at these sites (Kaplan, Psaila, and Lyden 2006; Kaplan et al. 2005; Psaila et al. 
2006). Following implantation, tumor cells again act to modulate their microenvironment to 
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promote further growth; the time required for successful completion of this task may form one 
of the elements underlying tumor dormancy. Secretion of osteopontin by instigating tumors 
leads to the recruitment of bone marrow cells into the stroma of distant, previously indo-
lent tumors in a mouse model of successive tumor implantation, leading to tumor outgrowth 
(McAllister et al. 2008). Modulation of the microenvironment at the potential metastatic site 
can affect the metastatic process; for example, the administration of bisphosphonates, which 
inhibit bone resorption among a host of other effects, has been shown to decrease the inci-
dence of bone metastases in breast cancer patients (Coleman 2009; Lipton 2008).

14.9  GLOBAL CHARACTERIzATION OF THE 
STROMAL MICROENVIRONMENT

Recently, several studies have been performed that focused on the stromal elements present 
in breast cancers (Allinen et al. 2004; Bacac et al. 2006; Boersma et al. 2008; Casey et al. 2009; 
Farmer et al. 2009; Finak et al. 2008; Ma et al. 2009). These studies have revealed that tumor 
stroma contains information that is related to disease course and outcome (Bacac et al. 
2006, Finak et al. 2008) and resistance to therapy (Farmer et al. 2009), as well as establishing 
that some cancer subtypes, such as inflammatory breast cancer, are associated with distinct 
stromal features (Boersma et al. 2008).

Laser capture microdissection and gene expression profiling of stromal tissue from a 
multistage mouse model of prostate carcinogenesis revealed that genes associated with 
endopeptidase activity, as well as others encoding structural matrix components, uPAR 
and growth factor receptors, were differentially expressed between early and late stages of 
tumor progression (Bacac et al. 2006). Interestingly, clustering of samples using this list of 
genes led to the generation of patient cohorts with significantly different overall outcomes 
in human prostate or breast cancer patient datasets (Bacac et al. 2006).

In another attempt to unravel some of the interactions occurring between tumor and 
stromal cells, a variety of breast cancer-derived cell lines were co-cultivated with stromal 
fibroblasts and the gene expression profiles of the co-cultures compared with those of 
either cell type alone (Buess et al. 2007). Interestingly, co-cultivation of ER-negative, but 
not ER-positive, breast cancer cell lines with fibroblasts resulted in the induction of a 
set of interferon-associated genes, which occurred predominantly in the epithelial cells, 
apparently in response to the secretion of type I interferons by the co-cultured fibroblasts. 
Clustering of external breast cancer gene expression datasets using this gene list led to the 
separation of the samples into two clusters with significant differences in outcome (Buess 
et al. 2007); however, the interferon-response signature is closely correlated with tumor 
ER status, which is in turn intimately related to outcome. These results support a model in 
which tumor and stroma mutually influence each other, and additionally reveal that tumor 
subtype can play a role in determining stroma responses.

The observation that there are multiple similarities between the tumor environment and 
physiological wound healing prompted the hypothesis that the tumor stroma represents a 
disturbed version of the wound healing response (Dvorak 1986). Following this lead, a 512-
member gene expression signature of the fibroblast response to serum, which integrates many 
processes involved in wound healing, including plasminogen activation (Iyer et al. 1999), was 
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derived and compared to human tumor gene expression datasets (Chang et al. 2004, 2005). 
Interestingly, the molecular features of the wound response were present in a subset of breast, 
lung, and gastric cancer samples both before and after chemotherapy; patients whose sam-
ples fell within this subset exhibited significantly worse clinical outcomes than those whose 
samples did not exhibit the wound-response signature (Chang et al. 2004, 2005). There was 
a significant association between the basal breast tumor subtype and the wound-response 
signature (Chang et al. 2004, 2005); however, combination of the wound-response signature 
with predictors derived primarily from tumor epithelial tissues led to improved risk stratifi-
cation versus the outputs of either predictor alone (Chang et al. 2005), suggesting that at least 
some elements of the wound-response signature represent information emanating primarily 
from the stromal compartment.

In a recent study from our group, a predictor of disease outcome (stroma-derived prog-
nostic predictor, or SDPP) was generated from isolated tumor-adjacent stroma from 53 
primary breast tumors (Finak et al. 2008). A key finding of this investigation was that sig-
nals reflecting distinct biological responses could be identified as differentially represented 
between patient groups with distinct outcome profiles. These include markers of a Th1-type 
T cell response (e.g., CD8A, CD247, CD3D, and GZMA), which are highly expressed in 
samples of the good-outcome group, consistent with previous findings that an increased 
Th1-type response is correlated with good outcome in lung and colon cancer (Hiraoka 
et al. 2006; Pages et al. 2005). Conversely, members of the poor-outcome group exhibited 
reduced Th1-type signals, as well as decreased levels of chemokines promoting the recruit-
ment and survival of NK and T cells (i.e., CXCL14 and GIMAP5). Additionally, the poor-
outcome group contained signals indicative of angiogenic, hypoxic, and TAM-associated 
responses. These include elevated expression of adrenomedullin (ADM), MMP1, and osteo-
pontin (OPN, also known as SPP1), also seen in the transcriptome of hypoxic monocytes 
and macrophages (Bosco et al. 2006), as well as interleukin-8 (IL8), which can enhance 
proliferation of endothelial cells (Li et al. 2003) and metalloproteases such as MMP1 and 
MMP12, known to be involved in macrophage-mediated tissue remodeling.

While individual stroma-derived single genes or specific response signatures have poor 
(Gruber et al. 2004; Uzzan et al. 2004) or subtype-restricted (Teschendorff et al. 2007) prognos-
tic value, the integration of separate readouts of multiple distinct biological responses, includ-
ing hypoxia, angiogenesis, and differential immune responses in the tumor microenvironment 
permits the effective and accurate prediction of outcome, for example, within the SDPP. This 
further reinforces the hypothesis that the evolutionary path of individual breast tumors is not 
completely determined by features of the tumor cells themselves, but rather can be differentially 
modified by inputs from multiple processes and cell types present in the microenvironment.

While the majority of studies have focused on the generation of predictors of overall prog-
nosis, stromal elements have also been implicated as pure determinants of response to treat-
ment. Using a metagene-based approach, it has been reported that a gene set representative of 
reactive stroma, primarily reflecting a fibroblast response, was overexpressed in samples from 
ER-negative breast cancer patients whose tumors demonstrated resistance to neoadjuvant che-
motherapy (Farmer et al. 2009), suggesting that a particular configuration of tumor-stroma 
communication may generate an intrinsic resistance to specific therapeutic modalities.
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Interestingly, in most cases stromal classes appear to be relatively independent of other 
clinical variables, including the subtype of the associated epithelial tumor, suggesting that 
the spectrum of breast cancers includes at least two mutually orthogonal axes. The location 
of a specific tumor/stroma combination in this landscape encodes important information 
regarding the processes active in each of the two tissue types, as well as the set of mutual 
interactions occurring between them. A more complete understanding of these factors will 
be critical both to selection of the optimal combinations of treatment regimens and to the 
development of novel therapeutic modalities to address these interactions.

14.10  SUMMARy
In contrast to the tumor mass, cells present in the stromal environment are generally 
thought to not have undergone significant genetic changes. Thus, it has been proposed that 
these may comprise a stable population critical for tumor progression, and that therefore 
the stroma represents a viable target for therapeutic intervention (Jain 2005; Joyce 2005; 
Micke and Ostman 2004; Orimo and Weinberg 2006). However, from the information 
presented above, it is evident that the composition, abundance, and activities of multiple 
stromal elements will vary on a patient to patient basis. These variations are not necessar-
ily linked to the subtype of the primary tumor, which is currently the primary guide used 
for selection of tailored treatment protocols. Thus, we suggest that specific combinations of 
epithelial and stromal elements constitute more appropriate definitions of individualized 
tumor types, and that therapies targeting both the tumor and the microenvironment may 
prove more efficacious than those specific to one aspect alone.

It is also interesting to note that beyond patient-specific differences in stromal pheno-
type, broad differences have been identified between members of different ethnic groups. A 
recent analysis of differential gene expression in isolated stroma from African American vs. 
European American breast cancer patients has demonstrated increased expression of genes 
involved in angiogenesis and response to DNA damage stimuli in the African American 
cohort. It is likely that similar differences would also be observed when comparing other 
ethnic groups, or among individuals exposed to different macroenvironmental conditions.

Since stromal elements appear to play important roles in determining the success of 
a particular tumor in progressing along the path to frank malignancy, it is possible that 
manipulation at the level of the microenvironment will prove to be more successful in the 
early stages of tumor development. This hypothesis is supported by the results of studies 
comparing the expression profiles of preinvasive to invasive breast tumors, which dem-
onstrated that the majority of changes in stromal gene expression occurred prior to the 
acquisition of an invasive phenotype (Ma et al. 2009; Schedin and Borges 2009).
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Tumor Angiogenesis
Cell-Microenvironment Interactions

Ally Pen, Danica B. Stanimirovic, and Maria J. Moreno

15.1  INTRODUCTION
In the early 1970s, a seminal paper in the New England Journal of Medicine proposed the 
hypothesis that tumor growth is angiogenesis dependent (Folkman 1971). According to 
this hypothesis, during the initial avascular phase, solid tumors obtain nutrients and 
oxygen from the host vasculature through passive diffusion. During this phase, cell pro-
liferation and cell death are balanced and tumors do not exceed a few cubic millimeters. 
To support continuing growth, tumors acquire an angiogenic phenotype and recruit 
new vasculature (Hanahan and Folkman 1996). The dependence of tumor growth and 
metastasis on angiogenesis has now been widely accepted and has provided a powerful 
rationale for the development of anti-angiogenic strategies (Folkman 1971).

Angiogenesis is a complex process that is highly dependent on the tumor microenviron-
ment (Nikitenko 2009). Tumors are composed of different cell types, including tumor cells 
and stromal cells (i.e., fibroblasts, inflammatory cells, pericytes, hematopoietic cells, and 
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endothelial cells), and extracellular matrix (ECM) components (Jung et al. 2002). It is now 
apparent that these different cellular and acellular constituents interact with each other in a 
complex manner to induce and control the expression of mediators that determine the angio-
genic phenotype of a particular tumor (Carmeliet and Jain 2000; Jung et al. 2002). The discovery 
of different pathways involved in tumor angiogenesis has led to the identification of specific 
therapeutic targets with potential anti-tumorigenic capacity. This chapter will focus on the 
complex molecular network involved in the cross-talk between different tumor cell types and 
the tumor microenvironment during the process of tumor neovascularization (Figure 15.1).

15.2  TUMOR VASCULATURE
The normal blood vasculature is organized spatially and branches in a hierarchical fash-
ion (arteries/veins, arterioles/venules, and capillaries) to provide adequate oxygen and 
nutrients to tissues in the body (Carmeliet 2000). Capillaries consist of endothelial cells 
(ECs) and pericytes, both embedded in the same basement membrane (BM). Arterioles 
and venules have an additional coverage of smooth muscle cells (SMCs). In larger vessels, 
veins are irregularly covered by SMCs while arteries are densely coated with multiple layers 
of SMCs called media, and with a large population of fibroblasts, elastic and collagenous 
fibers, called adventitia; these specialized layers regulate vessel diameter and blood flow 
(Jain 2003). In contrast to normal vessels, tumor vessels are heterogeneous, tortuous, and 
disorganized, and do not follow a hierarchical branching pattern (Jain 2003). Tumor vascu-
lature exhibits significant abnormalities in cellular (ECs and pericytes) and acellular (BM) 
constituents. Tumor vessel walls are characterized by an increased number of endothelial 
fenestrae, vesicles, and transcellular holes, and wide intercellular junctions resulting in 
increased vessel permeability (Dvorak 2006; Hashizume et al. 2000). Pericytes in tumors 
present structural abnormalities that distinguish them from those in quiescent vessels and 
also display a loose attachment to ECs with some cytoplasmic processes infiltrating the 
tumor parenchyma (Morikawa et al. 2002). The pericyte coverage of tumor vessels appears 
to be dependent not only on the tumor types but also on the specificity markers used to 
identify pericytes/SMCs (Morikawa et al. 2002). Some studies described abundant pericyte 
coverage, whereas others showed reduced pericyte density in tumor vessels compared to 
normal vessels (Bergers and Song 2005). In addition to abnormal pericytes, tumor vessels 
display an irregular BM, sometimes discontinuous or absent, with variable thickness, and, 
in some regions, projecting into the tumor parenchyma (Baluk et al. 2003; Carmeliet and 
Jain 2000; Jain et al. 2007). The imbalance of pro- and anti-angiogenic factors and mechan-
ical stress generated by tumor cells compressing vessels are considered key contributors of 
the abnormal tumor vessel phenotype (Jain 2005). The ultrastructural alterations in tumor 
vessels result in a chaotic and variable blood flow that hinders the efficacy of drug delivery 
(Fukumura and Jain 2007).

Phenotypically abnormal tumor vasculature is also characterized by an abnormal 
gene/protein expression (St. Croix et al. 2000). Analyses of transcriptome/proteome of 
tumor-associated vessels in recent years have yielded several novel selective molecular 
biomarkers. For example, in vivo selection of phage display libraries recovered novel pep-
tide sequences (i.e., containing RGD and NGR motifs) that specifically recognize tumor 
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endothelium in a human breast cancer xenograft mouse model (Arap, Pasqualini, and 
Ruoslahti 1998). Substractive proteomic studies coupled with bioinformatic approaches 
led to the identification of EC surface or secreted proteins upregulated in solid tumors 
(Oh et al. 2004). Using immunopurification and serial analysis of gene expression St. 
Croix and colleagues (2000) identified 46 transcripts, termed tumor endothelial mark-
ers (TEMs), that are elevated in malignant colorectal vessels. A transcriptional profil-
ing study using a combination of laser capture microdissection coupled with microarray 
analyses resulted in the identification of insulin-like growth factor binding protein 7 
(IGFBP7) as a selective biomarker of glioblastoma vessels, induced in and secreted by 
tumor ECs and involved in the late phase of angiogenesis (Pen et al. 2007, 2008). These 
and other (Bhati et al. 2008; Seaman et al. 2007; St. Croix et al. 2000) molecular profiling 
studies discovered many distinctive molecular features of tumor-derived endothelium 
that could be exploited for molecular diagnosis, imaging, and selective therapeutic tar-
geting of angiogenic tumor vessels.

15.3  MECHANISMS OF TUMOR NEOVASCULARIzATION
Solid tumors develop new vessels through several mechanisms: sprouting angiogenesis, intus-
susception, cooption, vasculogenesis, mosaic vessels, and vasculogenic mimicry (Auguste 
et al. 2005; Carmeliet and Jain 2000). Sprouting angiogenesis, the growth of new blood ves-
sels from pre-existing ones, is the most extensively studied process and involves BM degra-
dation, EC proliferation and migration, lumen formation, and vessel stabilization (Carmeliet 
2000). The sequential steps of sprouting angiogenesis will be reviewed in detail in sections 
below. Until recently, sprouting angiogenesis was considered the sole mechanism of tumor 
vascularization. However, it has become apparent that other mechanisms also participate in 
enhancing a network of vessels carrying blood and nutrient supply within the tumors.

A subset of tumors, including lung and brain cancers, can coopt existing host vessels 
at early stages of tumor development to gain access to oxygen and nutrients (Holash et al. 
1999; Leenders, Kusters, and de Waal 2002). Coopted ECs interact with tumor cells through 
the angiopoietin-2/Tie2 pathway, resulting in vessel regression triggering hypoxia, which, 
in turn, stimulates vascular endothelial growth factor (VEGF) expression and initiates 
sprouting angiogenesis (Holash et al. 1999). Although vessel cooption generally occurs at 
early stages of tumorigenesis, further evidence suggests that cooption could persist during 
the whole process of tumor growth (Dome et al. 2002).

A variant of sprouting angiogenesis is intussusception—growth within itself—which 
involves the insertion of tissue pillars into the lumen of blood vessels to form ancillary 
vascular branches (Djonov, Baum, and Burri 2003). Intussusceptive microvascular growth 
was first described in the developing microvasculature of neonatal rat lung (Caduff, Fischer, 
and Burri 1986), and subsequently validated in vivo in the chick chorioallantoic membrane 
using video microscopy (Patan, Haenni, and Burri 1993). Since then, intussusception has 
been demonstrated in pathological vascular growth in colon and breast cancers (Djonov, 
Andres, and Ziemiecki 2001; Patan, Munn, and Jain 1996). Intussusception enables fast 
formation of new blood vessels and is metabolically less demanding than sprouting since 
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it does not rely on EC proliferation or BM degradation for invasion (Djonov, Baum, and 
Burri 2003). Phases implicated in the intussusceptive angiogenesis are described in detail 
by Burri, Hlushchuk, and Djonov (2004). Shear stress and increased blood flow rate have 
been suggested to induce intussusception through a mechanotransduction system involv-
ing PECAM/CD31, which leads to the activation of adhesion molecules, angiogenic factors, 
and eNOS (Fisher et al. 2001). Intussusception is mediated by EC-EC and EC-pericyte 
interactions (Djonov et al. 2000). Therefore, molecules that participate in cell-cell interac-
tions, including PDGF-BB, angiopoietins, Tie-2, TGF-β, ephrins and eprinB receptor are 
proposed to play important roles in the process of intussusception (Burri, Hlushchuk, and 
Djonov 2004). For example, over-expression of Ang-1 in a transgenic mouse model results 
in the formation of blood vessels resembling those formed by intussusception (Thurston 
et al. 1999).

Another mechanism by which tumors can acquire new vasculature is through vas-
culogenesis, defined as the in situ differentiation of ECs from angioblasts or endothelial 
progenitor cells (EPCs). EPCs, first isolated by Asahara and colleagues, were shown to 
express several endothelial markers, including CD34, CD31, vascular endothelial growth 
factor receptor-2 (VEGFR-2), and Tie-2 (Asahara et al. 1997). Studies using transgenic 
mice expressing green fluorescent protein (GFP) or β-galactosidase (Z-lac) subsequently 
demonstrated that circulating EPCs are incorporated into the angiogenic vasculature of 
growing tumors (Lyden et al. 2001; Nolan et al. 2007). EPC mobilization, recruitment, 
homing, and incorporation into tumors are complex processes regulated by several growth 
factors secreted by the tumor microenvironment. VEGF and placenta growth factor (PlGF) 
stimulate EPCs mobilization from the bone marrow by binding to VEGFR-2 expressed 
on the surface of EPCs (Asahara et al. 1999; Hattori et al. 2002). Metalloproteases, par-
ticularly MMP-9 produced by bone marrow cells, releases soluble kit ligand, which, in 
turn, promotes EPC proliferation, migration, and mobilization (Heissig et al. 2002). In 
addition, Ang-1, stromal cell-derived factor-1 (SDF-1), granulocyte colony-stimulating fac-
tor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) have all 
been identified as bone marrow stem cell mobilizing factors (Moore et al. 2001; Orimo 
et al. 2005; Takahashi et al. 1999). Recently, the IGF2/IGFR2 system has been shown to 
participate in the activation and homing of EPCs to ischemic sites (Maeng et al. 2009). 
Incorporation of EPCs into the endothelial lining of tumor vessels mobilizes interactions 
among several adhesion molecules, including P-selectin, E-selectin, and integrins (Jin et al. 
2006; Vajkoczy et al. 2003). However, the contribution of EPCs to tumor neovasculariza-
tion remains controversial. Some studies showed that up to 50% of circulating EPCs were 
integrated into newly formed vessels (Garcia-Barros et al. 2003), whereas others reported a 
relatively small contribution of bone marrow stem cells to tumor vascularization (Machein 
et al. 2003; Peters et al. 2005).

Vasculogenic mimicry was first proposed as a mechanism of tumor neovasculariza-
tion by Maniotis and colleagues (1999) to describe the ability of aggressive melanoma cells 
to dedifferentiate into an endothelial phenotype and to organize into vascular channel-
like structures, thereby providing a secondary circulation system independent of angio-
genesis. Evidence suggests that the tumor-lined structures form functional channels that 
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contribute to tumor circulation since they are capable of conducting dyes and are perfused 
with blood (Maniotis et al. 1999). Blood flow has also been detected in these channels 
using magnetic resonance imaging techniques (Shirakawa et al. 2002). The mechanisms 
underlying the process of vasculogenic mimicry are still poorly understood. Microarray 
analyses and functional studies identified VE-cadherin, focal adhesion molecule (FAK), 
phosphatidylinositol-3-kinase (PI3K), MMPs, and ephrin receptors as mediators promot-
ing vasculogenic mimicry (Hess et al. 2003, 2006, 2007). Recently, Petty and colleagues 
(2007) discovered migration-inducing protein 7 (Mig-7) as an important contributor and 
a specific marker of vasculogenic mimicry. Vasculogenic mimicry has been reported in 
several aggressive tumors associated with poor prognosis, including melanoma, breast, 
prostate, lung, and ovarian carcinomas (Hendrix et al. 2003).

In contrast to vascular mimicry, where vascular tubes are completely formed by tumor 
cells, in mosaic vessels, both ECs and tumor cells are co-localized in the walls of tumor 
vessels (Chang et al. 2000). Using the endothelial markers CD31 and CD105 to identify 
ECs and green fluorescent protein-labeled to identify tumor cells, Chang and colleagues 
(2000) demonstrated that 15% of the vessels in a colon carcinoma xenograft are mosaic ves-
sels. Mosaic vessels can be formed either by the detachment of vessel-lining ECs or by the 
excessive growth of vessels with insufficient EC proliferation and coverage, in both cases 
resulting in exposure of the underlying tumor cells to the vessel lumen (Chang et al. 2000). 
Another proposed mechanism of mosaic vessels is the loss of EC markers. Using confocal 
microscopy, di Tomaso and colleagues (2005) demonstrated that the majority of “mosaic 
vessels” in a mouse model of colon cancer have a continuous, thin endothelial lining, but 
lacked CD31 and CD105 immunoreactivity, suggesting EC dedifferentiation and perhaps 
their acquisition of tumor-specific markers.

Accumulating evidence also suggests a role for lymphatic vessels in tumor progression 
and metastasis (Pepper et al. 2003). As this topic will not be discussed here, readers are 
referred to these excellent reviews dealing with the subject of lymphangiogenesis in tumor 
growth (Cueni and Detmar 2008; Stacker et al. 2002).

Tumor vascularization does not occur exclusively through one process, but rather 
through several described mechanisms dependent on the tumor context (Carmeliet 
and Jain 2000; Dome et al. 2007). For example, the microcirculation of uveal melanoma 
contains preexisting normal vessels, mosaic vessels, and angiogenic vessels (Chen et al. 
2002). Highly vascularized glioblastoma tumors exploit sprouting angiogenesis, cooption, 
intussusception, and vasculogenesis to recruit blood vessels (Jain et al. 2007). Recently, 
Hlushchuk and colleagues (2008) showed that, after treatment with anti-angiogenic agent 
or irradiation, sprouting angiogenesis was replaced by intussusceptive angiogenesis in a 
mammary allograft tumor model, suggesting that intussusception can account for the 
development of anti-angiogenic resistance. The redundant nature of these processes pres-
ents an enormous challenge for developing efficacious anti-angiogenic therapy—targeting 
only one process of vascularization (e.g., sprouting angiogenesis) would still leave intact 
other perfusion mechanism(s), resulting in an ineffective treatment.

Among the different mechanisms of tumor neovascularization described, sprouting 
angiogenesis has been the most extensively studied (Carmeliet 2000; Carmeliet and Jain 
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2000). Sprouting angiogenesis is primarily triggered by hypoxia, a reduction in the normal 
level of tissue oxygen tension (Harris 2002). Intratumoral hypoxia is a hallmark of the meta-
bolic environment in solid cancers, correlates with poor prognosis, and is a frequent cause 
of failure of radiotherapy (Harris 2002). In solid cancers, tissue hypoxia results from com-
bined effects of the increased metabolic activity and oxygen consumption by the proliferat-
ing cells, structural and functional abnormalities of oxygen-supplying tumor vasculature, 
and the increased tumor cell distance from the existing capillaries, leading to the formation 
of hypovascular regions that become chronically hypoxic (Fukumura and Jain 2007; Vaupel 
and Mayer 2007). Blood flow in tumor vessels is often irregular, and some tumor regions are 
starved for oxygen periodically, resulting in “acute hypoxia” or “perfusion-limited hypoxia” 
(Brown and Giaccia 1998; Dewhirst 1998). Cancer cells adapt to a hypoxic environment by 
shifting to anaerobic metabolism (Dang and Semenza 1999), inducing erythropoietin produc-
tion and by promoting angiogenesis and cell survival programs (Harris 2002). These adap-
tive responses to hypoxia are principally regulated by the hypoxia-inducible factor-1 (HIF-1). 
However, in tumors, HIF-1α expression is also upregulated by a wide range of growth factors 
and cytokines secreted by tumoral cells, including epidermal growth factor, insulin, insulin-
like growth factors, interleukin 1β, and tumor necrosis factor (TNF)-α (Feldser et al. 1999; 
Sandau et al. 2001; Thornton et al. 2000; Zhong et al. 2000), by the expression of oncogenic 
pathways, such as mutant Ras and Src kinase pathways, and by tumor suppressor gene muta-
tions, including p53 and PTEN (Ravi et al. 2000; Zundel et al. 2000).

In hypoxic environments, activation of the HIF-mediated transcription initiates the pro-
duction of a number of angiogenic factors, including VEGF, VEGF receptors-1 (VEGFR-1/
flt-1) and -2 (VEGFR-2/flk-1/KDR), angiopoietins (ANG-1 and -2), TIE-2 receptor, platelet-
derived growth factor B (PDGF-B), and various matrix metalloproteinases (Forsythe et al. 
1996; Harris 2002; Lal et al. 2001). Among a multitude of HIF-inducible mediators, VEGF is 
particularly important for tumor angiogenesis as it exhibits a very potent angiogenic activity, 
is more specific for ECs than other growth factors, and is markedly upregulated in the vast 
majority of human tumors (Ferrara 2005). The VEGF family of growth factors consists of 
six members (VEGF-A to -E and PlGF) that bind with different affinity to three cell surface 
tyrosine kinase receptors (VEGFR1 to 3) and/or to nonsignaling coreceptors, neuropillins 
(Ferrara 2004). VEGF not only induces mitogenic, chemotactic, and prosurvival effects in cul-
tured endothelial cells (Ferrara, Gerber, and LeCouter 2003) but is also a potent vasodilator of 
existing vessels (Ferrara and Davis-Smyth 1997). A novel C-terminal splice variant of VEGF, 
VEGF165b, has been identified (Bates et al. 2002). This isoform is more frequently expressed in 
normal than in malignant tissues (Bates et al. 2002) and, contrary to VEGF, is a potent inhibi-
tor of blood vessel and tumor growth (Konopatskaya et al. 2006; Rennel et al. 2008).

The critical roles of HIF (Brahimi-Horn, Chiche, and Pouyssegur 2007; Harris 2002; Pugh 
and Ratcliffe 2003; Semenza 2003) and the VEGF/VEGFR system (Ferrara 2005; Ferrara, 
Gerber, and LeCouter 2003) in sprouting angiogenesis have been extensively reviewed else-
where. This chapter will instead focus on summarizing more recent understanding of tem-
poral regulation and functional consequences of various processes involved in sprouting 
angiogenesis. Sprouting angiogenesis is a multistep process characterized by two phases: 
the activation (early) and the resolution (late) phase (Kalluri 2003; Pepper 1997). Each 
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phase is modulated by specific interactions among different tumor and vascular cell types 
and by mediators released into the tumor microenvironment.

15.4   MODULATORS OF SPROUTING ANGIOGENESIS

15.4.1  Smooth Muscle Cell and Pericyte Detachment

One of the first events that occurs during initiation of sprouting is the detachment of 
smooth muscle cells and pericytes from vessels, enabling the access of angiogenic inducers 
to ECs. The angiopoietin (Ang)-Tie-receptor system has been shown to play an important 
role in this process (Lauren, Gunji, and Alitalo 1998).

Ang-1 and Ang-2 are secreted glycoproteins with approximately 60% identity in amino 
acid sequence. Both bind to the tyrosine kinase Tie-2 receptor with similar affinity, but 
trigger antagonistic effects on the receptor (Maisonpierre et al. 1993). Tie-2 receptors are 
expressed in ECs, in proangiogenic bone marrow-derived monocyte/macrophages, and in 
pericytes (De Palma et al. 2005). The ligand(s) for the Tie-1 receptor are currently unknown. 
Whereas Ang-1 is mainly expressed in perivascular and mural cells and contributes to 
vessel stabilization by inducing pericyte attachment (Hawighorst et al. 2002), Ang-2 is 
expressed by ECs only in localized regions of vascular remodeling (Maisonpierre et al., 
1997) and antagonizes Ang-1 activity resulting in vascular smooth muscle cells and peri-
cyte dissociation from vessels (Maisonpierre et al. 1997). In the presence of VEGF, Ang-2 
facilitates vessel sprouting (Asahara et al. 1998) and intussusception (Patan et al. 1992), 
while in the absence of VEGF, Ang-2 induces regression of blood vessels (Maisonpierre 
et al. 1997). Ang-2 is the earliest marker of tumor vacularization, prior to VEGF induction 
(Holash et al. 1999) and is specifically expressed in coopted glioma vessels (Holash et al. 
1999) and at the tips of growing capillaries (Acker, Beck, and Plate 2001; Maisonpierre et al. 
1997), possibly in response to hypoxia and/or angiogenic growth factors (Oh et al. 1999; 
Yuan, Yang, and Woolf 2000).

Interestingly, Greenberg and colleagues (2008) have recently demonstrated that VEGF 
inhibits the PDGF-induced pericyte coverage of nascent vascular sprouts, leading to vessel 
destabilization; this effect is the consequence of a novel VEGFR2–PDGFR complex being 
formed in VSMC that inhibited the phosphorylation of PDGFR (Greenberg et al. 2008). 
These studies suggest that both Ang-2 and VEGF have a complex spatiotemporal influence 
on pericyte denudation from the vessels during early phases of angiogenic sprouting.

15.4.2  Basement Membrane Degradation

The vascular basal lamina consists of a meshwork of proteins, including various members 
of the collagen and the laminin families, thrombospondins, fibronectins, and a variety of 
proteoglycans and other glycoproteins that self-assemble into organized BM. The BM pro-
vides a scaffold that maintains the organization of the ECs into blood vessels (Kalluri 2003). 
Extracellular matrix (ECM) components of the BM provide stimuli for maintaining EC 
quiescence and triggering EC proliferation and survival as well as guidance cues for EC 
migration (Davis and Senger 2005). The BM also presents a physical barrier for new vessel 
formation—to migrate away from vessels and to form neovascular networks, ECs have to 
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degrade the surrounding ECM. During the process of early angiogenesis, ECs acquire an 
invasive phenotype characterized by increased expression and secretion of proteases, among 
which metalloproteinases (MMPs), also called matrixins, are particularly important (Lynch 
and Matrisian 2002). MMPs are a family of over 20 zinc-containing endopeptidases subdi-
vided into at least five groups based on their structure and/or substrate specificities: matri-
lysins, collagenases, stromelysins, gelatinases, and the membrane-type MMPs (MT-MMPs). 
The MT-MMPs are bound to the cell surface and degrade gelatin, fibronectin, aggrecan, 
and other ECM substrates (Vihinen and Kahari 2002) and play a critical role in EC invasion 
and lumen formation. Various other MMPs, including MMP-3, MMP-9, and MMP-10, have 
also been shown to degrade BM matrix components (Heissig et al. 2003). MMPs are gener-
ally abundantly expressed in all human cancers, where their expression and activity levels 
correlate with tumor invasiveness and poor prognosis (Vihinen and Kahari 2002). During 
the process of BM proteolysis, MMPs release active VEGF from the ECM, expose cryptic 
pro-angiogenic integrin binding sites in the ECM, and inactivate constitutive inhibitors of 
EC sprouting such as TIMP-3 (Rundhaug 2005). Pro-angiogenic activity of MMPs is also 
facilitated through cleavage of both BM perlecan which results in the release of bFGF, and 
VE-cadherin which loosens endothelial cell-cell adhesion (Rundhaug 2005). However, pro-
teolytic actions of some MMPs could also expose cryptic domains of ECM molecules that 
exhibit anti-angiogenic properties (e.g., endostatin and angiostatin; Sottile 2004), or cleave 
the ligand-binding domains of FGFR-1 and uPAR resulting in inhibition of angiogenesis 
(Koolwijk et al. 2001; Levi et al. 1996; O’Reilly et al. 1999).

15.4.3  Endothelial Cell Migration and Proliferation

After mural cell detachment and BM degradation, ECs of vessels undergoing the early phase 
of angiogenesis receive and process a variety of stimuli originating from the cellular and 
acellular microenvironment and respond to these stimuli by proliferation and migration.

After recent discovery that ECs in the sprouting vasculature are phenotypically subdi-
vided into various specialized types, each exhibiting distinct cellular fate specification and 
defined role in vascular sprouting (De Smet et al. 2009; Horowitz and Simons 2008), a new 
model of vessel branching has emerged. Such cellular and temporal specification is necessary 
to maintain the integrity of the vascular network during angiogenic branching. Only spe-
cific ECs within the capillary are “tasked” with and capable of initiating angiogenic sprout-
ing. These cells, called tip cells, occupy the leading position during vessel growth, they are 
highly polarized and project numerous filopodia that react to the VEGF-A gradients and 
direct migration toward; the angiogenic stimuli (Gerhardt et al. 2003; Ruhrberg et al. 2002). 
Tip cells have a specific molecular signature characterized, among other features, by the 
expression of VEGFR-2, VEGFR-3, PDGF-BB, delta-like ligand 4 (Dll4), neuropilin-1, and 
Unc5b (De Smet et al. 2009; Gerhardt et al. 2003). VEGF initiates the selection and induc-
tion of the tip ECs upon binding to VEGFR-2, while at the same time prevents the activation 
of the neighboring ECs called stalk cells. This lateral inhibition is mediated by Dll4/Notch 
signaling. Activation of VEGFR-2 by VEGF stimulates the expression of Dll4 in the tip cells 
(Roca and Adams 2007), which binds to Notch on the neighboring stalk cells, resulting in 
downregulation of VEGFR-2 and its co-receptor neuropilin-1 (Williams et al. 2006) in stalk 
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cells. This prevents stalk cell transition to the active state, restricting the number of emerg-
ing tip cells during the branching process. While tip cells become polarized and project 
filopodia in the leading front, their rear part maintains contact with trailing stalk cells, thus 
avoiding the disintegration of the forming vascular structure. VEGFR3 expression, which 
in the adult is restricted to the lymphatic endothelium, reappears in the filopodia of the tip 
cells during sprouting (Tammela et al. 2008) and increases vascular branching. In contrast, 
VEGFR-3 expression is downregulated by Notch in the stalk cells (Tammela et al. 2008).

The migratory tip cells acquire invasive properties and upregulate membrane type-1 
matrix metalloproteinase (MT1-MMP/MMP14). EC-mural cell interactions direct MT1-
MMP expression to the neovessel tip, which results in partial degradation of the BM at 
the leading edge of the developing vasculature (Yana et al. 2007). MT1-MMP expression is 
downregulated in the stalk cells.

Stalk cells, contrary to tip cells, do not extend filopodia (Gerhardt et al. 2003). Whereas 
tip cells depend on ECM VEGF-A gradient for cell migration, stalk cells proliferate, elon-
gate, form a lumen, and connect to circulation in a VEGF-A concentration-dependent 
manner (Gerhardt et al. 2003). These cells express specific molecular markers, including 
Jagged1, Dll1, and Robo4 (Roca and Adams 2007). The role of these factors and the molecu-
lar mechanisms involved in cell-cell contacts that stabilize stalk cells still remain unclear.

Recently, a third EC type, phalanx cells, has been described (De Smet et al. 2009). These 
are the most quiescent type of ECs which form a cobblestone monolayer and align “as in 
a phalanx formation of the ancient Greek soldiers.” They are embedded in a thick BM, 
covered by pericytes, form a tight barrier, and migrate and proliferate poorly in response 
to VEGF. Various signaling pathways have been proposed to modulate EC quiescence and 
low turnover—it is, however, still not clear whether all of them are implicated in the quies-
cent phenotype of phalanx ECs.

15.4.4  Lumen Formation

ECs initially develop tube-like structures lacking a lumen; as they migrate into the sur-
rounding ECM, they organize into solid cords and form a lumen (Carmeliet 2000). The 
lumen can be created either by intercellular canalization through membrane apposition of 
two different ECs or by fusion of intracellular vacuoles, which are formed through pino-
cytic uptake of plasma membrane (Davis and Camarillo 1996; Egginton and Gerritsen 
2003). The latter is currently thought to be the major mechanism of EC lumen forma-
tion (Kamei et al. 2006). Lumen formation is regulated by several factors produced in 
the angiogenic microenvironment. While VEGF121 and VEGF165 increase lumen forma-
tion, VEGF189, Ang-1 (Suri et al. 1998) and thrombospondin-1 decrease lumen diam-
eter (Carmeliet 2000). Multiple integrins also participate in EC lumenogenesis; however, 
their contribution is dependent on the ECM context in which the lumen formation is 
occurring (Davis, Koh, and Stratman 2007). For example, Bayless and colleagues (2000) 
have reported the involvement of α5β1 and αvβ3 integrins in EC lumen formation in a 
3D fibrin matrix, whereas integrin α2β1, Cdc42, Rac1, and MT1-MMP have been shown 
to coordinate lumenogenesis in 3D collagen matrices (Davis, Koh, and Stratman 2007). 
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During tumor angiogenesis, an abundant provisional extracellular matrix (i.e., fibrin, 
fibronectin, and vitronectin) is deposited (Senger 1996), and participates in regulation of 
neovascular lumenogenesis.

15.4.5  Pericyte Recruitment and Basement Membrane Reconstitution

Once the lumen of new vessels is formed, the process of angiogenesis enters into a late 
phase. During late phase angiogenesis, mural cells (pericytes and smooth muscle cells) 
are recruited and integrated into the vascular wall, leading to quiescence of both mural 
cells and ECs and subsequent BM reconstitution (Ergun et al. 2006). Pericyte recruitment 
around ECs is regulated by four pathways: platelet-derived growth factor B (PDGFB)/PDGF 
receptor-β (PDGFR-β), sphingosine-1-phosphate (S1P)/endothelial differentiation sphin-
golipid G-protein-coupled receptor-1 (EDG1), angiopoietin 1 (Ang-1)/Tie2, and trans-
forming growth factor β type I (TGF-β1) (Chantrain et al. 2006). These receptor/ligand 
systems promote pericyte proliferation and migration toward ECs (PDGF-B/PDGF-β, 
Ang-1/Tie-2) (von Tell, Armulik, and Betsholtz 2006), stimulate differentiation of mesen-
chymal cells into a pericyte-like phenotype (TGF-β/TGF-β receptors) (Hirschi, Rohovsky, 
and D’Amore 1998), and/or mediate endothelial-pericyte adhesion (S1P/EDG1) (Paik et 
al. 2004). The EC-pericyte interface contains peg-and-socket contacts rich in N-cadherin, 
β-catenin-based adherent junctions, which contribute to the transmission of mechanical 
contractile forces from the pericytes to the endothelium (Gerhardt et al. 2003). Once the 
pericytes are recruited into the vessel wall, both pericytes and ECs contribute to vessel sta-
bilization, in part by producing ECM components which assemble into a vascular BM (Jain 
et al. 2007). In parallel, microenvironmental signals are modified to attenuate proteolytic 
processes. For example, TGF-β1/ALK5 signaling has been shown to prevent the degrada-
tion of the provisional matrix around nascent vessels by inducing plasminogen-activator 
inhibitor-1 (PAI-1) (Chantrain et al. 2006). ECM provides structural and organizational 
stability for vascular endothelium predominantly through adhesive interaction with inte-
grins on the surface of ECs and pericytes (Davis and Senger 2005). Laminin (likely 10 and 
8) interaction with integrins (α6β1 and α3β1) facilitates vessel stabilization (Davis and 
Senger 2005). While BM degradation during the early phase of angiogenesis provides pro-
liferative cues to ECs, the reconstituted BM matrix provides growth-arrest signals (Kalluri 
2003). Intact ECM molecules and/or ECM proteolytic fragments are revealed to resolve 
angiogenesis; thrombospondins, endostatin, arresten, canstatin, and tumstatin all exhibit 
anti-angiogenic properties (Sottile 2004).

15.4.6  Vessel Maturation

During late phase angiogenesis, vessel walls and network structures undergo further 
remodeling processes to establish a functional vascular system. These processes include 
formation of cell-cell junctions, arterio-venous determination, development of a hierarchi-
cal vessel network, and tissue- and organ-specific specialization (Jain 2003). This process 
is called vessel maturation. Homotypic (EC-EC) and heterotypic (EC-pericyte) junctions 
and gap junctions are formed to control vessel permeability (Jain 2003). Brain and retinal 
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vessels differ from the peripheral vessels in that they express tight junctions that are orga-
nized in a complex way to form strictly controlled blood-brain and blood-retinal barri-
ers (Wolburg and Lippoldt 2002). The arterial-venous fate of ECs is primarily determined 
through shear-stress influences of blood flow; the Notch pathway and ephrins are impli-
cated in this process (Rossant and Howard 2002). In contrast to physiological angiogen-
esis, tumor vessels remain structurally abnormal and do not differentiate into macro- and 
microvasculature; therefore, tumor vessels can achieve stabilization, but do not attain 
complete maturation (Ergun et al. 2006).

Tumor angiogenesis research has been predominantly focused on early phases of angiogen-
esis involving EC proliferation and migration. However, better understanding of the late phases 
of angiogenesis has opened new avenues in research related to tumor vessel stabilization.

Compelling evidence suggests that pericytes are critical for the establishment and main-
tenance of tumor vessel integrity (Bergers and Song 2005). PDGFR-β and PDGF reten-
tion motifs are critical for pericyte recruitment to tumor vessels and their integration into 
tumor vascular walls, respectively (Abramsson, Lindblom, and Betsholtz 2003). However, 
the effect of vessel stabilization by pericyte recruitment on tumor growth remains contro-
versial and appears to be dependent on the tissue/tumor context. Some published literature 
suggests that pericyte recruitment and vessel stabilization support tumor growth and that 
inhibiting this process may be a viable anti-angiogenic strategy. For example, inhibition of 
EDG1 by RNA interference in lung cancer results in a strong reduction of pericyte cover-
age and a dramatic reduction of tumor growth (Chae et al. 2004). Attenuated angiogenesis 
and reduced tumor growth rate were also achieved by reducing pericyte attachment to 
tumor vessels with the tyrosine receptor kinase inhibitor SU6668 (Bergers et al. 2003). 
In contrast, one body of evidence suggests that pericyte recruitment and tumor ves-
sel stabilization reduce tumor growth. For example, over-expression of Ang-1 in several 
cancer cells results in increased pericyte coverage around microvessels and inhibition of 
xenograft tumor growth (Hawighorst et al. 2002; Tian et al. 2002). It has been proposed 
that the judicious application of anti-angiogenic agents can normalize the tumor vessels, 
providing an opportunity to improve the efficiency of radiation and chemotherapy (Jain 
2005). Accumulating experimental and clinical data demonstrated that tumor vessels can 
be transiently normalized under anti-angiogenic therapy (Ergun et al. 2006; Tong et al. 
2004; Winkler et al. 2004); these “normalized” vessels are less permeable, less tortuous, less 
dilated, and exhibit more normal BM thickness and higher perivascular cell coverage (Tong 
et al. 2004; Winkler et al. 2004). This normalization of tumor vessels is accompanied by 
the normalization of the tumor microenvironment, including decreased interstitial fluid 
pressure, increased tumor oxygenation, and neutralized pH (Tong et al. 2004; Winkler et 
al. 2004), creating a window of opportunity to improve drug delivery and the efficacy of 
radiation therapy. Recent clinical trials also support the concept of tumor vessel normal-
ization (Fukumura and Jain 2007). For example, using MRI techniques, Batchelor and 
colleagues (2007) demonstrated that in recurrent glioblastoma patient treatment with the 
tyrosine kinase inhibitor for VEGFRs and PDGFRs, AZD2171, causes a transient normal-
ization of tumor vessels. Although tumor vessel size and tumor volume were reduced up 
to 28 days after the start of AZD2171 treatment, the recurrence of abnormal large vessels 
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was observed at 56 days. Nevertheless, a clinical benefit was observed due to a long-lasting 
reduction of vasogenic edema and lower corticosteroid use (Batchelor et al. 2007).

The overall effect of vessel stabilization on tumor growth and metastasis remains controver-
sial. Hence, better understanding of mechanisms underlying these processes is required before 
translating vessel stabilization/normalization or vessel destabilization therapies into the clinic.
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FIGURE 15.1 (See color insert following page 332.) Schematic illustration of the different steps 
and key modulators involved in the process of tumor angiogenesis. The transition from a pre-
vascular to a vascularized tumor phenotype is tightly regulated by the balance between pro-and 
anti-angiogenic factors secreted by the tumor cells and/or stromal cells—including endothelial 
cells, pericytes, smooth muscle cells and fibroblasts, and by infiltrating cells of the immune sys-
tem. Each phase during this process is specifically modulated by temporal and spatial inter-
actions between the tumor and vascular cell types and the mediators released into the tumor 
microenvironment. BM: basement membrane; EC: endothelial cells; SMC: smooth muscle cells; 
ECM: extracellular matrix; MMPs: matrix metalloproteinases.
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15.5  ANTI-ANGIOGENIC STRATEGIES TARGETING 
TUMOR MICROENVIRONMENT

Over the past two decades, research on tumor angiogenesis has resulted in the develop-
ment of anti-angiogenic therapies for cancer treatment. The majority of anti-angiogenic 
therapies block the function of a specific growth factor or a receptor, the VEGF ligand-
receptor system being the target of many anti-angiogenic agents. Bevacizumab, an anti-
VEGF-A monoclonal antibody, was the first anti-angiogenic biologic drug approved by the 
U.S. Food and Drug Administration for the treatment of metastatic colorectal, non-small 
cell lung, and breast cancers (Ferrara, Hillan, and Novotny 2005). Small molecule tyrosine 
kinase inhibitors, sorefenib (Nexavar, Bayer) and sunitinib (Sutent, Pfizer), targeting prefer-
entially VEGFR2, have been approved for the treatment of several cancers, especially renal 
carcinoma (Folkman 2007). However, both preclinical and clinical studies demonstrated 
that these VEGF pathway inhibitors failed to offer a substantial survival advantage in most 
patients (Shojaei and Ferrara 2007). Recently, Bergers and Hanahan (2008) postulated two 
modes of tumor resistance that can be encountered in response to anti-angiogenic therapies: 
evasive and intrinsic resistance. Evasive resistance was defined as the ability of a tumor 
to adapt and evade therapeutic effect after an initial response phase through the activa-
tion of several mechanisms, including the release of redundant angiogenic mediators by 
the tumor microenvironment, increase of protective pericyte coverage, and/or activation 
of alternative types of vascularization (e.g., cooption, lymphangiogenesis, etc.) (Bergers and 
Hanahan 2008). In contrast, intrinsic resistance is referred to as the absence of any benefi-
cial effect of an anti-angiogenic treatment, probably due to the activation of some resistance 
mechanisms during premalignant stages (Bergers and Hanahan 2008). Since the resistance 
to anti-angiogenic therapy is imparted by the tumor microenvironment, current rethinking 
of anti-angiogenic approaches emphasizes the need for pleiotropic, multifunctional effec-
tors to achieve either a total vessel regression or to promote a complete vessel stabilization. 
The combination of anti-angiogenic therapy with conventional chemotherapy and radio-
therapy is increasingly used since the anti-angiogenic therapy can normalize tumor vessels, 
thereby enhancing delivery and efficacy of cytotoxic drugs (Jain 2005). combination of anti-
invasive and anti-metastatic therapies, that is, drugs targeting hepatocyte growth factor 
(HGF-MET) (Wang et al. 2003) and insulin-like growth factor (IGF) (Feng and Dimitrov 
2008) with anti-angiogenic therapy (Bergers and Hanahan 2008), as well as approaches 
designed to simultaneously target complex interactions among tumor cells, tumor vascula-
ture, and the surrounding tumor microenvironment will become leading future strategies 
to develop novel and more efficacious anti-cancer therapies.
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Modeling Tools for Cancer 
Systems Biology

Wayne Materi and David S. Wishart

16.1  INTRODUCTION
The complexity of cancer as a disease state is a reflection of the inherent complexity of the 
molecular interactions that govern cell metabolism, growth, and division. This is further 
complicated by the underlying heterogeneity of tumor tissue and the dependence of tumor 
growth on surrounding support cells (Burkert, Wright, and Alison 2006). Therefore, under-
standing the initiation, growth, and spread of cancer requires the use of mathematical and 
computational tools that can help researchers visualize and model these complex interac-
tions both within and between cells. Modeling cancer is not new. Efforts aimed at mathe-
matically modeling certain features of tumor growth date back to the 1920s but it is Burton 
who is largely credited with developing one of the first accurate tumor models (Burton 
1966). His work not only explained the observed distribution of oxygen in a solid tumor 
(i.e., the necrotic core), but also the characteristic Gompertzian growth curve seen in solid 
tumors. Subsequent efforts in the 1970s and 1980s focused on modeling tumor invasion 
and metastasis using simplified cellular diffusion models or the examination of mechani-
cal stress on tumor shape (Araujo and McElwain 2004). With the increasing availability of 
computers and with our improved understanding of molecular biology, cancer modeling 
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during the late 1990s evolved to have a greater focus on simulating (albeit crudely) the 
molecular etiology of different cancers. Over the past decade, with the explosion of quan-
titative data coming from genomic, proteomic, and metabolomic experiments along with 
equally impressive data coming from advanced cellular and tissue imaging techniques, we 
have now reached the point where far more realistic computational modeling of both the 
molecular and cellular events (i.e., the systems biology) in tumor development is becoming a 
possibility (Alberghina Chiaradonna, and Vanoni 2004; Bugrim, Nikolskaya, and Nikolsky 
2004; Hollywood, Brison, and Goodacre 2006; Ideker et al. 2001; Jares 2006).

Realistic cancer models require substantial detailed input information including 
gene, protein, and metabolite names, concentrations, locations, reactions, rate con-
stants, and pathway connectivity. They may also require information about cell types, 
cell phases, cell dimensions, tumor dimensions, tumor mechanics, and cellular inter-
actions. These modeling parameters or descriptors can often number in the hundreds 
or even the thousands. Therefore, modern approaches to simulating biological systems 
not only require high-end computers, but they also require a machine-readable lan-
guage to translate the model descriptors into something that can be computationally 
processed. Many of today’s high-end biological models are based on a standardized 
machine-readable language called the Systems Biology Markup Language (SBML; 
http://sbml.org) first proposed by Hucka, Finney and others (Finney and Hucka 2003; 
Hucka et al. 2003). SBML is a simple language for describing biological networks of 
chemical reactions, compartments, molecular species, parameters, and rules based on 
the widely accepted XML (eXtensible Markup Language) standard (Webb and White 
2005). CellML is an example of another XML-based language, developed through 
the International Union of Physiological Sciences (IUPS) Human Physiome Project 
(Hunter, Robbins, and Noble 2002; Lloyd, Halstead, and Nielsen 2004). CellML models 
networks of interconnected components whose behavior is described by mathematical 
equations written in Content MathML. These features make CellML particularly ame-
nable to modeling electrophysiological systems, though it readily incorporates chemi-
cal reactions and gene networks (Garny et al. 2008). However, while the SBML and 
CellML formats have proven to be both useful and popular, biological processes can be 
represented independent of these formats or even of their theoretical basis in ordinary 
differential equations, as discussed below.

In order to be generally useful to researchers or clinicians, simulations (computer mod-
els) of cancer need to provide at least some of the following: (1) a sound biological basis for 
the model, (2) an improved ability to visualize or represent complex processes, (3) verifica-
tion of the model with previous data, (4) the ability to extrapolate or predict future experi-
mental results, (5) the ability to identify missing biological components or processes, and 
(6) the capacity to perform in silico experiments to save time and expense. In this chapter 
we will focus on describing some of the leading theoretical approaches and software tools 
that meet many of these criteria. While we hope that this chapter provides a salient over-
view of many of the principles of computational modeling, a number of other excellent 
texts should be consulted as a general introduction to the field and for more detailed math-
ematical derivations of specific formulas (Alon 2007; Bolouri 2008; Demin and Goryanin 
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2009; Wilkinson 2006). The purpose of this chapter is to review some of the most common 
approaches to computational modeling of cancer, to discuss important issues in model-
ing, and to help the reader select from the wide variety of software available for modeling 
biological processes.

16.1.1  Basics of Biological Modeling

Biological modeling can be done at many different levels (nano-scale, micro-scale or macro- 
scale) for many different purposes (quantitative, qualitative, predictive, or explanatory) and 
applications (physiological, clinical, epidemiological, or ecological). Regardless of the scale, 
purpose, or application, the design and construction of a model should include the follow-
ing steps: (1) converting biological knowledge to a formal representation, (2) translating 
this formal description to a selected mathematical or algorithmic form, (3) parameterizing 
this model using data from literature searches, databases, or experiments, (4) verifying the 
model by comparing to previous data, (5) performing an analysis of model robustness and 
sensitivity, (6) simulating the desired conditions and comparing to experimental results, 
and (7) refining and iterating. Building models of complex biological systems like cancer 
is an iterative process and no single source of data or single modeling approach will suffice 
to capture all the subtlety of the system. Several approaches to constructing any particular 
model are possible, depending on the availability of supporting quantitative and qualita-
tive data and on the specificity of the desired conclusions from the simulation. This chapter 
will focus on the first two steps, so the reader should consult the above-mentioned texts for 
more details on the latter steps.

The relevant molecular components of the model and the structure of the genetic or protein-
protein interaction network may be discovered through manual or automated surveys of 
existing literature and electronic databases (Arakawa et al. 2006; Feist et al. 2009; Wang, 
Lenferink, and O’Connor-McCourt 2007). Most modeling researchers are simultaneously 
confronted with an overwhelming quantity of data of one type and a frustrating lack of 
data of another type. For example, while comparative expression data (e.g., from micro-
array studies) are frequently available, reliable and relevant measures of such parameters as 
promoter strength, enzyme rate constants, diffusion constants, and protein concentrations 
can be difficult to find. Because of the paucity of some key data, many parameters may 
require estimation followed by subsequent refinement through multiple iterations of the 
model (Ideker et al. 2001b; Kunkel et al. 2004).

16.1.2  Graphical Representations of Biological Processes

Models are intended to accurately reflect actual biological processes and so the first step 
in developing a model is to completely and unambiguously define the selected processes. 
At the subcellular (nanoscale) level, these processes may involve millions or even bil-
lions of molecules, while similar numbers of cells may be involved in creating a cell-level 
(microscale) or tissue-level (macroscale) model. In all cases, it is important to capture the 
biologically or chemically relevant information such as metabolic reactions, genetic net-
works, signal transduction cascades, and intercellular interactions but it is not absolutely 
necessary during the process definition stage to assign quantitative values to any of these 
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processes. Also, while it might be tempting for some to directly write out a series of ordi-
nary differential equations (ODEs) to describe the various chemical reactions in the sys-
tem, we strongly recommend that at least some attempt should always be made to produce 
a graphical layout of the system as an initial step.

Depending on the processes being modeled, a variety of formal or informal represen-
tations can be used to clarify the essential mechanisms. Informal representations (e.g., 
hand-drawn sketches) can be productively utilized to represent simple systems with few 
interacting components. Surprisingly insightful conclusions can often result upon conver-
sion of such simple representations into mathematical or algorithmic form. For example, a 
relatively simple model based on Hanahan and Weinberg’s “hallmarks of cancer” perspec-
tive (Hanahan and Weinberg 2000) analyzed the relative contribution of genetic instabil-
ity to tumor growth compared to other important factors. Although genetic instability 
had not been included as a hallmark in Hanahan and Weinberg’s original article, it was 
thought to be an important potentiating factor by many researchers. A 100 × 100 × 100 
grid, representing a million possible cells, was initialized with a single cell, a nutrient sup-
ply stream, a limited growth factor supply, and some simple rules governing cell division 
and mutational acquisition (Spencer et al. 2006). Cells could acquire mutations in genetic 
stability as well as in most of the Hanahan and Weinberg hallmarks (sensitivity to growth 
inhibitory signals, evasion of apoptosis, replication control, self-sufficiency of growth, and 
sustained angiogenic signaling). The simulation results demonstrated that genetic insta-
bility dominated the growth of early onset tumors while later growth was driven by the 
acquisition of limitless growth mutations.

For systems with a larger number of interacting components, formal graphical nota-
tion systems can be helpful in clearly describing the relevant biology. Several competing, 
canonical systems have been developed over the past decade to represent biological pro-
cesses at different levels of detail and software has been written to facilitate the use of many 
of these (Table 16.1). The molecular interaction map (MIM) notation developed by Kohn 
and colleagues, the process diagram of Kitano and colleagues, and the Edinburgh Pathway 
Notation (EPN) of Goryanin and colleagues are among the most biologically complete 
graphical notation systems, providing symbols for most types of biomolecules and bio-
logically relevant reactions (Kitano et al. 2005; Kohn et al. 2006b; Moodie et al. 2006). In 
addition to developing these graphical annotation systems, Kitano’s group has developed 
the CellDesigner software to assist in the production of process diagrams and signaling 
pathways (Oda et al. 2005), while Goryanin’s group has developed the Edinburgh Pathway 
Editor software package (Raza et al. 2008). Although Kohn’s group has not implemented 
a computer program to support the construction of MIMs, it has been used in depicting 
complex pathways (Kohn et al. 2006a) and the CADLIVE program permits the construc-
tion of a slightly modified MIM-based diagram (Kurata et al. 2007).

Formal graphical notations are typically composed of nodes and directed arcs. The nodes 
represent biological components (or chemical species) such as proteins, metabolites, or 
genes, while the directed arcs represent interactions between the nodes. Most popular for-
malisms may be broken down into three major categories: (1) those that use a single generic 
node symbol for all species, (2) those that provide different node symbols for different 
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TABLE 16.1 Graphical and Mathematical Representation Formalisms

Formalism Program URL and Reference Simulation Approacha

Indistinguished nodes Edinburgh Pathway 
Editor (EPE)

http://www.csbe.ed.ac.uk/
epe.php (Moodie et al. 
2006)

ODE

JDesigner http://www.sys-bio.org/
software/jdesigner.htm 
(Sauro et al. 2003)

ODE

VCell http://www.vcell.org (Loew 
and Schaff 2001)

Hybrid
(ODE/Algebraic)

Distinguished nodes BioUML http://www.biouml.org/ 
(Kolpakov et al. 2007)

ODE

Cell Illustrator http://www.cellillustrator.
com (Peleg et al. 2005)

FHPN

CellWare http://www.cellware.org 
(Dhar et al. 2004)

ODE

CPN Tools http://wiki.daimi.au.dk/
cpntools/cpntools.wiki 
(Lee et al. 2006)

CPN

Dizzy http://magnet.
systemsbiology.net/
software/Dizzy/ (Ramsey 
et al. 2005)

ODE

SmartCell http://smartcell.embl.de/ 
(Ander et al. 2004)

ODE

Complex symbology CADLIVE
(MIM)

http://www.cadlive.jp/ 
(Kurata et al. 2007)

Hybrid
(ODE/Algebraic)

Cell Designer
(Process Diagram)

http://www.celldesigner.org/
index.html (Kitano et al. 
2005)

ODE

EPE 2.0 (SBGN) http://www.csbe.ed.ac.uk/
epe.php (Moodie et al. 
2006)

ODE

SimCell http://wishart.biology.
ualberta.ca/SimCell/ 
(Wishart et al. 2005)

DCA

Mathematical/algorithmic Cell+ + http://theileria.ccb.sickkids.
ca/CellSim (Sanford et al. 
2006)

DCA

CellML http://www.cellml.org/ 
(Bhalla and Ravi Iyengar 
1999)

Hybrid
(ODE/Algebraic)

Dynetica http://www.duke.edu/~you/
Dynetica_page.htm (You 
et al. 2003)

ODE

a ABM, agent based model; CPN, colored Petri net; DCA, dynamic cellular automata; FHPN, functional hybrid 
Petri net; ODE, ordinary differential equations.
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species, and (3) those that provide a complex symbology for different nodes, reactions, and 
interactions. Figure 16.1 illustrates the graphical notations for a simple biological reaction 
using several common formalisms. These notation systems may also be differentiated by 
their approach to specifying biochemical reactions between components. Some notation 
systems (e.g., JDesigner) employ different types of arcs to distinguish between different 
types of reactions, such as protein complex formation or catalysis. Other formalisms (e.g., 
CellDesigner, Edinburgh Pathway Editor) encapsulate reaction details within special pur-
pose nodes and use different types of arcs only to show the way in which different species 
participate in the reaction (e.g., reactant, product, or catalyst).

Modified MIM
(CADLIVE 2.75)

CellDesigner 4.0.1

CellWare 3.0.2 SmartCell 2.0 BioUML 0.8.5

JDesigner 2.1C

(a) Single node type

(b) Multiple node types

(c) Complex symbology

VCell 4.5 Edinburgh Pathway Editor
(EPE 2.0)

SBGN Level 1
(EPE 2.0)

FIGURE 16.1 Various graphical representations by selected software of a basic biochemical reac-
tion. Protein X and Protein Y interact noncovalently to form a protein complex that catalyzes the 
irreversible, covalent conversion of metabolites A and B into C. Three different classifications of 
diagrams are shown: single node types, multiple node types, and complex symbologies.
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Because of the lack of accepted international standards for detailed graphical nota-
tions, several groups have recently combined their efforts to produce the Systems Biology 
Graphical Notation (SBGN) standard (http://www.sbgn.org). The Edinburgh Pathway 
Editor (EPE 2.0) is capable of utilizing the SBGN formalism and work is under way to sup-
port SBGN within CellDesigner as well (Kitano et al. 2005).

Most of the graphical notation systems shown in Figure 16.1 may be used independently 
of any particular modeling approach but many of them either come with an integrated 
simulation engine or assume a particular simulator will be used. For example, JDesigner 2 
is included in the Systems Biology Workbench (SBW) and is compatible with SBML while 
VCell, CellWare, BioUML, and SimCell use their own proprietary internal languages 
(though they can import and export SBML and/or CellML files). CellDesigner, EPE 2.0, 
and SmartCell are SBML compliant.

Different graphical notation systems have different representative capabilities and so the 
selection of any particular formalism will depend to some extent on the selected simula-
tion method and the desired level of modeling detail. This will be based on the experience 
of the researcher and the purpose of the simulation as well as the availability of appropriate 
parametric data in the literature and databases. More detailed models may require detailed 
kinetic data on metabolic reaction rates, while less detailed approaches may only need the 
general topology of a select subset of genetic interactions. In general, the more detailed the 
molecular interactions described by the model, the greater the amount of quantitative data 
that will be required for an accurate simulation—and the less likely it is to be available. 
Figure 16.2 demonstrates the ways in which different notation systems represent a moder-
ately complex signal transduction pathway with differing levels of detail.

16.2  APPROACHES TO COMPUTATIONAL MODELING
In the second stage of developing a computational model of cancer, the researcher must select 
a specific machine-interpretable approach to the simulation and then transform the formal 
description of the underlying biological processes into the appropriate format. The specific 
approach chosen for this step will depend entirely on decisions made earlier about the amount 
and quality of the quantitative data available to describe component interactions and on the 
detail required of the model’s predictions. Three general approaches are available, including:

 1. Discrete stochastic approaches, such as dynamic cellular automata (DCM), agent-
based models (ABMs), or Petri nets

 2. Continuous deterministic or stochastic approaches, such as systems of ordinary dif-
ferential equations (ODEs), partial differential equations (PDEs), or colored Petri nets 
(CPNs)

 3. Network approaches, such as gene regulatory networks (GRNs) or Boolean networks 
(BNs)

These three approaches require different types and different quantities of molecular 
interaction data to implement a model. For example, discrete stochastic approaches require 
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Edinburgh Pathway Editor 2.0
(Systems Biology Graphical Notation)

CellDesigner 4.0.1
(Process Diagram)

CADLIVE 2.75
(Molecular Interaction Map)

Ligand

FIGURE 16.2 Some selected graphical representations of a signal transduction cascade, showing 
compartmentalization, phosphorylation, and gene transcription. The extra-cellular ligand binds 
to a plasma-membrane-bound receptor which autophosphorylates then homo-dimerizes. The 
activated complex then catalyzes the phosphorylation of a cytoplasmic kinase-kinase which sub-
sequently activates a kinase. Both the kinase-kinase and the kinase translocate into the nucleus 
where they activate the transcription of Gene X.  These diagrams demonstrate the expressive power 
of these formalisms.  The EPE 2.0 diagram uses the SBGN notation while CADLIVE 2.75 uses a 
modification of the MIM notation.  The CellDesigner notation is proprietary though closely related 
to SBGN.



Modeling Tools for Cancer Systems Biology    ◾    313

precise data about localized concentration, diffusion rates, and probability of reaction 
upon molecular contact. By contrast, mass action kinetic reaction rates found in continu-
ous approaches (e.g., ODEs and PDEs) can be shown to be statistically emergent prop-
erties of large collections of discrete molecules and have reduced precision compared to 
single-molecule parameters, especially for species with very low concentrations. Network 
approaches only require data specifying the presence of macromolecular interactions and 
the direction of the dependency relationships, though they may be supplemented with 
threshold activation and inhibition parameters as well. In most cases, less detailed data 
will be more easily obtained so, for example, interaction networks will be more available 
than kinetic reaction rates, which will be more available than localized macromolecular 
concentrations. Thus, modelers frequently must perform a “cost-benefit analysis” to opti-
mize the amount of information attainable from their model with the minimum amount 
of detailed input data. Simulation engines incorporated in or supported by selected model-
ing programs are also shown in Table 16.1.

16.2.1  Issues in Computational Modeling

Complete and accurate representation of the detailed cellular processes at the molecular 
level needs to take into account a variety of issues. One of the most important of these is 
the effect of macromolecular crowding. Kinetic reaction rates are measured biochemically 
using dilute enzyme concentrations with excess reactants in well mixed solutions. In reality, 
the cellular space is crowded with macromolecular concentrations approaching 300 to 400 
g/L. This translates to a macromolecular occupancy of 20% to 30% in the cytoplasmic space, 
which corresponds to a 15- to 400-fold increase in concentration compared to standard in 
vitro conditions (Ellis 2001). This crowding has the net effect of increasing actual equilib-
rium rate constants for macromolecular associations by two or three orders of magnitude. 
Macromolecular crowding also has a strong effect on diffusion within the cell and may cause 
transient fluctuations in local concentrations of both proteins and metabolites (Ellis 2001). 
Crowding also affects diffusion of macromolecules more than that of small molecules, so 
assumptions of a single diffusion rate for an entire compartment may be incorrect.

Another important issue in the accurate representation of biological processes is cellu-
lar topology and intracellular compartmentalization. Eukaryotic cells contain membrane-
separated compartments such as the nucleus, mitochondria, endoplasmic reticulum, and 
endosomes. Many existing formalisms do not implicitly separate components into their 
appropriate compartments so they must be explicitly defined (where possible) along with 
intercompartmental transportation. Formalisms that support compartmentalization also 
permit the definition of components that span compartments. For some models, it might 
be important to define membranes as separate components because they can act as two-
dimensional compartments, leading to increased localized concentrations of some macro-
molecules (Clegg 1984; Srere, Jones, and Mathews 1989).

As has been mentioned before, computer-based modeling of cancer can potentially span 
an incredible range of spatial and temporal scales, from nanometers (metabolites, proteins, 
DNA) to centimeters (tissues and organs) and from nanoseconds to years. A variety of 
theoretical and computational approaches have been derived to deal with this range of 
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“fine grain” to “coarse grain” phenomena, though few tools can accommodate more than 
a small portion of the complete range (Materi and Wishart 2007; Ridgway, Broderick, and 
Ellison 2006).

Finally, it is important to recognize that many important macromolecules, such as tran-
scription factors, are present within the cell in very low concentrations (e.g., 1 to 10 nM 
or fewer than 100 molecules per cell). This can have a substantial effect on the selected 
approach to simulation as stochastic approaches are required to accurately reflect the low 
probability of component interactions at such concentrations. Table  16.2 describes how 
each of the major approaches handles these important issues.

16.2.2  Discrete Stochastic Approaches

Discrete stochastic models of biological processes attempt to represent every component 
of the model as a unique entity, just as every molecule in a cell is a unique object. One of 
the earliest (and still most common) discrete, stochastic methods is based on the cellular 
automata (CA) of von Neumann and Ulam (Rucker et al. 1997; Von Neumann 1966). CAs 
represent space as a finite lattice of two- or three-dimensional locations (cells) which can 
be occupied at most by a single component at a time, denoted by the state of the cell. Each 
cell interacts with its neighbors according to some well-defined and generally simple rules 
leading to new states with each discrete time step. So-called “lattice free” CAs shrink the 
size of each cell in the lattice and allow components to span individual lattice cells in an 
attempt to reflect the real physical size of various components.

Dynamic cellular automata (DCAs) extend the CA paradigm by incorporating 
Brownian movement of components through the lattice according to randomly generated 
positional moves (Wishart et al. 2005). More physically realistic models can be built by 
supplementing this Brownian motion with representations of real physical forces between 
components, such as the hydrophobic forces between individual phospholipid molecules 
in compartmental membranes (Broderick et al. 2005). DCA approaches have been used to 

TABLE 16.2 Approaches to Modeling Issues

Modeling 
Method

Macromolecular 
Crowding Diffusion Compartmentalization Multiple Scales Stochasticity

Discrete Implicit Implicit Implicit/Explicit Rapidly 
increased 
computational 
complexity

Implicit

Continuous Fractal-like 
kinetics (Schnell 
and Turner 2004)

PDEs, 
Explicit

Explicit transport Scales smoothly SSA

Network N/A N/A Explicit transport Rapidly 
increased 
computational 
complexity

Implicit in 
BN 
thresholds 
and PLDEs

N/A, not applicable; BN, Boolean network; PDE, partial differential equations; PLDE, piecewise-linear differential 
equations; SSA, stochastic simulation algorithm.



Modeling Tools for Cancer Systems Biology    ◾    315

model a wide variety of basic processes, including diffusion (Kier et al. 1997), micelle for-
mation (Kier et al. 1996b), and enzyme kinetics (Kier et al. 1996a), among others. DCA 
models are particularly useful for simulating tissues because positions in the lattice can 
easily represent individual cells in the tissue. For example, a lattice-free biophysical DCA 
model has been used to simulate cell- and tissue-shape changes under adhesion and defor-
mation pressures in a developing tumor (Galle, Loeffler, and Drasdo 2005; Thiery 2002). 
The model simulated the behavior of about 104 cells in a 3-D monolayer and showed that 
the strength of the adhesive interaction between cells and the underlying extracellular 
matrix was critical in inhibiting the formation of growth above the epithelium.

Petri nets are a second example of the discrete stochastic approach to biological model 
development (Reddy et al. 1993). Two kinds of nodes called “places” and “transitions” com-
prise a standard Petri net. Places are shown graphically as circles and represent distinct 
species of molecules. The number of “tokens” inside a place represents the number of dis-
crete molecules of that species in existence at any time. Transitions, shown graphically 
as rectangles, represent reactions and they are connected to places by arrows. The stoi-
chiometry of a reaction is indicated by a weighting where the arrow meets the transition. 
Transitions are said to be activated (or “fire”) at some time step when the number of tokens 
available at all its input places are greater than the stoichiometric weights on the arrows. 
Upon firing, tokens are removed from input places and created in output places, represent-
ing the consumption and production of molecular species. Although Petri nets are basi-
cally deterministic, stochastic extensions have been made to more realistically model very 
low concentration species (Goss and Peccoud 1998; Kurtz 1972).

Agent based models (ABMs) are a third discrete stochastic approach to modeling and 
they extend the power and flexibility of DCAs even further. In ABMs, macromolecular and 
small molecular species are defined as “agents” with arbitrarily complex behavior depending 
on the specific implementation (Emonet et al. 2005). ABM simulations usually take place on 
a lattice-free grid representing real spatial dimensions and agent interaction is specified by 
a set of rules which may be deterministic or stochastic in nature. ABMs have been used to 
model such complex phenomena as calcium-dependent cell migrations in wound healing 
(Walker et al. 2004) or clinical trials of anti-cytokine treatments of sepsis (An 2004). The 
relationship between epidermal growth factor receptor (EGFR) overexpression and tumor 
growth and metastasis has recently been studied with a multi-scale hybrid ABM (Athale, 
Mansury, and Deisboeck 2005; Athale and Deisboeck 2006; Zhang, Athale, and Deisboeck 
2007). The model utilized differential equations to determine intracellular and extracellular 
concentrations of small molecules and then discretized cellular decision making for division 
or migration across a lattice free grid based on programmed threshold values. Recently, an 
ABM has been analyzed to propose a novel therapeutic approach to tumor growth, whereby 
modified cancer cells (presumably with metastatic regulators) would be injected into a tumor 
to out-compete the harmful cancer cells (Deisboeck and Wang 2008).

16.2.3  Continuous Deterministic or Stochastic Approaches

Continuous models estimate the mass behavior of individual molecules through experi-
mentally accessible parameters such as concentrations of molecular species and reaction 
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rates. Because much more experimental data is available about these bulk parameters than 
about the single molecule parameters required in discrete approaches, it is often easier to 
find appropriate numerical values using continuous approaches. Systems of ordinary differ-
ential equations (ODEs) and partial differential equations (PDEs) are by far the most com-
mon approaches to modeling biological processes (de Jong 2002; Kitano 2002). For many 
researchers, converting a simple chemical reaction like A B Ck+  →1  into a corresponding 
ODE ( / )dC dt k AB= 1  is obvious and natural, and derivations of ODEs for many biochemical 
reactions can be found in most introductory biochemistry textbooks. ODEs assume that all 
reactions occur within a single compartment. This means that changes in concentrations 
are given as a function of time only. PDEs, on the other hand, explicitly incorporate spatial 
dimensions into their formulation, reflecting variations in molecular concentration within 
the compartment. Nevertheless, explicit transport functions need to be written with either 
approach to accurately model species movement between compartments.

While simple ODEs (e.g., for the spontaneous molecular degradation of a single species) 
may have exact integral solutions, most applicable ODEs in biology must be solved numer-
ically. Using the Euler method, integration programs divide the area under a continuous 
function into approximate rectangular or trapezoidal regions whose areas can be exactly 
computed and then summed. These methods have relatively large errors and have mostly 
been replaced by fourth-order Runge–Kutta algorithms (Butcher 2003). Many variations for 
specific ODE cases have been derived from these equations. For example, delay differential 
equations (DDEs) can implicitly incorporate time delay factors into ODE solutions to more 
accurately model signal transduction cascades with reduced computational effort (Srividhya, 
Gopinathan, and Schnell 2007). DDEs permit the modeler to simplify a model by replacing 
intermediate reactions with a time delay term without general loss of information or accu-
racy. In addition, solutions of so-called “stiff” ODE systems (those with slow changes in most 
variables) can be solved faster without loss of accuracy using modified algorithms.

ODE models have been used extensively to simulate tumor development. For example, 
a simple model with 17 equations compared the relative effects of genetic instability, avoid-
ance of apoptosis, increased growth rate, and angiogenic signaling on tumor progression 
and showed that increases in the mutational rate were only important in late-stage, sporadic 
tumors (Spencer et al. 2004). A more complex ODE model with 80 equations was used to 
explore the CD95-inducible apoptotic pathway. This study demonstrated that derepression 
of the c-FLIP inhibition of the death-inducing signaling complex (DISC) was dependent on 
activation of the CD-95 signal above a threshold value (Bentele et al. 2004). An ODE simula-
tion incorporating effects of both angiogenic factor VEGF and vessel-maturation factor Ang2 
led to a suggestion that combining antagonistic drugs might be more efficacious than mono-
therapeutic treatments (Arakelyan, Vainstein, and Agur 2002). This prediction was actually 
borne out in phase 3 clinical trials of the anti-angiogenic drug Avastin (Garber 2002).

In contrast to ODEs, which model temporal processes only, systems of PDEs have 
been used to model several spatially dependent processes in cancers, including chemo-
tactically directed tumor growth (Castro, Molina-Paris, and Deisboeck 2005), growth 
factor-stimulated glioblastoma development (Khain and Sander 2006), tumor-immune 
system interactions (Matzavinos, Chaplain, and Kuznetsov 2004), and tumor growth along 
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tubular structures (Marciniak-Czochra and Kimmel 2007). Due to the incorporation of 
spatial variables, PDE solvers are more computationally expensive than ODE solvers and 
are not found in many software packages (Alves, Antunes, and Salvador 2006).

Deterministic numerical integrators do not accurately model the stochastic behavior of 
molecular species with very low concentrations. To overcome this important limitation, 
Gillespie developed the Stochastic Simulation Algorithm (SSA), a method incorporating a 
probabilistic “master equation” into standard integrators (Gillespie 1976). The SSA ranks 
the probabilities that any one of the reactions in a system will be the next one to occur in 
some infinitesimal time interval and solves the ODE for that reaction before others in the 
system (see Gillespie, 1976, for a complete derivation).

SSA methods have been used to model many biological processes, including PKC signal 
transduction (Manninen, Linne, and Ruohonen 2006) and Hox gene expression (Kastner, 
Solomon, and Fraser 2002). Because SSA methods are computationally expensive, Chatterjee 
and colleagues have developed methods to accelerate computation by two to three orders of 
magnitude and demonstrated this improvement in a MAPK cascade simulation (Chatterjee 
et al. 2005). This “tau-leap” method computes transition probabilities per unit time for a 
reaction system and then allows a “bundle” of events sampled from a binomial distribution 
to occur simultaneously in the next time interval. This bypasses the dominating effects of 
fast kinetics reactions in the SSA model (such as explicit diffusion) and emphasizes slower 
reactions that are likely of more interest to the modeler. Gillespie has also recently intro-
duced modifications to the original SSA method that result in similar improvements in 
processing speed when solving stiff (numerically unstable) ODE systems (Gillespie 2007).

Standard Petri nets have also recently been extended to permit the incorporation of 
continuous quantities of tokens and stoichiometric weightings through Hybrid Petri net 
and Functional Hybrid Petri net (FHPNs) models (Matsuno et al. 2003). An FHPN model 
of p53 tumor suppression has been developed which suggested that the protein displays 
transcriptional activation in a heterotrimer with p19-ARF and MDM2 (Doi et al. 2006). 
Colored Petri nets (CPNs) also allow the definition of arbitrary mathematical formulas 
inside transitions and have recently been used to quantitatively model EGF signaling with 
results similar to ODE simulations (Lee et al. 2006).

16.2.4  Network Approaches

While the lack of detailed concentration and kinetic data may make it difficult to use dis-
crete or continuous modeling approaches, data describing networks of interacting genes 
and proteins are frequently available. A substantial number of network visualization and 
annotation systems have arisen to deal with the flood of network information available 
from microarray, ChIP-chip, RNAi, and two-hybrid experiments, including Cytoscape, 
Pathway Studio, and VisANT (Suderman and Hallett 2007). Although, these tools gen-
erally don’t support simulations, some genetic regulatory network (GRN) tools, such as 
BioTapestry, permit the creation of databases that describe changes in the network over 
time (Longabaugh, Davidson, and Bolouri 2008).

The simplest biological network descriptions only identify interacting species (through 
nodes and directed or undirected arcs) without concern for the relative activating or 



318    ◾    Wayne Materi and David S. Wishart

inhibiting contributions of each species. However, two recent extensions of Boolean net-
works (BNs) used piecewise-linear differential equations (PLDEs) to enable realistic simu-
lations of genetic networks (de Jong et al. 2003; R. Zhang et al. 2008).

A standard BN uses directed arcs to encode input and output relationships between 
nodes (representing genes) in the network. Input arcs may indicate that one node is activat-
ing or inhibiting to another. Furthermore, these inputs can be combined through standard 
Boolean logical operations such as AND, OR, NOT. PLDEs provide weightings to both 
input and output arcs so that each input is considered only if it surpasses a defined thresh-
old value. The resulting output from an activated node is described by an ODE which 
takes into account both the concentration of the output node and its decay rate (Albert 
et al. 2008). BooleanNet and the Genetic Network Analyzer (de Jong et al. 2003) are two 
computer programs that provide PLDE genetic network analysis. A PLDE-based network 
model of apoptotic escape in large granular lymphocyte leukemia, with potential use in 
screening new therapeutic agents, has recently been developed (Zhang et al. 2008).

16.3  CONCLUSIONS AND FUTURE DEVELOPMENT
Considerable progress has been made over the past few decades in representing and simu-
lating biological processes related to tumor development. With the advent of organiza-
tions such as the Center for the Development of a Virtual Tumor (http://www.cvit.org) and 
the National Resource for Cell Analysis and Modeling (http://www.vcell.org), along with 
other centers for quantitative biology or systems biology, the utility of simulating complex 
biological systems is becoming more apparent. Agent based models capable of spanning 
multiple spatial and temporal scales (Zhang et al. 2009) and hybrid modeling systems, such 
as COPASI (Hoops et al. 2006), which combine the best features of discrete and continuous 
approaches, are under development. Further, software that integrates multiple databases 
with a variety of analytic tools is being created by the open source, international GAGGLE 
community (Bare et al. 2007; Shannon et al. 2006).

Nevertheless, challenges still remain. For example, while graphical notation systems 
for molecular-level biological processes are readily available, no comparable system for 
describing tissue-, organ-, or organism-level phenomena has been developed. In addition, 
no single approach has yet been selected as a definitive standard and model development 
continues along competing lines. Initiatives such as the System Biology Graphical Notation 
project demonstrate that standard development is also under active development as a vari-
ety of approaches move toward an effective consensus. Simulating the development of can-
cer has already led to an increased understanding of the disease and predicted clinical 
efficacy of therapeutic approaches. Researchers hope that improved modeling techniques 
with greater accuracy will have even greater importance in the future.
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17.1  INTRODUCTION
VisANT is a free, online software platform used for integrative visualization, modeling, 
and analysis of biological networks. VisANT was developed in an effort to model the cell 
as an interconnected information network, with molecular components linked with one 
another in topologies that can encode and represent many features of cellular function. 
This networked view of biology brings the potential for systematic understanding of living 
molecular systems (Hu, Mellor, and DeLisi 2004; Hu et al. 2004, 2005, 2007b). Important 
features that VisANT offers to the research community are (1) exploratory navigation of 
integrated database-driven interaction and association networks; (2) multi-scale visualiza-
tion, manipulation, and storage of known and/or user-defined networks with integrated 
hierarchical knowledge; (3) the ability to perform data mining and basic graph operations 
on arbitrary networks and subnetworks, including loop detection, degree distribution 
(the distribution of edges per node), and exhaustive shortest path identification between 
various component genes or proteins; and (4) expression visualization and analysis in the 
network context. Unlike other network visualization tools, VisANT provides fundamen-
tal data integration services driven by the Predictome database (Mellor et al. 2002), such 
as name resolution, which greatly lessens the burden of integrating data from various 
sources (Hu et al. 2008). For example, expression data can automatically be mapped to the 
appropriate nodes in a network once the Name Resolution function has been applied to 
its nodes, regardless of the different naming conventions used in expression and network 
data, respectively.

A metagraph (Hu et al. 2005, 2007a, 2007b) is an advanced graph type developed in our lab 
to integrative inclusive or partially inclusive relationships and the adjacent relationships into 
one single network, as illustrated in Figure 17.1. The inclusive relationship in a metagraph is 
represented by a metanode, which is a special type of node that contains associated subnodes, 
much as a Gene Ontology (GO) term contains its subterms or associated genes. A metanode 
has two states, expanded or collapsed; the expanded state manifests the internal subgraph 
(that is, places all descendent nodes with their connections into the graph) while the collapsed 
state replaces this subgraph with the single node. Networks represented by a metagraph are 
usually termed metanetworks, and such visualization technology is often referred to as multi-
scale visualization because information at different abstraction scales is presented in one net-
work. A detailed mathematical definition of the metagraph can be found in Section 17.5.1.

In this chapter we focus on the VisANT functions associated with the work flows 
(Figure 17.2) that will potentially be useful for cancer systems biology. Users are advised 
to visit http://visant.bu.edu for other functions of VisANT. Both work flows shown in 
Figure 17.2 are usually aimed at finding network modules that may account for the dif-
ferential RNA expression patterns (e.g., tumor vs. normal) determined by genome-wide 
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FIGURE 17.1 Illustration of the multi-scale visualization using a metagraph. Note that node E has 
two instances in the inclusive tree. (A) A network where an edge represents the inclusive relation-
ship such as F belongs to M2, E is part of M2 and M3. (B) A network with adjacency relations. (C) 
Integration of inclusive relations (dashed lines) and adjacency relations (solid lines). (D) The inte-
grated network using a metagraph (also referred to as meta-network) where node E belongs to both 
metanode M2 and M3. (E) The same meta-network with three metanodes (M1 to M3) collapsed; 
the dashed line between M2 and M3 indicates there is a shared node between two metanodes.
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FIGURE 17.2 Different work flows focused on in this chapter. The solid lines represent the work 
flow of functional profiling where GO annotations are used to interpret the roles of a given gene 
set. The dashed lines represent the work flow of the gene set/network module enrichment analysis, 
where GO terms and associated genes may be used to construct the functional modules.
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association studies. The first work flow starts with the modules whose functions are 
unknown; therefore, the task is to determine their functions, whereas the other starts with 
the modules whose functions are already known and the task is to determine whether they 
are enriched in the expression pattern. Finally, we illustrate the construction of the cancer 
network using the metagraph and the automatic creation of the cancer gene network based 
on it using the built-in VisANT function “Create the co-metanode network.”

VisANT is implemented in Java and can run on any platform where Java is supported. 
The VisANT applet has been tested on many popular browsers, including Internet Explorer, 
FireFox, Chrome, and Netscape. VisANT relies on the Java Script to communicate between 
the web pages and the applet. VisANT can also be downloaded and run as a local application 
or through Java’s web start technology for desktop use on Windows, Mac OS, Linux, or Unix 
computers where Java is supported. Please reference Section 17.5.2 for more information.

All instructions, examples, and figures used in the chapter are based on VisANT online 
version 3.62 (the latest version as of May 3, 2007). Because the Predictome database is 
updated weekly, the queried interactions used in the examples may vary; please reference 
http://visant.bu.edu/statistics_visant/ for more information.

17.1.1  Necessary Resources
17.1.1.1   Hardware

• Computer with 1 GHz CPU or higher, 512M free memory recommended, screen res-
olution of 1024 × 768 or higher recommended

• Internet connection to obtain network data from online databases

17.1.1.2   Software
• Operating System: Windows, Mac OS, Linux, or any other platform that supports Java

• Java 2 Platform, Standard Edition, version 1.4 or higher (http://java.sun.com/javase/
downloads/index.jsp)

• Web browser: e.g., Microsoft Internet Explorer (http://www.microsoft.com), Mozilla 
Firefox (http://www.mozilla.org/firefox), or Apple Safari (http://www.apple.com/
safari), etc.

17.2  NETWORk-BASED FUNCTIONAL PROFILING
Functional profiling (Rhee et al. 2008), or GO term enrichment analysis, aims to deter-
mine whether particular GO terms inform the difference of molecular phenotypes in 
any set of user-specified genes, typically the co-expression modules (Figure 17.2, solid 
lines). In a network context, the goal is to identify biological functions for a given sub-
network, or for a network module. Although many algorithms and tools (Alibes et al. 
2008; Antonov et al. 2008; Antonov, Tetko, and Mewes 2006; Brohee et al. 2008; Draghici 
et al. 2003; Huang et al. 2007; Khatri et al. 2004, 2007; Lee et al. 2008; Reimand et al. 
2008; Salomonis et al. 2007; Zhang et al. 2008; Zhu et al. 2007) have been developed 
for GO term enrichment analysis, they generally omit correlations based on disparate 
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and varied datasets, such as yeast two hybrid, genetic interaction, mass spectrometry 
(MS), and so on. Such relations may help to overcome some drawbacks in the current 
enrichment analysis. For example, one drawback is that all terms are weighted equally 
(Khatri and Draghici 2005), while in a network module, terms annotated for highly 
connected genes will have more weight than those annotated for loosely connected 
genes. Accuracy may also be improved if network type is considered; for example, for a 
regulatory network, we probably can exclude those annotations of metabolic processes. 
From this perspective, flexible annotation schema will be needed to enable users to 
select subsets of GO annotations. Such flexibility could help determine the functions 
of genes in a specified network (see Section 17.5.3, Annotate Gene Functions Using 
Flexible Schema).

17.2.1  Construct a Network of Modules

 1. Open the web browser and load the page http://visant.bu.edu (Figure 17.3). If the tool-
tip text “Click to Start VisANT” does not appear with the mouse over the link “Start 
VisANT” at the right-upper corner of the Web page (Figure 17.3), you will need to 
turn on the support of javascript in the browser.

Click the “Start VisANT” link; the VisANT main window will appear (Figure 17.4). 
The center of the main window is the network panel and a default startup network is 
loaded to demonstrate some basic capabilities of VisANT. The startup network also 
provides the default configurations for VisANT. The default startup network may 

FIGURE 17.3 The VisANT homepage.
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vary at different times to illustrate the latest development. When VisANT is run as a 
local application, the startup network can be customized through the Files→Save as 
Startup Network menu, or through the key combination CTRL-T.

At the top of the main window is the toolbar containing some controls with the tooltips, 
such as the control for the minimum and maximum edge weight cutoff, as well as the 
current database to query the interactions (Predictome database in Figure 17.4). At the 
bottom of the main window is the status bar where some information on the current 
network, such as total number of edges and nodes, will be shown. At the left of the main 
window is the control panel, which contains two tabs: toolbox and GO explorer. The 
default tab toolbox provides many important controls that will be used in the chapter, 
and GO explorer is used to navigate the GO hierarchy structure. Please reference http://
visant.bu.edu/vmanual/ver3.50.htm for more information about GO explorer, such as 
search of interactions using the key words.

 2. Clear the network by clicking the button “Clear” on the toolbox, and change the cur-
rent species to Homo sapiens through the drop-down list for the species. Press the key 
“h” to speed up the search of Homo sapiens in the drop-down list. It is important to 
set the correct species because all the integrated knowledge is directly associated with 
a specific species, including the gene-GO associations that will be used later.

 3. Assume we have three co-expression clusters named CLUSTER_A, CLUSTER_B, 
and CLUSTER_C, each containing a number of genes as listed below. Copy and paste 

FIGURE 17.4 (See color insert following page 332.) The VisANT main window with a startup 
network.
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(either through the pop-out menu, or the key combination CTRL-C and CTRL-V) 
the following text into the Add text box of VisANT’s toolbox and click the Add but-
ton (left-bottom corner indicated by the mouse cursor in Figure 17.5). Three metan-
odes will be created (Figure 17.5). The Add textbox can be used to add any type of 
data whose format is supported by VisANT (Table 17.1).

#group Cluster_A
KRT1 SIGIRR MYD88 MASP2 C1QA
MASP1 IL1R1 TLR4 TLR2 TLR1
TIRAP TBK1 IL1RAP TBKBP1 MBL2
SERPING1 CR2 C1S C1R

#group Cluster_B
NA SNAPAP BLOC1S3 BLOC1S2 DTNBP1 BLOC1S1
MUTED SNAP25 PLDN TRPV1 EBAG9 STX12

#group Cluster_C
HYAL2 CLP1 TEP1 RPP40 TSEN15
ERVWE1 RPP38 POP1 LOC100128314 TSEN34
RPP30 TSEN2 TSEN54 TERT

FIGURE 17.5 Use the extended edge-list to create three metanodes representing three co-expres-
sion clusters.
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TABLE 17.1 File Formats Supported by VisANT

File Format Description & Identification Related URL

Edge List Default tab-delimited text format 
for non-XML-based data in 
VisANT.

http://visant.bu.edu/import#Edge

VisML (VisANT 
XML file) 

Default VisANT file format for 
XML-based data, containing all 
the network information. 
Network stored as VisML 
format can be safely replayed as 
it was stored.

http://visant.bu.edu/misi/visML.htm

Expression 
(expression 
matrix file)

Expression matrix file; the first 
line must start with 
“#!Expression”. Optional 
parameter addNewNode to 
determine whether to abandon 
the nodes that are not in the 
current network, e.g., 
addNewNode=false.

http://visant.bu.edu/vmanual/expression.htm
http://visant.bu.edu/vmanual/ver3.50.htm#Expression

Macro/Batch file The file format to store a list of 
commands for VisANT to 
carry out. The first line must 
start with “#!batch commands”.

http://visant.bu.edu/vmanual/cmd.htm

ID-Mapping (ID 
mapping file)

This file format is designed to 
allow the user to add various 
database IDs, as well as alias 
and functional descriptions, to 
the nodes in a network.

http://visant.bu.edu/vmanual/ver2.60.htm

KGML (KEGG 
XML file)

The KEGG Markup Language 
(KGML) is an exchange format 
of the KEGG graph objects, 
especially the KEGG pathway 
maps that are manually drawn 
and updated.

http://www.genome.jp/kegg/xml/

GML (Graph 
Markup 
Language)

A common graph file format 
supported by several network 
software packages

http://www.infosun.fim.uni-passau.de/Graphlet/GML/

PSI-MI 
(Proteomics 
Standards 
Initiative-
Molecular 
Interaction 
format)

XML standard format for 
molecular interactions 
supported by molecular 
interaction databases.

http://www.psidev.info/index.php?q=node/60

BioPAX 1.0 
(Biological 
PAthway 
eXchange)

Standard format for pathway 
information supported by 
multiple pathway databases.

http://www.biopax.org
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The above text uses VisANT’s extended edge-list format (Table 17.1) to create the net-
work, which is the simplest format supported in VisANT. It can also be used to easily add 
nodes (each line with the name of one single node) or edges (each line with the name of the 
two nodes separated by space or tab).

Alternatively, users can load this edge-list from the URL through the File→Open URL 
menu and enter the URL http://visant.bu.edu/other_formats/edge_list_3_clusters.txt 
(depending on the type of browser, you may be able to paste the above URL using the key 
combination CTRL-V), and follow the instructions to achieve the same result.

When you are uncertain about the format of edge-list, you can always export the net-
work in the format of edge-list with the menu File→Export as Tab-Delimited File→All 
and follow the exported examples.

 4. Layout the network. Apply the Layout→Circle* menu four times, and click the button 
“Fit to Page.” The network will look similar to the one shown in Figure 17.6.

The layout will be carried recursively for all embedded metanodes when there is “*” 
shown for the corresponding layout menu. If only a set of metanodes needs to be 
laid out, simply select these metanodes only (reference http://visant.bu.edu/docs.htm 
for complete instructions on node selection), and apply the corresponding menu. 
The circle size of the metanode will be increased each time the layout is applied. 
Alternatively, users can move the component nodes of the metanode around to 
achieve the desired rectangle size, and the circle size will be determined by the mini-
mal size of the rectangle’s width and height.

FIGURE 17.6 Layout network of three clusters.
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17.2.2  Predict the Functions of Three Co-Expression 
Clusters Using the Hyper-Geometric Test

 1. Annotate the genes of three clusters using the menu MetaGraph→GO Annotation of 
All Nodes→Using Most Specific GO Terms.

VisANT automatically resolves the node names when annotating the nodes.

Please reference Section 17.5.3 for other annotation options. The same annotation 
menus are also available under the menu Nodes which are only used to annotate the 
selected nodes. In the case where you have collapsed metanodes, such as for KEGG 
pathways, always use the annotation options under the MetaGraph menu.

 2. Uncheck the menu Options→Open Link Using Same Browser so that we can com-
pare the prediction reports produced by VisANT for different algorithms.

 3. Make sure that no node is selected by mouse-clicking on the empty space of 
the network. Predict the functions of the clusters using hyper-geometric-based 
analysis through the menu MetaGraph→ Predict Functions of Metanodes Using 
GO → Detect Over-represented GO Terms Using Hypergeometric Test→ Start 
Hypergeometric Test over GO Database. VisANT will perform the prediction for 
all non-embedded metanodes. For more information, please reference the manual 
at http://visant.bu.edu/vmanual/ver3.50.htm#hyper.

The prediction results will be added to the metanode as part of its description that 
is available as tooltips when the mouse is over the node (Figure 17.7). Table 17.2 lists 
all predictions of three clusters based on the report created by VisANT at this writing: 
http://visant.bu.edu/misi/hyper_3_cluster.htm.

The Predictome database maintains a local copy of the GO database and the gene-GO 
associations are extracted from the Entrez Gene database. Both datasets are being updated 
constantly; therefore, the actually prediction results may be a little different from the results 
shown in the link above. This also applies to the GOTEA algorithm that will be illustrated 
later because the interactions are also being updated from a list of interaction databases.

17.2.3  Predict the Functions of Three Co-Expression Clusters 
Using GO Term Enrichment Analysis (GOTEA)

GOTEA uses a permutation-based method to predict the functions of a given network 
module with the evaluation of the association between genes in the module. The algorithm 
detail can be found at 5.4 GO term enrichment analysis (GOTEA).

 1. Return to the VisANT home page and click on the link Interaction Statistics as shown 
at the upper right corner in Figure 17.3. The opened page lists the number of interac-
tions available for a total of 108 organisms supported in the Predictome database. 
Find the species Homo Sapiens and click the link of the number; it will bring you to a 
page similar to the one shown in Figure 17.8:
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Group Node: CLUSTER_B

### GO Annotation--predicted by hypergeometric test [mode = informative 2, cutoff = 75]

Biological process:

Synaptic transmission (GO: 0007268)[2]

exocytosis (GO:0006887)[2]

generation of a signal involved in cell-cell signaling (GO: 0003001)[2]

Cellular component:

cytosolic part (GO: 0044445)[1]

contains 12 nodes with total 0 edges

FIGURE 17.7 Prediction results are available as tooltips of the corresponding metanode nodes.

TABLE 17.2 Cluster Functions Predicted with the Hyper-Geometric-Based Test
Molecular Function Biological Process Cellular Component

Cluster_A Cytokine 
binding(GO:0019955) 
growth factor 
binding(GO:0019838) 
serine-type endopeptidase 
activity(GO:0004252)

Positive regulation of immune 
response(GO:0050778) 
innate immune 
response(GO:0045087) acute 
inflammatory 
response(GO:0002526)

Cluster_B Synaptic 
transmission(GO:0007268) 
exocytosis(GO:0006887) 
generation of a signal 
involved in cell-cell 
signaling(GO:0003001)

Cluster_C Endonuclease 
activity(GO:0004519) 
nucleotidyltransferase 
activity(GO:0016779)

tRNA metabolic 
process(GO:0006399)

Nucleolus(GO:0005730)
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 2. Clicking the number of affinity technology (10672 at the time of writing) shown in 
Figure 17.8 will load a total of 10,672 interactions detected by affinity technology in 
VisANT changes the network shown in Figure 17.6 to one similar to Figure 17.9.

VisANT automatically adjusts the global zoom level when loading a large interaction 
set. To resume the zoom level, simply click first the Zoom Out button and then 
the Reset button in VisANT’s toolbox.

 3. Select all nodes of the three clusters by dragging a rectangle using the left mouse 
button, then apply Edit→Invert Node Selection menu, remove those selected nodes 
by either pressing the Delete key, or through the Edit→Delete Selected Nodes menu. 
Then click the Fit to Page button on VisANT’s toolbox. A network similar to the one 
shown in Figure 17.10 appears with nodes of the three clusters being connected.

 4. Use GO → Network-based GO Term Enrichment Analysis (GOTEA) → Configure 
GOTEA menu to change the number of interactions to 20,000.

FIGURE 17.8 Total interactions available in the Predictome database for Homo sapiens.

FIGURE 17.9 An integrated network of three clusters with 10,672 interactions detected by affinity 
technology (M0045).
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 5. Perform GOTEA analysis through the MetaGraph→ Predict Functions of Metanodes. 
Using GO → Network-based GO Term Enrichment Analysis (GOTEA) → Fast 
GOTEA menu.

The prediction results will be added to the metanode as part of its description that 
is available as tooltips. Table 17.3 lists the top three GO terms that resulted from 

FIGURE 17.10 Network modules for the three clusters using integrated interactions of M0045.

TABLE 17.3 Cluster Functions Predicted by GO with Integrated Interaction of M0045
Molecular Function Biological Process Cellular Component

Cluster_A Cytokine 
binding(GO:0019955) 
growth factor 
binding(GO:0019838) 
sugar binding 
(GO:0005529) …

Cytokine biosynthetic 
process(GO:0042089) 
positive regulation of 
immune response 
(GO:0050778) innate immune 
response (GO:0045087) …

Extracellular space(GO:0005615) 
receptor complex(GO:0043235) 
secretory granule(GO:0030141) …

Cluster_B Calmodulin 
binding(GO:0005516) 
ATP 
binding(GO:0005524) 
calcium channel 
activity(GO:0005262)

Synaptic 
transmission(GO:0007268) 
neurotransmitter 
transport(GO:0006836) 
generation of a signal 
involved in cell-cell 
signaling(GO:0003001) …

Clathrin-coated 
vesicle(GO:0030136) neuron 
projection(GO:0043005) 
cytoplasmic vesicle 
membrane(GO:0030659) …

Cluster_C Endonuclease 
activity(GO:0004519) 
nucleotidyltransferase 
activity(GO:0016779) 
ATP binding 
(GO:0005524) …

tRNA metabolic 
process(GO:0006399) DNA 
recombination(GO:0006310) 
cellular carbohydrate 
catabolic 
process(GO:0044275) …

Nucleolus(GO:0005730) anchored 
to membrane(GO:0031225) soluble 
fraction(GO:0005625)
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GOTEA analysis for three clusters. The complete report can be found at http://
visant.bu.edu/misi/gotea_M0045_3_cluster.htm.

It is obvious that GOTEA finds more enriched GO terms for each cluster than the 
hyper-geometric test, which is mainly because GOTEA uses a fuzzy search-
ing algorithm to find those GO terms that are semantically similar. As a result, 
GOTEA is much slower than the hyper-geometric test, and takes about half an 
hour to finish the analysis of three clusters. From this perspective, VisANT pro-
vides a red cancel button at the right end of the status bar to cancel the analysis, 
as shown in Figure 17.11.

More information about GOTEA in VisANT can be found at http://visant.bu.edu/
vmanual/ver3.50.htm#gotea.

 6. Save the network. Click on the toolbox tab on VisANT’s control panel. If you have a 
VisANT account, login to VisANT and click the Save as button to save the network. 
If you do not have a VisANT account, you can register for one for free; otherwise, you 
can use the key combination CTRL+Y or the File→Copy to Add TextBox menu to 
export the current network to Add textbox in the format of VisML, then copy/paste 
VisML into any text editor and save it as a local file. The network can be restored by 
copy/paste VisML into the Add Textbox and click the Add button.

17.3  NETWORk-BASED ExPRESSION ENRICHMENT ANALySIS
Another typical appplication of enrichment analysis is the study of differential RNA 
expression patterns (e.g., tumor versus normal) determined by genome-wide associa-
tion studies, to determine if one or more specified gene sets (e.g., KEGG pathways) might 
account for some of the differences (Figure 17.2, dashed lines; Barry, Nobel, and Wright 
2005; Mootha et al. 2003; Subramanian et al. 2005; Volinia et al. 2004). Gene set enrich-
ment analysis (GSEA; Subramanian et al. 2005) is probably the most used algorithm in 
such analysis which does not take account of prior network knowledge. Here we introduce 
network module enrichment analysis (NMEA) to test whether the modules are enriched 
with transcriptional changes between the control and the sample. NMEA is basically an 
extension of GSEA but takes advantage of the extra information provided by network con-
nectivity. In VisANT, a network can be constructed using the data from any combina-
tion of 60-odd methods (e.g., Y2H, ChIP-Chip, MS, knock-outs, etc.) for the gene lists of 
interest. Modules can be easily constructed as metanodes through corresponding menus, 
simple drag and drop operations from GO explorer, and extended edge-list (http://visant.
bu.edu/import#Edge) of the user’s own data.

FIGURE 17.11 Use the cancel button to cancel the computational heavy analysis.
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17.3.1  NMEA with GO Modules

 1. Repeat steps 1–2 in Section 17.2.1 to have an empty network for Homo sapiens.

 2. Resume the zoom level by clicking first the Zoom Out button and then Reset button 
in VisANT’s toolbox.

 3. Click on the GO Explorer tab in VisANT’s control panel, enter GO:0000077 in the 
search box at the bottom of the GO explorer, and click the Search button to search for 
the GO term. Drag and drop the highlighted term DNA damage checkpoint to the 
network to create the metanode for GO:0000077 (Figure 7.12).

 4. Repeat step 2 above for GO:0051320, GO:0007127, and GO:0051318. All three meta-
nodes have overlaps with the first metanode of GO:0000077. Move the overlapped 
genes to the center of each metanode, and a metanetwork similar to the one shown in 
Figure 17.12 will appear, except there is no edge.

 5. Map the expression profiles by opening the expression data from the following address: 
http://visant.bu.edu/sample/exp/p53_visant.dat using File→Open URL menu.

The expression data shown in the above link contains 22 microarray samples with 
mutations in P53 and 17 wild-type samples. The data is downloaded from the 

FIGURE 17.12 NMEA for four GO modules in VisANT.
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GSEA website (http://www.broad.mit.edu/gsea/). Please reference http://visant.
bu.edu/vmanual/ver3.50.htm#Expression for the format of expression data sup-
ported by VisANT.

An alternative way to load the expression data is to copy and paste expression data in 
the Add textbox of the toolbox.

 6. Change the color mapped for the minimal and maximum expression values to the 
light green and darker green, respectively, by clicking the left or right side of the color 
map shown in the toolbar (Figure 17.12). The color map will also be used to indicate 
the relative contribution to the enrichment score within each metanode.

 7. Select all nodes using the Edit→Select All Nodes menu.

 8. Query the interactions between selected nodes from the Predictome database using 
the Node(s)→Query Internal Interactions menu. The edges between the nodes appear 
as in Figure 17.12.

In comparison with steps 2 and 3 in Section 17.2.3 where only a portion of the interac-
tions are used to construct the network modules, here we query all possible interac-
tions in the Predictome database.

 9. Clear all selections by left-mouse clicking on an empty space of the network panel.

 10. Start NMEA using the Expression→Network Module Enrichment Analysis 
(NMEA)→ Start NMEA Analyze menu. Once finished, the P-value and FDR score 
will be added to each metanode’s description (Figure 17.12) and an HTML report will 
be generated similar to the one at: http://visant.bu.edu/misi/nmea_go_modules.htm.

From the report it is clear that only the process DNA damage checkpoint 
(GO:0000077) exhibits the phenotypic difference in the expression of genes between 
mutated and wild-type samples, probably due to the fact that P53 plays a role in the 
process. As mentioned in step 6 above, nodes with the darker color have more contribu-
tion to the enrichment score.

17.3.2  NMEA with kEGG Pathways

Pathway databases provide a valuable resource of network modules to apply the enrich-
ment analysis although the number of available pathways is still limited. VisANT is closely 
integrated with the KEGG pathway and provides several different ways to load KGML-
based KEGG pathways (Hu et al. 2007b).

 1. Click the toolbox tab on the control panel.

 2. Clear the network by clicking the Clear button on the toolbox. Alternatively, you can 
clear the network using the Edit→Clear menu so that you will not need to change 
back and forth between the toolbox and GO explorer.
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 3. Enter map04110 in the Search box above the drop-down list of the species in 
VisANT’s toolbox, and click the Search button to load the KEGG cell cycle pathway. 
VisANT will search for KEGG pathways for the current species using the number 
(e.g., 04110) as the pathway ID, if the search term starts with “map” followed by the 
number.

 4. Resolve all the node names using the MetaGraph→Resolve All Nodes Name menu. 
This step is necessary because the KGML of the KEGG pathway may use different 
naming systems for genes.

 5. Repeat step 5 in the previous section to load the same expression data.

 6. Repeat steps 9 and 10 above to carry out the NMEA analysis of the cell cycle pathway. 
The result is shown in Figure 17.13.

Since P53 mutants influence the behavior of the cell cycle, it is expected that cell cycle-
related modules should be enriched. NMEA reported the cell cycle pathway as significantly 
enriched with a p-value = 0.04 and therefore supports this point (Figure 17.13).

More information about NMEA in VisANT can be found at http://visant.bu.edu/vmanual/
ver3.50.htm#nmea.

KEGG Pathway: MAP04110
Cell cycle
Enrichment P-value = 0.04485
Enrichment PDR = 0.04485

FIGURE 17.13 Visualization of NMEA of P53 mutation data on the cell cycle pathway. Nodes with 
a darker color have more contributions to the enrichment score.
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17.4  USING A METAGRAPH TO MODEL THE CANCER NETWORk
In this section we will illustrate how to use a metagraph to build a network of cancers based 
on the simple cancer-gene association, and how this cancer network can be used to create 
the cancer gene network.

17.4.1  Construct the Cancer Network

 1. Clear the network by clicking the Clear button.

 2. Load the edge-list for the cancer network from http://visant.bu.edu/other_formats/
edge_list_cancers.txt using the File→Open URL menu. Once finished, click the Fit 
to Page button on the toolbox.

The data shown in the above URL is extracted from the work of Goh and co-
workers (2007). The disease is represented by the disease ID and is not very 
informative. From this perspective, we use the ID-Mapping format (Table 17.1) 
to add an informative description for each cancer. The first few lines of the file 
are shown below:

 #!ID Mapping AddNewNode=false
 #VisANT_ID description
 DOR2212 Rhabdomyosarcoma, alveolar, 268220 (3) [DOR2212]
 DOR2211 Rhabdomyosarcoma, 268210 (3) [DOR2211]
 DOR2210 Rhabdoid tumors (3) [DOR2210]
 DOR1804 Nasopharyngeal carcinoma, 161550 (3) [DOR1804]

 3. Similar to the above step, load the ID-Mapping file from the URL: http://visant.
bu.edu/other_formats/IDMapping_cencers.txt.

 4. Collapse all metanodes using the MetaGraph→MetaNode→Collapse All menu. A 
dashed edge between two cancers will be created automatically if they share at least 
one gene.

 5. Click the Zoom Out button on the toolbox six times and then click the Fit to Page 
button to reduce the node size and make it easier to examine the connections between 
diseases.

 6. Lay out the cancer network using the Layout→Spring Embedded Relaxing menu. 
Click the Stop Animation button whenever appropriate (Figure  17.14). The cancer 
network will look similar to the one shown in Figure 17.14.

17.4.2  Construct the Cancer Gene Network

Apply a concept similar to the “disease gene network” (Goh et al. 2007); that is, two genes 
are connected if they are associated with the same disorder. We can easily create a cancer 
gene network in VisANT.
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 1. Use the MetaGraph→Create Co-Metanode Network menu to create the cancer gene 
network.

 2. Repeat step 6 above to apply the spring embedded relaxing layout.

 3. Change the node shape, color, and size of the cancer gene network by copying and 
pasting the following macros into the Add textbox (clear the textbox if necessary 
using the key CTRL-A and then Backspace):

 #!batch commands
 select_all_node
 set_node_property=node_size:7
 set_node_property=node_shape:circle
 clear_selection

Please reference http://visant.bu.edu/vmanual/cmd.htm for more information about 
macros.

 4. The cancer gene network will look similar to Figure 17.15.

FIGURE 17.14 Network of cancers rebuilt in VisANT using a metagraph with a subset of data of can-
cer extracted from the work of Goh and co-workers (2007). Each metanode (grey box) represents one 
type of cancer. The correlations between cancers are evaluated based on the number of shared genes.
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17.5  COMMENTARy
17.5.1  Mathematical Definition of Metagraph

A metagraph Gm = {V, E} consists of a finite set V of nodes and a finite set E of edges. Nodes 
in a metagraph can be denoted as V = {Vs, Vm} where Vs represents simple nodes as gener-
ally defined in a simple graph and Vm represents the metanodes. The subscript s represents 
the simple node/edge and the subscript m represents metanode/metaedge. Each metanode 
vm ∈ Vm contains a subgraph consisting of child nodes and connected edges. In addition, each 
node v ∈ V represents a set of its instance nodes, that is, v = {Vi|i > 0} where vi is the instance 
nodes of v. Instance nodes have the same identity between them but can have individual spe-
cific properties. The statement that two metanodes share a node implies that each metanode 
contains an instance of the same node.

A metanode vm has two states, expanded or contracted; the expanded state manifests the 
internal subgraph (that is, places all children nodes with their connections into the graph) 
while the contracted state replaces this subgraph with the single node. The combination of 
different states of the metanodes for a given metagraph results in multiple views that are 
abstract representations of the same underlying data. The change of views for a given meta-
graph is defined as the dynamics of the metagraph, as shown in Figures 17.1D and E.

Edges in a metagraph can be denoted as E = (Es,Em) where Es represents simple edges that 
are generally defined in the simple graph and Em represents metaedges. Each metanode edge 
e E em m v vm

∈ = ,  is associated with at least one contracted metanode vm and is transient: it 
appears when the metanode is contracted and disappears when one or two connected metan-
ode nodes are expanded, that is, the metaedge is derived from the properties of two connected 

FIGURE 17.15 Cancer gene network automatically created by VisANT based on the cancer net-
work. The dark dot represents the gene and the edge represents the two genes that are associated 
with the same cancer.
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nodes. The most common derivation of the metaedge is the connection transfer. For example, 
when metanodes M1 and M2 are contracted in Figure 17.1E, the connection between C and E 
is transferred to M1 and M2. However, the metaedge can also be derived from other proper-
ties of the metanode. The metaedge shown in Figure 17.1E is derived because two metanodes 
M2 and M3 share the same node E. The derivation of the metaedge can be generalized as 
e g v vv v mm , ( , ),=  where g is the aggregation function and v  ∈ V can either be a metanode node 
or a simple node.

17.5.2  Download and Run VisANT as a Local Application

VisANT has four running modes and two of them require a local copy of VisANT. Please 
visit http://visant.bu.edu and click the link “Run VisANT” for detailed instructions on 
other modes. It is recommended to run VisANT as a local application when handling 
large-scale networks, such as a network with more than 100,000 nodes and edges because 
you will have the option to specify the memory size that VisANT can use. In addition, a 
local application allows VisANT to access local resources, such as load/save network files 
directly; it also allows the user to develop VisANT plugins, as well as run a list of batch 
commands in the background without any user interface (batch mode).

The only drawback to running VisANT as a local application is that it easily becomes 
out of date because VisANT is under active development. Fortunately, VisANT provides a 
function to check for updates automatically and an icon will be shown near the Help menu 
if update is available. Users can either click the icon or corresponding menu to upgrade an 
VisANT to the latest version, as shown in Figure 17.16.

 1. If not already installed, download and install the Java 2 Platform, Standard Edition, 
version 1.4 or higher (http://java.sun.com/javase/downloads/index.jsp).

 2. Go to http://visant.bu.edu and click on the link “Download”, then click the link 
“Latest Version of VisANT”.

 3. Select a directory to save the file “VisAnt.jar”. The VisAnt.jar is only about 400K in 
size and the download takes less than one minute to finish. No installation is needed 
to run VisANT.

 4. To launch VisANT, double-click VisAnt.jar.

FIGURE 17.16 VisANT upgrade.
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 5. To launch VisANT by an alternative means, open a Dos window in Win OS, or a 
shell window in other operating systems, and go to the directory where VisAnt.jar is 
located, and run the command:

java -Xmx512M -classpath VisAnt.jar cagt.bu.visant.VisAntApplet

  where 512M indicates the maximum size of the memory that VisANT can use. Increase 
this number if you have a large network or you get the “run out of memory” error.

 6. The VisANT main window will appear (Figure 17.4).

 7. To exit VisANT, close the VisANT main window, or use the File→Exit menu option, 
or press the key combination ALT+X.

17.5.3  Annotate Gene Functions Using Flexible Schema

VisANT provides four basic options to annotate genes using GO annotations with corre-
sponding menus, shown in Figure 17.17. Options 1 to 3 listed below can also be applied to 
the selected branches. These options provide users great flexibility to test various hypoth-
eses. To save space, we use the human gene ACN9, which that is involved in the predisposi-
tion to alcohol dependence to illustrate these options.

 1. Using the Most Specific GO Terms: Genes are annotated with the most specific func-
tional descriptions available at Entrez Gene database. The table below lists the GO 
annotation of ACN9 with this option.

Biological Process Cellular Component
Gluconeogenesis(GO:0006094)[ISS] Mitochondrion(GO:0005739)[IEA]

Mitochondrial intermembrane space(GO:0005758)
[ISS]

FIGURE 17.17 Menus for GO annotations under the MetaGraph menu. The menu will annotate all 
the genes, including those hidden in the collapsed metanodes. The same list of menus is also avail-
able under the Nodes menu, which should be used to annotate the selected nodes.
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 2. Using Informative GO Terms: Genes are annotated using GO terms (1) having more 
than a user-specified number of genes and (2) each of whose descendent terms have 
less than the specified number of genes. Let’s use 145 as the cutoff (click the button 
near Search button of GO explorer, enter 145 in the corresponding field, and press the 
Enter key). The informative GO annotations for ACN9 are shown below:

Biological Process Cellular Component
Hexose metabolic process(GO:0019318)

 3. Using GO Terms with Genes under the Branch > cutoff: A term must have more than a 
user-specified number of genes. Let’s again use 145 as the cutoff, and here are the results:

Biological Process Cellular Component
Hexose metabolic process(GO:0019318)
Cellular alcohol metabolic process(GO:0006066) Mitochondrion(GO:0005739)
Cellular biosynthetic process(GO:0044249) Mitochondrial envelope(GO:0005740)
Biosynthetic process(GO:0009058) Mitochondrial part(GO:0044429)
Carbohydrate metabolic process(GO:0005975) Intracellular organelle part(GO:0044446)
Monosaccharide metabolic process(GO:0005996) Membrane-enclosed lumen(GO:0031974)
Monocarboxylic acid metabolic process(GO:0032787) Organelle envelope(GO:0031967)

 4. Using Selected GO Terms Only: Genes are annotated using only selected GO terms. 
Figure 17.18 shows the selected terms and resulting annotation for ACN9.

Options 2 and 3 are frequently used when predicting gene functions using functional 
linkages. Annotations resulting from different options can coexist as node descriptions in 
VisANT for comparison purposes.

FIGURE 17.18 Annotate the gene using the selected GO terms only. Four among the total thirteen terms 
are annotated for ACN9 because the GO term hexose metabolic process (GO:0019318) is the child term, 
which will be very clear when the hierarchy of GO:0019318 is shown in the GO explorer. Please reference 
http://visant.bu.edu/vmanual/ver3.50.htm for information about GO hierarchy visualization.
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17.5.4  GO Term Enrichment Analysis (GOTEA)

The four steps here describe how GOTEA works in VisANT. For illustration purposes, the 
following steps only take one metanode, G, into account and only calculate the enrichment 
score of one target GO term, T.

Step 1: Fully annotate all of the nodes in G with gene names and GO terms.

Step 2: Calculate density scores for each node based on the topology and the GO term 
similarity to T. A vector DG of density scores of each gene in G is computed, with the 
element of DG for the ith gene denoted Di. The density score is used to evaluate the 
impact of other genes in G on the ith gene, according to both the GO term similarity 
and the topological distance to the ith gene. Di is defined as:
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 ensures that Di ≥ 0. Mj is a measure of the GO term similarity calculated based upon 
the graph structure of the GO term hierarchy (Wang et al. 2007). A significance 
threshold, α, is used to control the contribution that gene j makes to Di. For larger 
α, a greater number of less statistically significant (with Mj < α) genes are filtered 
and do not contribute to Di. The shortest distance between genes i and j given the 
topology of G is denoted dij and was calculated with the Floyd–Warshall algorithm. 
We assume that shorter distances make an exponentially greater contribution to the 
density than do longer distances, with the steepness of the exponential determined 
by the parameter β When a bigger β is chosen, more distant genes can contribute to 
the density. Taken together, the parameters α and β are used to control the sensitivity 
and selectivity of the density.

Step 3: Another vector of density scores, DNG, is computed based on a randomly chosen 
subset of genes representative of the background distribution. The background con-
sists of all genes annotated by NCBI.

Step 4: Statistical significance for rejecting the null hypothesis is determined by a per-
mutation test. For statistical robustness, step 3 is repeated n times. The number of 
times the average density score of randomly chosen genes is found to be larger than 
the average density score of genes in G is counted after n iterations and used to com-
pute the final p-value.



Advanced Visualization, Analysis, and Inference of Biological Networks Using VisANT    ◾    347

These four steps can be carried out for multiple testing by using multiple metanodes 
and multiple targeting GO terms. In this case, the p-values are corrected using FDR 
methods (Benjamini et al. 2001). Specifically, FDR p m k= × / , where m is the total num-
ber of GO terms tested and k is the rank of the GO terms under consideration. There 
is also an option for GOTEA to identify representative GO terms from all its discover-
ies based on approaches that identify the most informative GO term (Zhou, Kao, and 
Wong 2002).

17.5.5  Network Module Enrichment Analysis (NMEA)

NMEA is implemented in a manner similar to GOTEA. Where GOTEA used GO term sim-
ilarities, NMEA uses p-values from T-tests on the expression values of two phenotypes.

Step 1: Fetch the expression profile of each gene in a given module (i.e., metanode, 
denoted M in the following context) from formatted user input. The input should 
include an adequate number of samples with comparable phenotypes (e.g., normal 
and disease).

Step 2: A vector DM of density scores of each gene is computed, with the element of DM 
for the ith gene denoted as Di. Di is defined as:
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ensures that Di ≥ 0. Mj is the p-value from a two-tailed T-test of differential expression 
between two phenotypes (for example, normal and disease). The parameters α and 
β are used to control the sensitivity and selectivity of the density, as described in the 
previous section.

The density score is used to evaluate the impact of other genes in M on the ith gene, 
according to both the p-value calculated by T-test (an indicator of differential 
expression) and their topological distances to the ith gene.

Step 3: Another vector of density scores, DNM, is computed by randomly shuffling the 
phenotypes to obtain a representative sampling of the background distribution.

Step 4: Statistical significance for rejecting the null hypothesis is determined by a per-
mutation test. For statistical robustness, step 3 is repeated n times. The number of 
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times the average density score of randomly chosen genes is found to be larger than 
the average density score of genes in M is counted after n iterations and used to com-
pute the final p-value.

When applying NMEA to multiple metanodes, the p-value must be corrected by FDR 
in a manner similar to what was described above for GOTEA. In this case, FDR p m k= × /  
as before, but m is the total number of metanodes and k is the rank of the metanodes 
under consideration.
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C h a p t e r  18

Gene Set and Pathway-Based 
Analysis for Cancer Omics

Dougu Nam and Seon-young kim

18.1  INTRODUCTION
Biological processes, especially on the molecular level, are modulated by a complex network 
of functionally related cell components. Deregulation of the components in specific path-
ways results in the progression of diseases such as cancer. Therefore, in order to decipher 
disease mechanisms, it is of primary importance to identify pathways or specific groups of 
genes that exhibit unusual behavior.

Such group-wise patterns are readily investigated on the transcriptional level by com-
bining the vast amounts of microarray expression data with predefined gene sets derived 
from biological databases. Indeed, since the inspiring work of Mootha et al. (Mootha et al. 
2003), group-wise expression pattern analysis, designated here as gene set analysis (GSA), 
has received great attention, and various GSA methods have subsequently been developed 
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and used intensively for microarray analysis (Al-Shahrour et al. 2008; Dinu et al. 2009; 
Huang, Sherman, and Lempicki 2009; Nam and Kim 2008).

The typical microarray analysis, as we call frequency-based analysis (FBA), first deter-
mines a list of differentially expressed genes (DEGs) using a cutoff value and then identifies 
frequently observed members of gene groups or pathways from the list. The use of a cutoff 
value, however, causes significant loss of information and statistical power. GSA methods 
act in the opposite direction of FBA; GSA assesses the significance of each gene set directly, 
and then looks into the significant gene sets to identify responsive members and their roles 
in pathways.

The GSA approach is coherent with biology because it analyzes the modular behav-
ior of functionally related gene groups. Moreover, GSA methods exhibit higher statistical 
power than FBA methods, and hence have revealed many important group-wise patterns 
that FBA could not detect (Mootha et al. 2003). The high statistical power of GSA origi-
nates from the utilization of every member’s information in a gene set and the group-wise 
approach, such that even genes with moderate expression changes taken together can rep-
resent significant patterns. Despite these advantages, the search for optimal GSA methods 
has generated a number of debates because of the different statistical hypotheses employed 
and disagreement about the concept of differentially expressed gene sets.

In this chapter, we introduce three different GSA methods and discuss their pros and cons. 
Then we provide examples of the application of these methods to the genomic analysis of dis-
ease, and introduce some widely used tools and databases. This is not an exhaustive review, 
but is aimed to offer a practical guide for analyzers and developers by clarifying the con-
cepts of different GSA methods, showing recent applications of GSA, and introducing useful 
GSA tools. See the reviews by Nam and Kim (2008), Dopazo (2009), Huang, Sherman, and 
Lempicki (2009), and Dinu et al. (2009) for extensive coverage of GSA methods and tools.

18.2  DESCRIPTION OF FBA
The typical FBA procedure for microarray analysis is shown as follows:

Step 1. Compile biologically predefined gene sets derived from Gene Ontology, KEGG, 
or other pathway databases.

Step 2. Evaluate individual statistics for each gene: ti, i = 1, 2, … N, between the two sam-
ple groups compared. ti can be mean difference, two sample t-statistic, SAM (modi-
fied t-statistic), Wilcoxson rank sum, and so on.

Step 3. Using a cutoff value, choose a list of genes (the DEG list) that have some level of 
significance. Then evaluate the p-value for enrichment of the members of each gene 
set in the list using hypergeometric distribution, Fisher’s exact test, the binomial test, 
and so on. Adjustment for multiple hypotheses follows.

FBA methods, though simple and widely used, have several drawbacks and limita-
tions. First, FBA methods lack sensitivity in detecting relevant gene groups, which may 
not be clearly identified from expression changes of only a few genes found in the gene 
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list (Ben-Shaul, Bergman, and Soreq 2005). Second, the use of a cutoff value to determine 
DEGs causes information loss both for the used and the discarded genes; that is, equal 
weight is assigned to all DEGs irrespective of the different levels of association signals 
in each gene, and many of the discarded genes can still have moderate but meaningful 
expression changes. Third, the biological conclusions derived from FBA are often altered 
substantially under different choices of the cutoff value (Pan, Lih, and Cohen 2005). Last, 
the enrichment test of a biological annotation is based on the assumption of independent 
gene sampling, which usually increases false positive predictions (Goeman and Buhlmann 
2007). We will investigate how GSA methods can address these issues.

Most GSA methods, except for multivariate and regression-based methods, share the 
first two steps of FBA by making use of individual statistics and predefined gene sets. 
On the other hand, GSA exploits all the individual statistics without using a cutoff value, 
and aggregates those contained in each gene set to assess the significance of the gene set. 
However, the method of aggregation and the hypothesis to be tested differ among GSA 
methods, which are described below.

18.3  THREE DIFFERENT APPROACHES FOR GSA
The purpose of GSA is twofold: to assess the association of gene sets with a given phe-
notype, and the enrichment of such association signals in each gene set. Depending on 
their purpose and their method of computing p-values, GSA methods can be classified 
into three categories: competitive, self-contained, and hybrid. The first two categories were 
termed and extensively discussed by Goemann and Buhlmann (2007).

18.3.1  Competitive Methods

The competitive methods test the null hypothesis that a gene set and its complement have 
the same level of association with the phenotype (say Q1). In other words, competitive 
methods are interested in whether the association signal distributed over the genome is 
relatively “concentrated” or “enriched” in each gene set. To assess the enrichment of DEG 
signals in a gene set, competitive methods use gene randomization to compute p-values. 
For this reason, competitive methods are widely applicable even to a small number of data 
samples. One competitive GSA method (Kim and Volsky 2005) is illustrated in Figure 18.1 
and described by replacing Step 3 of FBA with the following step:

Step 3′ Regarding P = {t1, …, tN} as the population set, assume each gene set Gj to be a 
random collection from P and compute “summary statistic” Tj using ti’s contained in Gj, 
which provides the test statistic for the gene set.

The summary statistic can be a Z-score (Kim and Volsky 2005), average t (Tian et al. 
2005), or SAM-statistic, or average of their pth moment (Dinu et al. 2007), which reflects 
the significance of each gene set. We can test its significance by randomizing gene labels. 
The main drawback of competitive methods that is in common with FBA is the invalid 
assumption of independent gene sampling. A conceptual issue with the competitive 
approach, called zero sum game (Allison et al. 2006), may also arise from the concept of 
enrichment itself. In other words, the significance of a gene set is relatively determined by 
its background distribution. For an extreme example, even if 70% of the members of each 
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gene set are DEGs, most of the gene sets will not be declared “enriched,” because of the 
equal portion of DEGs in the background genes.

18.3.2  Self-Contained Methods

While competitive methods test the relative enrichment of the association signal with 
the phenotype in a gene set, self-contained methods test the existence of such associa-
tion signals in a gene set. Self-contained methods test the strictest null hypothesis that no 
gene in the given gene set is associated with the phenotype, which, therefore, is relatively 
easily rejected to yield many significant gene sets. Indeed, repeated tests in the literature 
report that self-contained methods exhibit the highest statistical power (Ackermann and 
Strimmer 2009; Dinu et al. 2007). They employ sample randomization to compute p-values 
for each gene set, and hence cause no statistical problem with gene sampling. Self-contained 
methods focus on the phenotypic difference between two sample groups and do not com-
pare the association signal with that outside a gene set. A typical self-contained method is 
described by replacing the third step of FBA with the following step:

Step 3″. Compute a summary statistic for a gene set, and permute sample labels to assess 
the significance of the gene set.

In addition to the summary statistic listed for competitive methods, the multivariate 
statistic of Hotelling’s T 2 (Kong, Pu, and Park 2006) or the regression-based global test 
(Goeman et al. 2004) and ANCOVA (Hummel, Meister, and Mansmann 2008), have also 
been used for some self-contained methods. However, Ackermann and Strimmer (2009) 
reported the use of a simpler statistic provided sufficiently good performance. Although 
statistically legitimate, a conceptual issue appears with the self-contained approach: one 
or only a few DEGs can make the whole gene set significant. We may not say a pathway 
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FIGURE 18.1 (See color insert following page 332.) An example of a competitive GSA method: 
PAGE. (From Kim S.W. and Volsky D.J. 2005. BMC Bioinformatics 6:144.)
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with 100 genes has altered its expression pattern for only one DEG in the pathway. One 
useful way to address the problem is the gene set reduction method (Dinu et al. 2009) that 
identifies the core DEGs in each gene set. As shown by Dinu et al. (2009), the most highly 
significant gene sets in their self-contained approach had only one or a few core DEGs. We 
suggest applying additional filtering steps to remove redundant and irrelevant gene sets as 
follows:

 1. For core DEGs identified for each gene set, assign only the smallest gene set that con-
tains all the core DEGs (say, the core gene set) and discard other larger gene sets.

 2. Among the core gene sets, discard those sets that contain a smaller portion of core 
genes than a threshold, for example, 20%.

With these reduction and filtering processes, we expect self-contained methods will 
provide coherent and more useful biological information from expression data.

18.3.3  Hybrid Methods: GSEA

The third class of methods, known as GSEA (Mootha et al. 2003), takes a hybrid approach. 
GSEA aims to find enriched gene sets, but avoids the problem of gene sampling by com-
paring whole populations of gene set scores generated under sample permutations. GSEA 
regards the whole dataset (the set of gene sets) as the analysis unit, and tests the null hypoth-
esis that no gene set contained in the dataset is associated with the phenotype (say Q3). The 
GSEA procedure (Subramanian et al. 2005) can be described by replacing the third step of 
FBA with the following steps:

Step 3″′. Compute the summary statistic Tj, j = 1, 2, … , S for each gene set, where S is the 
number of gene sets considered. Let T Tj j S= ≤ ≤{ } .1

Step 4. Permute the sample labels and repeat Step 3″′ to generate the S × P  matrix of 
randomized summary statistics T T j S k Pperm j

k= ≤ ≤ ≤ ≤{ , , },1 1  where Tj
k  is the score of 

the jth gene set for the kth permutation, and P is the number of permutations executed. 
Then normalize [T Tperm] by dividing its elements by the corresponding means of the rows 
of Tperm, which we denote [NT NTperm].

Step 5. To assess the significance of NTj, compute the FDR q value as follows:
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NT NT NT
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, ,for NTj ≥ 0

and similarly for NTj ≤ 0.
The original GSEA (Mootha et al. 2003) used a random-walk-like Kolmogorov–Smirnov 

(K-S) statistic for the summary statistic. However, Subramanian et al. (2005) revised the 
summary statistic by weighting each gene by its level of association with the phenotype to 
increase statistical sensitivity. They suggested computing the FDR q value for each gene set 
to derive multiple significant gene sets.
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Although GSEA compares the scores of different gene set scores to each other, there is a 
key difference from ordinary competitive methods. The ordinary competitive methods com-
pare each gene set score with “randomly” categorized gene sets of the same size, while GSEA 
compares already-categorized existing gene sets with possibly different sizes. This is where 
the main problem of GSEA arises. As Damian and Gorfine (2004) have indicated, in original 
GSEA, gene sets with larger sizes can have higher significance scores than those with small 
sizes and intensive signals. Moreover, gene sets have different correlation structures, and 
hence should not be compared on equal terms. To address these problems, Subramanian et 
al. (2005), in their revised version of GSEA, divided each gene set score by the mean of the 
sample-permuted gene set score to adjust for different gene set sizes (and correlation struc-
tures). Wang and co-workers, in the context of SNP gene set analysis, applied GSEA and 
suggested Z-normalization for each gene set score to adjust for the different number of SNPs 
in each gene (Wang, Li, and Bucan 2007). This kind of normalization may also be incorpo-
rated into standard GSEA instead of dividing by the mean of each row as follows:

Step 4′. Use ′ = −Tj
Tj j

j

µ
ν  and ′ = ≤ ≤ ≤ ≤−T j S k PTj

k
j

jperm { , , }µ
υ 1 1  in place of Tj and Tperm, 

respectively, where {μj, υj}, j = 1, 2,…, S are the mean and standard deviation of the jth row 
of Tperm which takes into account the variability of permuted gene set scores.

In addition to FDR, Subramanian et al. also suggested a simplified p-value computation 
for GSEA, called the nominal p-value, as well as its pooled version in score when the number 
of samples are small, in which each gene set score is compared with the sample-permuted 
scores corresponding to the gene set. Efron and Tibshirani (2007) also used the simplified 
p-value computation, and tested five summary statistics: mean, mean.abs, maxmean, K-S.
abs, and K-S in simulation tests. Among them, the maxmean statistic exhibited consistently 
low p-values in each test. They also suggested applying a “restandardization” procedure for 
general gene set statistics. Restandardization makes the test statistic reflect the background 
distribution by applying gene randomization to the statistic.

Since GSEA uses sample permutation for computing p-values, it may not be reliable for 
data with small samples. For such cases, a preranked version of GSEA was also developed, 
where Tperm is obtained by permuting gene labels (Subramanian et al. 2005).

The three GSA approaches are briefly summarized in Table 18.1. See also Table 18.2 for 
some widely used GSA tools.

18.3.4  Simulation Studies

We now introduce simulation studies that demonstrate the characteristics of each GSA 
approach (Dinu et al. 2008; Nam and Kim 2009). We commonly used the average of the 
absolute t-statistic in a gene set for the summary statistic and newly included restandard-
ized GSA results Efron and Tibshirani (2007). The p-value for restandardized GSA is com-
puted as follows (pooled version):

Step R1. Compute
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where g Tj
k( )  represents a general gene set statistic and { *, *}µ υ  are their mean and stan-

dard deviation of randomly drawn gene sets over all the permutations performed.
Step R2. For each gene set, compute the generalized statistic g(Tj) as well as its mean and 

variance {μ, υ}, then count the number of permutations that satisfy

 

g T g Tj j
k( ) ( ) *

*
.

−
≤

−µ
υ

µ
υ

g represents a general function that summarizes individual gene scores. If g is a linear 
transform of individual scores such as mean of absolute values, pth moment, or maxmean 
statistic, { *, *}µ υ  and {μ, υ} can simply be replaced by those mean and variance of the 
individual gene scores without randomly drawing gene sets.

In the first test, we considered 2,000 genes and divided them into 100 gene sets of 
20 genes each. We generated 40 samples and divided them into two groups of 20 samples 
each. All expression values were sampled from a standard normal distribution. We ran-
domly chose 200 genes (10%) and added a constant 2 to the second sample group to gen-
erate DEGs. Since the DEGs were chosen uniformly at random, most gene sets are not 
enriched with DEGs. Indeed, the p-values for competitive and restandardization methods 
were uniformly distributed (Figure 18.2a). On the other hand, the self-contained method 
detected most of the gene sets (76) to be significant with the p-value <0.05, because most 

TABLE 18.1 Comparison of GSA Methods

Methods Competitive Self-Contained Hybrid: GSEA
Null hypothesis Q1: A gene set and its 

complement have the same 
level of association with 
the phenotype

Q2: No gene in a gene 
set is associated with 
the phenotype

Q3: No gene set in the 
whole dataset is 
associated with the 
phenotype

Nature Enrichment of association 
signal in a gene set

Existence of association 
signal in a gene set

Enrichment of 
association signal in a 
gene set/Existence of 
associated gene set in 
the full dataset

P-value computation Gene randomization Sample randomization Sample randomization
Advantages 1. Applicable to dataset with 

a small number of samples
1. Highly sensitive
2. Statistically legitimate

1. Use statistically sound 
sample randomization

2. Able to compute FDR 
using relatively small 
number of permutations

Weaknesses 1. Invalid assumption of 
gene-gene independence

2. Zero-sum game

1. Many samples are 
required

2. Too many gene sets 
are detected that have 
only a small number of 
core genes

1. Not sensitive
2. Zero-sum game
3. Compares different 
gene sets on equal terms
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TABLE 18.2 List of Representative Gene Set Analysis Tools

Name
Statistical 

Model Application Type URL Reference
Univariate

ASSESS Q2 Octave/Java standalone http://people.genome.duke.edu/~jhg9/assess/ (Edelman et al. 2006)
Babelomics Q1, Q2 Web Server http://www.babelomics.org (Al-Shahrour et al. 2008)
ErmineJ Q1 Java standalone http://www.bioinformatics.ubc.ca/ermineJ/ (Lee et al. 2005)
Gazer Q1, Q2 Web server http://integromics.kobic.re.kr/GAzer/index.faces (Kim et al. 2007)
GeneTrail Q1, Q3 Web server http://genetrail.bioinf.uni-sb.de (Backes et al. 2007)
GSA Q3 R package http://www-stat.stanford.edu/~tibs/GSA/ (Efron and Tibshirani 2007)
GSEA Q3 Java standalone, R package http://www.broad.mit.edu/gsea/ (Subramanian et al. 2005)
PLAGE Q2 Web server http://dulci.biostat.duke.edu/pathways/ (Tomfohr et al. 2005)
SAM-GS Q2 Windows Excel add-in http://www.ualberta.ca/~yyasui/homepage.html (Dinu et al. 2007)
SAFE Q2 R package http://bioconductor.org/packages/bioc/html/safe.html (Barry et al. 2005)
sigPathway Q1, Q2 R package http://bioconductor.org/packages/bioc/html/sigPathway.html (Tian et al. 2005)

Global and Multivariate
GlobalANCOVA Q2 R package http://bioconductor.org/packages/bioc/html/GlobalAncova.html (Hummel et al. 2008)
Global test Q2 R package http://bioconductor.org/packages//bioc/html/globaltest.html (Goeman et al. 2005)
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gene sets contained at least one DEG. This test example clearly contrasts the competitive 
and self-contained methods that target enrichment and existence of DEGs, respectively.

In the second scenario, we used the same number of genes and samples, but sampled data 
from a 20-dimensional normal distribution with positive correlation in each gene set, and 
no DEG was included. The correlation-covariance matrix was generated to have constant 
off-diagonal terms that were sampled from U[0,1]. The test result is shown in Figure 18.2b. 
Although no DEG was included, the competitive method showed a tendency to detect some 
correlated gene sets as significant (18) with p-value <0.05. By contrast, the self-contained 
method showed uniform p-value distribution. The restandardization method was not 
affected by correlation structures so that it also exhibited uniform p-value distribution 
although it used a gene-randomization score. This was an unexpected result, and we infer 
that the sample permutation automatically adjusted for the correlation structures.

In the third example, we replaced 10 genes (half of the members) with DEGs for the first 
10 gene sets in the second example. With the p-value cutoff 0.05, all the methods correctly 
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FIGURE 18.2 The p-value distributions of 100 gene sets for the three GSA approaches as well as 
restandardized GSA on simulated data. In each example, 2,000 permutations were performed for 
gene or sample randomizations on the average absolute t-score. (a) Randomly assigned DEGs for 
10% of the genes. (b) Each gene set was sampled from a multi-dimensional normal distribution and 
no DEG was included. (c) Half of the members of the first ten gene sets were replaced by DEGs from 
the second example.
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detected the 10 DEG sets. However, the competitive and self-contained methods detected 
five and six additional gene sets, respectively, while the restandardization method detected 
no false positive gene sets. On the other hand, for a lower cutoff value of 0.01, the true nega-
tives increased for the restandardization (seven), while the false positives of the former two 
methods decreased to three and zero, respectively.

Overall, competitive and self-contained methods are highly sensitive, but the competi-
tive method tends to additionally detect some correlated gene sets. On the other hand, 
the restandardization method provided the most conservative predictions and yielded few 
false positives. These features may not be exactly realized in real situations due to the com-
plexity of gene set structures (e.g., different sizes, overlaps, and correlations) but it will be 
helpful to understand the basic properties of each algorithm.

18.4  GENE SET AND PATHWAy-BASED APPROACHES 
IN CANCER OMICS DATA MINING

Cancer is a disease caused by multiple genetic and epigenetic variations in many genes over 
a long period of time. Cancer-causing genes include many oncogenes and tumor suppres-
sor genes that interact in multiple pathways, and whose deregulation is critical in all stages 
of carcinogenesis, including initiation, progression, and distant metastasis. Numerous 
gene expression and genetic mutation studies have shown repeatedly that cancer is a path-
way disease, thus highlighting the importance of pathway-level understanding of carcino-
genesis in each stage. We discuss several examples in which novel insights and knowledge 
were obtained by successful application of gene set and pathway-based analysis to cancer 
omics data.

18.4.1  The Gene Set Approach to Understanding Carcinogenesis

One of the representative gene set-level studies for carcinogenesis was the cancer mod-
ule map conducted by Segal et al. (2004). With 1,975 samples, including 22 tumor types 
and 2,849 predefined gene sets, they first identified 456 gene sets that were activated or 
repressed in specific tumor groups. Then, by associating each module with each sample’s 
clinical information, they constructed a global cancer module map that identifies signifi-
cantly activated or repressed genes under specific clinical conditions. The module map 
covers diverse processes, from general tumorigenic processes (such as the cell cycle) to 
those relevant to a specific tissue or tumor type (such as growth inhibition in acute lym-
phoblastic leukemia.) Segal et al.’s work illustrates the power of the gene set approach to 
gain novel insights when applied to multiple cancer gene expression datasets.

Similarly, Tomlins et al. (2007) applied gene set and pathway analysis to their pros-
tate cancer gene expression data obtained from laser capture microdissection (LCM)-
dissected prostate samples, and identified key gene sets for each of the prostate cancer 
tumorigenic processes. Edelman et al. (2008) recently suggested a method for pathway-
level modeling of cancer progression. First, relevant pathways in each step of cancer pro-
gression were identified by applying GSEA to each step, and then a pathway interaction 
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network was constructed by measuring dependencies among relevant pathways. Their 
approach enables a more detailed understanding of pathway deregulation during each 
step of carcinogenesis.

18.4.2  Gene Set Analysis for Personalized Cancer Treatment

Cancer consists of molecularly heterogeneous disease types; many morphologically and 
histopathologically similar tumors show various clinical outcomes and responses to 
chemotherapeutic drugs. Recent successful targeted therapeutics such as Herceptin and 
Gleevec well illustrate the importance of selecting a subset of patients likely to respond to 
the drug, but patient selection is also important in using traditional cytotoxic anticancer 
drugs. Gene set and pathway analyses are useful methods for selecting patients likely to 
respond to specific chemotherapeutic treatments.

By infecting cells with adenovirus expressing Myc, Ras, E2F3, Src, or beta-catenin, Bild 
et al. (2006) generated five oncogenic pathway signatures and showed that clinical out-
come depends on the deregulation level of these five signatures in breast, lung, and ovar-
ian cancer patients. They also showed that the deregulation pattern of the five oncogenic 
pathways indicates the sensitivity of a cell line to drugs that target each pathway. Potti et al. 
(2006) proved the feasibility of chemotherapy-guiding gene sets by showing that gene sets 
defined from in vitro sensitivity tests to chemotherapeutic drugs could successfully predict 
patients’ responses to chemotherapeutic drugs.

To address the necessity of patient selection for individualized treatment, Edelman et al. 
(2006) suggested a GSA method, called analysis of sample set enrichment analysis (ASSESS), 
to identify the activation status of oncogenic pathways in individual patients. After normal-
ization of gene expression values by suitable reference samples (for example, normal tis-
sues), gene label permutation can also be applied to get sample-level gene set values.

18.4.3  Gene Set Approaches for Other Types of Omics Data

Until now, we have discussed the application of GSA to gene expression data analysis, but 
it is equally applicable to the analysis of other types of omics data, such as genome-wide 
association studies (GWAS) and genome-wide mutation analysis.

GWAS is an efficient method for identifying genetic variants with small to moderate 
disease risks that has been widely used to identify risk variants in complex diseases such as 
diabetes, hypertension, and cancer. Most of the complex diseases are the result of complex 
interactions of many small- to moderate-risk genetic variants with each other and with 
environmental factors as well as gene-environment interactions. In this regard, GSA is an 
efficient approach for aggregating small to moderate genetic risks and identifying signifi-
cant group-wise patterns in GWAS data analysis.

Wang and co-workers, by applying GSEA to three GWAS datasets (two Parkinson’s dis-
ease and one acute macular degeneration), showed that novel insights can be derived by 
pathway-based analysis of GWAS data (Wang, Li, and Bucan 2007). To adjust GSEA for the 
SNP categorical data, they first assigned the most significant SNP to each gene and then 
applied a sample permutation to infer the significance of each gene set. Two Parkinson’s 
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disease datasets were compared, but no commonly significant SNPs were found between 
them. However, GSA revealed that the two datasets are congruent in selecting the “gluta-
mate receptor activity” gene set, a well-known Parkinson’s disease susceptibility pathway. 
Such increased congruence by GSA between independent datasets is commonly observed 
in microarray gene expression analysis. Torkamani and co-workers applied gene set and 
pathway analysis to the Wellcome Trust Case-Control Consortium dataset (2007) of seven 
diseases (bipolar disease, coronary artery disease, Crohn’s disease, hypertension, rheuma-
toid arthritis, type 1 diabetes, and type 2 diabetes) and found significant pathways in each 
disease (Torkamani, Topol, and Schork 2008). Holden et al. (2008) provided GSEA-SNP, a 
modified version of GSEA software for gene set analysis of GWAS data.

Due to the recent advances in next-generation sequencing technology that dramatically 
reduce time and cost, more and more research groups are expected to produce genome-
scale mutation data that have previously been available only from a few laboratories 
(Shendure and Ji 2008). GSA is also suitable for genome-scale mutation analysis, because 
genetic changes in cancer ultimately converge into several core pathways. For example, 
Lin et al. (2008) identified many novel as well as well-known pathways in breast and colon 
cancers through a multidimensional mutation analysis of genes. This shows that gene set- 
and pathway-level understanding of genome-scale genetic mutations will be a promising 
approach to understand the complexity of cancer genomes.

18.5  AVAILABLE GENE SET AND PATHWAy DATABASES 
AND VISUALIzATION TOOLS

Gene set databases are as important as GSA algorithms. Previously, we listed several 
downloadable gene set databases on the web (Nam and Kim 2008). Here, we provide a 
revised list with a few additional gene set and pathway databases as well as some pathway 
manipulation and visualization tools (Table 18.3). We note that only a small portion of 
pathway databases is included here. For further pathway-related information, the Pathway 
Commons web site (http://www.pathwaycommons.org/pc/) is a good resource.

In addition to gene set-level analysis, direct visual inspection of gene expression changes 
in the context of biological pathways can substantially increase our understanding of the 
biological mechanism of interest. GenMAPP is one of the most famous software tools 
for visualizing gene expression, and it provides many useful tools for pathway drawing, 
manipulation, and statistical analysis (Dahlquist et al. 2002). PathVisio is newer software 
for pathway visualization that provides editing in the GenMAPP pathway markup lan-
guage (GPML) format, as well as increased flexibility in visualizing many different types 
of data (van Iersel et al. 2008). Pathways in the GPML format are easily converted from 
and to GenMAPP pathways. Cytoscape is the most famous software for biological network 
analysis, and provides many useful plug-ins, including visualization of gene expression 
data (Shannon et al. 2003). Advanced Pathway Painter is a freeware program for the visu-
alization of pathways in the context of genomic data. It automatically imports BioCarta, 
GenMAPP, and KEGG pathways from the web and offers easy-to-use functions for data 
visualization.
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TABLE 18.3 List of Gene Set and Pathway Databases and Visualization Tools
Name Organism Gene Sets Web Address Reference

Databases
ASSESS H Cytogenetic, pathway, motif http://people.duke.edu/~jhg9/assess/genesets.shtml (Edelman et al. 2006)
DAVID 
Knowledgebase

H, M, R GO, cytogenetic, pathways, 
InterPro, 

http://david.abcc.ncifcrf.gov/home.jsp (Sherman et al. 2007)

ErmineJ H, M, R GO http://www.bioinformatics.ubc.ca/ermineJ/ (Lee et al. 2005)
Gazer H, M, R, Y Go, composite GO, 

InterPro, Pathways, TFBS
http://integromics.kobic.re.kr/GAzer/documents.jsp (Kim et al. 2007)

GSA H Tissue, cellular processes, 
cytobands, chromosome 
arms, cancer module

http://www-stat.stanford.edu/~tibs/GSA/ (Efron and Tibshirani 2007)

MSigDB H Positional, curated 
pathways motif, computed, 
GO

http://www.broad.mit.edu/gsea/msigdb/index.jsp (Subramanian et al. 2005)

Pathway Commons H, M, R and others Pathways http://www.pathwaycommons.org/pc/
PLAGE H, M KEGG and BioCarta 

pathways
http://dulci.biostat.duke.edu/pathways/misc.html (Tomfohr et al. 2005)

WikiPathways H, M, R, and others Pathways http://www.wikipathways.org/ (Pico et al. 2008)
Visualization Tools

Advanced Pathway 
Painter

H, M, R GO, BioCarta, GenMAPP, 
KEGG

http://www.gsa-online.de/eng/app.html

Cytoscape H, M, R, and others GO, PPI, Pathways http://www.cytoscape.org/ (Shannon et al. 2003)
GenMAPP H, M, R, and others GO, KEGG, GenMAPP http://www.genmapp.org/ (Dahlquist et al. 2002)
PathVisio H, M, R, and others GO, KEGG, GenMAPP http://www.pathvisio.org/ (van Iersel et al. 2008)
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18.6  CONCLUSIONS AND FUTURE DIRECTIONS
Gene set or pathway-based analysis has become a powerful approach for deriving biologi-
cal information from microarray data, either gene expression or SNP. It utilizes gene sets 
or pathways as the basic units of analysis and substantially broadens our understanding 
of biological processes via newly found group-wise patterns. The group-wise approach of 
GSA is well suited to and very efficient for identifying the deregulation of specific pathways 
in disease, and thus represents a primary step toward deciphering disease mechanisms 
from omics data.

GSA methods generalize different aspects of the widely used FBA. Competitive and GSEA 
methods generalize the enrichment analysis of FBA (Step 3), while self-contained methods 
generalize the detection of phenotypic difference in individual genes (Step 2). In particular, 
the reduction analysis for self-contained methods covers the role of gene-level analysis by 
analyzing the behavior of individual core genes or small groups of them. Since different GSA 
approaches reveal different aspects of group-wise patterns, we recommend using different 
GSA methods simultaneously as follows: apply the most powerful self-contained method 
to identify any gene set with a significant phenotypic difference, and then apply competi-
tive or GSEA methods to identify gene sets relatively enriched with DEGs. Significant sets 
identified by competitive methods, but not by self-contained methods, are likely to be false 
positives detected by correlation structures. And those identified by self-contained methods 
should be reduced and filtered to obtain more relevant gene sets.

As Huang and colleagues appropriately compared GSA to a Google search, human dis-
cretion is the most important factor in GSA, because the cutoff for statistical significance 
has some level of arbitrariness and the multiple hypothesis correction is far from trivial 
due to gene-gene interactions and the complex organization of gene sets (Huang, Sherman, 
and Lempicki 2009).

The utility of GSA will increase in proportion with the advance of biological databases. 
Because the development of new GSA algorithms may be becoming saturated, enhancing 
the quality of information within biological databases will be more critical for GSA. For 
example, ADGO suggests using multidimensional (composite) gene sets across different 
databases for GSA, which will easily and considerably enrich the biological information of 
the databases in use (Nam et al. 2006).
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SH2 Domain Signaling 
Network and Cancer

Shawn S.-C. Li and Thamara k.J. Dayarathna

19.1  PHOSPHOTyROSINE BINDING MODULES
The covalent modification of a protein on a Tyr residue serves several important func-
tions. First, tyrosine phosphorylation of an enzyme may regulate its activity. This is typi-
fied by the phosphorylation of the activating loop Tyr residue in a PTK, which leads to 
activation of the kinase domain, and by the phosphorylation of a C-terminal Tyr residue 
by Csk, which functions to shut down the kinase (Levinson et al. 2008). Second, phospho-
rylation may alter the subcellular localization of a protein. For instance, the activation 
and nuclear retention of the STAT transcription factors are regulated by homodimeriza-
tion mediated by tyrosine phosphorylation (Wenta et al. 2008). Third, phosphorylation 
may lead to endocytosis or degradation of a protein. In this regard, the phosphoryla-
tion of a C-terminal tyrosine residue on the EGF receptor triggers the binding of the E3 
ligase Cbl and subsequent ubiquitination and degradation of the receptor (Sweeney and 
Carraway 2004). And last, and perhaps most relevant to this chapter, phosphorylation 
creates docking sites for proteins harboring a phosphotyrosine-recognition domain such 
that a signal initiated at a PTK may be transduced to downstream molecules efficiently 
and with high fidelity. A prototypical example is found on insulin receptor substrate 1 
(IRS-1), which is phosphorylated on multiple tyrosine residues by the insulin receptor fol-
lowing its activation. This effectively creates multiple docking sites for the recruitment of 
downstream signaling molecules such as Grb2, SHP2, and PI3K (Ogawa, Matozaki, and 
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Kasuga 1998). Together with other modular domains, pTyr-binding modules provide an 
effective means by which to form elaborate and highly regulated pathways and networks 
for signal integration and diversification (Kaneko, Li, and Li 2008; Li 2005; Pawson, Gish, 
and Nash 2001; Pawson and Scott 2005; Schlessinger and Lemmon 2003; Wiggin, Fawcett, 
and Pawson 2005).

Selective protein-protein interactions, frequently mediated by interaction modules such 
as the SH2 domain, are important in organizing and regulating cellular processes. The 
SH2 domain, first identified as a highly conserved noncatalytic region in the Src family of 
cytoplasmic kinases, serves as a prototypical example of a modular interaction domain. It 
is the largest family of phosphotyrosine-binding modules, with 120 members found in the 
human genome (Sadowski, Stone, and Pawson 1986). The importance of the SH2 domain 
in normal cellular functions and tumorigenesis is underscored by the fact that mutation 
in an SH2 domain or deletion of a gene encoding an SH2 protein often leads to aberrant 
cellular behavior, such as transformation (Johnson and Hunter 2005; Liu et al. 2006). An 
SH2 domain typically binds to a specific phosphotyrosine (pTyr)-containing motif and 
thereby couples an activated PTK to intracellular pathways that regulate many aspects of 
cellular communication in metazoans (Huang et al. 2008; Liu et al. 2006; Pawson, Gish, 
and Nash 2001; Pawson 2004). The intimate relationship between the tyrosine kinase 
and SH2 domain is supported by their coordinated emergence during eukaryotic evo-
lution. Evolutionary analysis of the phosphotyrosine signaling machinery suggests con-
current expansion of tyrosine kinases (PTK), protein tyrosine phosphatases (PTPs), and 
SH2 domains that function, respectively, as “writers,” “erasers,” and “readers” of phos-
photyrosine modifications (Pincus et al. 2008). Besides SH2, phosphotyrosine-binding or 
PTB domains are capable of binding to NPxY motifs, where x represents any amino acid. 
However, among the approximately 60 PTB domains found in a mammalian cell, only a 
small portion (<25%) bind to their cognate ligands in a phosphorylation-dependent man-
ner, while the majority do not require tyrosine phosphorylation for binding (Uhlik et al. 
2005). Curiously, the C2 domain of PKCθ was recently shown to recognize phosphoty-
rosine residues on target proteins (Benes et al. 2005). However, this may be an idiosyncratic 
rather than a general phenomenon as no other C2 domain has since been found to bind 
tyrosine phosphorylated proteins or peptides.

19.2  SH2 DOMAIN STRUCTURE AND SPECIFICITy
SH2 domains are a group of structurally conserved protein modules of 100 amino acids, 
which, in general, bind selectively to phosphotyrosine-containing sequences (Songyang et 
al. 1993, 1995). Different SH2 domains have distinct preferences for residues C-terminal 
to the pTyr. All SH2 domains share the same structure characterized by a central β-sheet 
flanked by two α-helices (Kuriyan and Cowburn 1997; Waksman et al. 1992; Waksman, 
Kumaran, and Lubman 2004). Apart from a highly conserved phosphotyrosine-binding 
pocket (Figure 19.1A) that is used to engage the phosphotyrosine residue in a ligand, the 
remaining binding surface on different SH2 domains is much more variable. As shown 
in Figure  19.1A for the NCK SH2 domain, some SH2 domains contain another pocket 
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for the third residue (i.e., P+3), usually hydrophobic, downstream of the phosphotyrosine 
(Boggon and Eck 2004; Engen et al. 2008; Huang et al. 2008; Machida and Mayer 2005; 
Roskoski 2004; Shen et al. 2005; Waksman et al. 1992). This P+3-binding pocket is defined 
by a hydrophobic cleft molded between the EF and BG loops. The two-pronged (i.e., pTyr 
and P+3) binding mode is seen in the majority of SH2-ligand interactions (Waksman et al. 
1993). Nevertheless, variations from this conventional mode of ligand recognition are found 
in certain SH2 domains. For instance, the SAP SH2 domain is capable of binding to either 
a phosphorylated or a nonphosphorylated peptide. The binding of a nonphosphorylated 
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FIGURE 19.1 Structural basis of SH2-ligand and SH2-inhibitor interactions. SH2 domains are in 
light grey. (A) A representative SH2-ligand complex structure. The crystal structure of the NCK2 
SH2 domain in complex with a peptide derived from the enteropathogenic E. coli protein Tir (trans-
located intimin receptor) (PDB code: 2Cia) is shown. The phosphotyrosine and P+3 Val of the peptide 
are the two major specificity determinants (PDB: 1z3k) (Ran et al. 2005). (B) An unconventional SH2 
domain, residing within the larger tyrosine kinase-binding (TKB) domain of Cbl, in complex (PDB; 
1jpa) with a peptide from c-Met, both of which are proto-oncogene products. Note that the direction 
of peptide binding is opposite to that found in a conventional SH2-ligand interaction (Peschard et al. 
2004). (C) The SH2 and kinase domains of the proto-oncogenic kinase Fes. Electrostatic interactions 
between the SH2 α-helix A and the kinase α-helix C play an important role in kinase activation 
(PDB: 1WQU) (Filippakopoulos et al. 2008). Figures were drawn in the same scale and with identical 
SH2 domain orientation throughout (A) to (C). (D) The Src SH2 domain in complex with an inhibi-
tor RU84687 (PDB; 1045) that mimics phosphopeptide binding. The IC50 is 0.25 uM (Xu et al. 2009). 
The program PyMol was used for the preparation of the figures.
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ligand, however, requires an N-2 Thr or Ser residue (Hwang et al. 2002; Li et al. 1999; 
Ostrakhovitch and Li 2006; Zwahlen et al. 2000). Together with a binding pocket for 
P+3 hydophobic residues, the SAP SH2 domain recognizes its cognate ligand in a “three-
pronged,” instead of a “two-pronged,” mode of binding (S.C. Li et al. 1999). In another spe-
cial case, the proto-oncogenic Cbl protein features an expanded tyrosine kinase binding 
(TKB) domain that engages a ligand peptide in an orientation opposite to the conventional 
mode of binding (Figure 19.1B; Peschard et al. 2004). Binding of the SH2 domain with the 
kinase domain in the Fes (Figure 19.1C) and Abl, mediated by electrostatic interactions 
between the α-helix A in the former and the α-helix C in the latter, is coupled to kinase acti-
vation (Filippakopoulos et al. 2008).

The distinct features of different SH2 domains binding to their cognate phosphotyrosyl 
sequences provide a general mechanism for the formation of unique protein complexes in 
PTK-mediated intracellular signal transduction (Birge and Hanafusa 1993; Campbell and 
Jackson 2003; Huang et al. 2008; Pawson 2004). Such specificity is engendered by the dif-
ferences in architecture for different SH2-ligand interfaces despite the conserved overall 
structure for all SH2 domains (Machida et al. 2007). The specificity and affinity of an SH2 
domain are important contributors to the specificity and regulation of cellular signal trans-
duction pathways involving the corresponding SH2 proteins. SH2 domains bind to their 
cognate ligands with affinities in the submicromolar to micromolar range (De Fabritiis et al. 
2008; Zhou et al. 1995). For a typical high-affinity phosphopeptide-SH2 interaction, greater 
than 50% of the binding free energy comes from the pTyr residue (Grucza et al. 1999). This 
makes phosphorylation and dephosphorylation of a tyrosine, mediated by a PTK and a PTP, 
respectively, an important binary switch in signal transduction (Figure  19.2A). An SH2 
domain often co-occurs with other modular domains in regulatory proteins and kinases, 
suggesting a combinatorial mechanism of regulation. In the case of cytosolic tyrosine 
kinases such as the Src family PTK, the coexistence of an SH2 domain and a kinase domain 
serves an important regulatory function (Moniakis et al. 2001; Pincus et al. 2008). In resting 
cells, Src is kept in an inactive conformation by an intramolecular interaction involving the 
SH2 domain and a C-terminal phosphotyrosine. Occupancy of the SH2 domain by a high 
affinity ligand would then open up this inhibitory conformation, leading to activation of 
Src (Figure 19.2B). The recruitment of Src to a substrate by its SH2 domain would also allow 
processive tyrosine phosphorylation of a substrate. This apparent coupling of SH2 domain 
binding to kinase signaling stems from the fact that both the Src SH2 and kinase domains 
of an Src kinase recognize the same peptide motif C-terminal to the pTyr or Tyr residue 
(Songyang and Cantley 1995). Additional mechanisms exist that pertain to the control of 
SH2-pTyr signaling. Structural analysis of the tandem SH2 domains of human ZAP-70 in 
complex with a doubly phosphorylated peptide drawn from the zeta-subunit of the T-cell 
receptor reveals a cooperative behavior of the two SH2 domains in conferring high affinity 
and high specificity binding (Hatada et al. 1995; Figure 19.2C). Moreover, sequential inter-
actions of SH2 domains to create active sites for other proteins have also been observed. For 
example, c-Cbl, an adapter protein for receptor protein tyrosine kinases (RPTKs), regulates 
a RPTK ubiquitination by binding to a pTyr site via its SH2 domain and promoting receptor 
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ubiquitination on Lys residues through its RING finger domain that serves as an E3 ligase 
(Joazeiro et al. 1999; Figure 19.2D).

19.3  SH2 DOMAIN IN CANCER
Cancers are frequently caused by perturbations in signal transduction pathways that are 
regulated by protein kinases (Hunter 2000, Pawson and Nash 2000). Certain classes of sig-
naling proteins, including receptor tyrosine kinases, cytosolic tyrosine kinases, and phos-
photyrosine phosphatases, are frequently targeted for overexpression and/or amplification, 
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FIGURE 19.2 Schematic representations of SH2 domain-tyrosine phosphorylation-mediated reg-
ulatory modes. (A) Inducible interaction. Upon kinase activation, phosphorylated tyrosine resi-
dues serve as docking sites for SH2 domains. (B) Intramolecular interaction. Autoinhibition of a 
Src kinase through intramolecular interactions between its SH2 domain and a phosphotyrosine 
residue at the C-terminus. When the tail is dephosphorylated or when the SH2 and SH3 domains 
are engaged in intermolecular interactions, the kinase is activated. (C) Cooperative interaction. 
Tandem SH2 domains of Zap-70 (zeta-chain associated protein kinase) interacts with doubly phos-
phorylated ITAMs (immunoreceptor tyrosine-based activation motifs) in a cooperative manner. 
(D) Sequential interactions. Phosphotyrosine of a receptor tyrosine kinase on a specific Tyr residue 
results in the recruitment of Cbl through its SH2 domain. The RING finger domain in Cbl func-
tions as an E3 ligase to promote the ubiquitination of the receptor on a specific Lys residue, which 
ultimately leads to downregulation of the receptor (Joazeiro et al. 1999).
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creation of an autocrine stimulation loop, point mutations, deletions, or chromosomal 
rearrangements in cancer cells (Hanahan and Weinberg 2000; Hunter 2000). For exam-
ple, untimely expression of the RTK Ret is associated with papillary tyroid carcinomas 
(Jenkins et al. 2002; Sagartz et al. 1997). Furthermore, specific point mutations in Ret are 
found responsible for multiple endocrine neoplasia types 2A and 2B and familial medul-
lary thyroid carcinomas (Carlomagno et al. 1995). Not surprisingly, over-expression of an 
RTK leads to enhanced kinase activity as is the case with overexpression of the Neu/ErbB2 
receptor in breast and lung cancers (Harari and Yarden 2000; Levkowitz et al. 2000; Mohi 
and Neel 2007; Neel, Gu, and Pao 2003; Ooms et al. 2009; Tsui et al. 2006). A number 
of cytoplasmic PTKs have been identified in either mutated or overexpressed forms in 
human malignancies (Blume-Jensen and Hunter 2001; Rikova et al. 2007). Bcr-Abl, an 
oncogene fusion protein produced by the Philadelphia chromosome, is associated with 
chronic myeloid leukemia (Konopka, Watanabe, and Witte 1984). A recent global survey 
of the phosphotyrosine profiles in cancer cell lines and tumor tissue samples identified an 
array of kinases activated in lung cancer (Rikova et al. 2007). These include RTKs such as 
the anaplastic lymphoma kinase (Alk), the proto-oncogenic tyrosine kinase ROS, insulin 
receptor (INSR), fibroblast growth factor receptor 1 (FGFR1), EGFR family members ErbB2 
and ErbB3, PDGFR, and the EPH receptor family. Many nonreceptor tyrosine kinases, 
including Fyn, Lyn, HCK, Lck, Fer, and Fak, have also been found aberrantly activated. 
The activation of such a wide spectrum of PTKs suggests that lung cancer, and likely other 
types of cancer also, is caused by an amplified kinase signaling program rather than the 
aberrant activation of a single kinase (Guo et al. 2008; Hynes and MacDonald 2009; Yeh 
and Der 2007).

Because a primary function of PTK is to create phosphorylation sites for the recruitment 
of SH2 domain-containing proteins, it is reasonable to expect aberrant SH2 domain signal-
ing to have a detrimental effect on normal cell physiology which, in some cases, may lead 
to cellular transformation. Indeed, mutations of certain SH2 domain containing proteins 
are associated with various human cancers and cancer subtypes (Lappalainen et al. 2008; 
Waksman, Kumaran, and Lubman 2004). For instance, missense and nonsense mutations 
of the SH2 adaptor protein SAP cause the X-linked lymphoproliferative syndrome (Erdos 
et al. 2005; Hare et al. 2006). Nonsense mutations in the SH2 domain of RASA1/RasGAP 
are associated with basal cell carcinoma which leads to the formation of tumors in the 
chest (Friedman et al. 1993). Borges and co-workers showed that cytokine-inducible SH2 
containing (Carlomagno et al. 1995) protein expression is increased in human breast can-
cer cells with a high level of growth hormone synthesis (Borges et al. 2008). Mutations in 
a number of other SH2 domain proteins, including Lck, Hck, Grb2, Grb7, Src, Shc, PI3K, 
Grb2, GAP, Crkl, Btk, and Tec, directly or indirectly cause cancer (Waksman, Kumaran, 
and Lubman 2004).

These and other studies suggest that the SH2 domain represents an attractive target for 
cancer therapy development. In exploring this avenue of drug design, peptides, peptidomi-
metics, and nonpeptidic compounds have been developed that target the SH2 domain of 
Stat-3, a protein constitutively activated by aberrant upstream tyrosine kinase activities in a 
broad spectrum of human cancers (Costantino and Barlocco 2008). Screening of chemical 
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libraries led to the identification of Stattic, a nonpeptidic small molecule that selectively 
inhibits Stat-3 activation in vitro by blocking the SH2 domain (Schust and Berg 2004). 
Importantly, Stattic selectively inhibits the dimerization and subsequent nuclear translo-
cation of Stat-3 and thereby sensitizes Stat-3-dependent breast cancer cell lines to apoptosis 
(Turkson et al. 2001). The growing collection of structures of SH2 domains in complex 
with physiological ligands or inhibitors (Figure 19.1D), respectively, will not only provide 
a view on the SH2-ome at atomic resolution but also guide the design of more selective 
inhibitors for cancer treatment. A virtual screen strategy based on docking a compound 
onto the active site of an SH2 domain was recently developed by Xu et al. (2009) and used 
to screen 920,000 small drug-like compounds for inhibitors of the Stat-3 SH2 domain, 
from which three were subsequently verified to competitively inhibit Stat-3 binding to its 
physiological phosphopeptide and IL-6 induced phosphorylation of Stat-3.

19.4  SH2 DOMAIN AND THE HUMAN PROTEIN-PROTEIN INTERACTOME
One of the main challenges in the post-genomic era is to decipher how proteins interact 
with one another in a cell and how this “interactome” fluxes dynamically with the cellular 
state (Rual et al. 2005). A need to map all possible protein-protein interactions has driven 
the development of a number of high-throughput technologies, including mass spectrom-
etry (MS), yeast two-hydrid (Y2H), protein arrays, and LUMIER (Barrios-Rodiles et al. 
2005; Krysiak, Marek, and Okopien 2009; Kung and Snyder 2006; Olsen and Macek 2009; 
Phizicky et al. 2003). Although all these methods can be used to uncover protein-protein 
interactions in a high-throughput manner, each has advantages and limitations. Mass spec-
trometry, when combined with affinity purification, provides a robust platform to identify 
protein complexes (Macek, Mann, and Olsen 2009; Oppermann et al. 2009). However, a 
protein-protein interaction network identified from AP-MS is generally of low resolution 
because it is impossible to infer, without further experimentation, whether an identified 
interaction is a direct binder of the bait or not. Y2H, in contrast, maps binary protein-
protein interactions (Phizicky et al. 2003; Rual et al. 2005; Yu et al. 2008). Nevertheless, 
current Y2H protocols are not suitable for identifying interactions mediated by posttrans-
lational modifications. Therefore, the current databases of protein-protein interactions 
are critically lacking in interactions mediated by posttranslational modifications such as 
phosphorylation. Protein arrays, especially arrays of antibodies specific for physiological 
phosphoproteins, bear the potential to address direct phosphorylation-regulated interac-
tions (Blackburn and Hart 2005; Combaret et al. 2005; Engelman et al. 2007; Hamelinck 
et al. 2005; Stommel et al. 2007). However, a challenging aspect in protein microarray tech-
nology development is the difficulty in maintaining the native state of the protein follow-
ing purification and surface immobilization. To avoid the laborious purification step and 
to minimize the loss of protein activity incurred during purification and immoblization, 
Ramachandran et al. (2004, 2008) developed a high-density self-assembling protein micro 
array that displays thousands of proteins produced and captured in situ from immobilized 
cDNA templates. However, it remains to be seen whether this strategy can be adapted for 
mapping PTM-mediated protein-protein interactions. LUMIER is a LUminescence-based 
Mammalian IntERactome assay that can potentially be used for mapping phosphorylation 
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modification and phosphorylation-mediated protein-protein interactions (Barrios-Rodiles 
et al. 2005). An important issue to address in a LUMIER assay is the controlled activation 
of a specific kinase and the development of specific antibodies that may be used to identify 
phosphorylation sites generated by the kinase. To overcome limitations associated with 
a specific method, there is a growing interest in using a combination of different meth-
ods to map signaling cascades involving PTKs and/or SH2 domains (Bork, Schultz, and 
Ponting 1997; Giovannone et al. 2000; Monteiro, Arai, and Travassos 2008). As outlined 
in Figure 19.3, combinations of various approaches, which include far-Western blot anal-
ysis, oligonucleotide-tagged multiplex assay (OTM), SH2 rosette assay, high-throughput 
fluorescence polarization screening, cell-based screening using co-transfection, micro-
fluidic assay, multiplexed fluorescent microsphere assay, fluorometric microvolume assay, 
solid-phase binding assay, split luciferase assay, and phage-display-based binding assay, as 
well as other modeling, prediction, computational, and data mining methods, have been 
developed to map these signaling cascades and interactions mediated by PTKs and/or SH2 
domains (Dierck et al. 2009; Gordus and MacBeath 2006; Huang et al. 2008; Lawrence 
2005; Machida et al. 2007; Muller, Schust, and Berg 2008; Schust and Berg 2004; Yaoi et al. 
2006; V. Zhou et al. 2009).

Relatively simple domain arrays have been developed to map interactions mediated by 
the PDZ (postsynaptic density 95, PSD-85, discs large, Dlg, zonula occludens-1, ZO-1), 
SH3 (src homology 3), and SH2 domains in which purified domains are immobilized on a 
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FIGURE 19.3 An overview of strategies used to derive SH2 domain-mediated protein-protein 
interaction networks. Different high-throughput experimental methods can be used to produce 
‘omic’ data that involve SH2 domains. Computational methods can aid in the prediction and/or 
understanding of functional SH2 interaction networks.  
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membrane, a multiwell plate, or a glass slide followed by probing with a protein or peptide 
ligand (Chamnongpol and Li 2004; Day and Kobilka 2006; X. Jiang et al. 2008; MacBeath 
2002). Using protein microarrays containing most human SH2 and PTB domains, 
MacBeath and associates generated quantitative protein interaction maps for the Erb recep-
tors and three receptor tyrosine kinases, namely, EGFR, FGFR1, and IGF1R, by probing the 
arrays with phosphopeptides drawn from intracellular tyrosine residues on these receptors 
(Jones et al. 2006; Kaushansky et al. 2008). These systematic and quantitative analyses of 
SH2 domain-mediated interactions provide evidence suggesting that the biological and 
pathological effects of receptor tyrosine kinases arise in part from quantitative differences 
in the specific set of SH2 or PTB proteins they recruit and in the corresponding affinities.

As a complementary strategy to domain arrays, peptide arrays and peptide library arrays 
have been used to map SH2-phosphopeptide interactions and to charter SH2 domain speci-
ficity. Cesareni and colleagues have synthesized an array of phosphotyrosyl peptides repre-
senting over 6000 physiological phosphorylation sites and probed the array for binding to 
purified SH2 domains. This type of proteome-wide SH2-pTyr interaction analysis provides 
valuable information on the specificity and signaling potential of the SH2-ome (Miller 
et al. 2008). Recently, an oriented peptide array library (OPAL) approach was used to iden-
tify specific sequence motifs recognized by kinases or SH2 domains (Huang et al. 2008; 
Rodriguez et al. 2004; Shigaki et al. 2007). When applied to the complement of human 
SH2 domains, systematic OPAL screens allowed for the determination of the specificity 
for the majority of the 120 human SH2 domains (Huang et al. 2008; L. Li et al. 2008). The 
unique binding profile produced by each SH2 domain yields quantitative information on 
specificity, which, in turn, could be harnessed for the prediction of the SH2 interactome by 
methods such as SMALI (scoring matrix-assisted ligand identification) and for generating 
a virtual phosphorylation-dependent signaling network using NetPhorest (Huang et al. 
2008; L. Li et al. 2008; Miller et al. 2008).

As pointed out by Seong and Choi (2003), the use of highly stable, inexpensive peptide 
array methods also has disadvantages. Since peptides have small molecular masses they 
are not easily accessible when immobilized on a solid support. Moreover, since peptides 
lack three-dimensional structure, they need to be correctly oriented for interactions with 
the protein targets. Another major concern of peptide array is the high false positive rate 
likely owing to the chemistry of the support material used (Min and Mrksich 2004; Min, 
Su, and Mrksich 2004). Finally, interactions identified from peptide array screening repre-
sent in vitro potential only and need to be validated in cells using the corresponding intact 
proteins.

19.5  SySTEMS BIOLOGy OF THE PHOSPHOPROTEOME
In contrast to the paucity in pTyr-mediated interactions in current PPI databases, recent 
advances in mass spectrometry have permitted the identification of thousands of in vivo 
phosphorylation sites (Olsen et al. 2006; Rikova et al. 2007). The challenge remains to elu-
cidate the associated phosphorylation and interaction network in order to understand the 
signaling network employed by a cancer cell. In this regard, computational algorithms 
such as SMALI, NetworKIN, and NetPhorest have been developed to enhance the accuracy 
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of modeling kinase signaling or interaction networks based on substrate specificity of 
protein kinases, consensus motifs recognized by phosphorylation-binding modules, and 
network contextual information (L. Li et al. 2008; Linding et al. 2007, 2008; Miller et al. 
2008). Despite the usefulness of these computer programs in predicting phosphotyrosine 
signaling and/or interaction networks, experimental approaches are needed to gauge the 
phosphoproteome and its dynamic flux from normal to disease states.

Mass spectrometry provides a powerful means to observe the entire proteome of a cell 
under a defined condition (Aebersold and Mann 2003; de Hoog and Mann 2004; Kuster 
and Mann 1998; Mann, Hendrickson, and Pandey 2001; Mann and Jensen 2003; Rappsilber 
and Mann 2002; Vermeulen, Hubner, and Mann 2008). Peptide mass fingerprinting and 
tandem mass spectrometry (MS/MS) can be used to detect, identify, and/or verify phos-
phorylation sites in vivo (Olsen et al. 2006; Rush et al. 2005). However, sample preparation 
for the detection of low abundant phosphorylated peptides or proteins is still a significant 
challenge for MS mapping of protein-protein interactions mediated by phosphorylation 
(Aebersold and Mann 2003; Machida, Mayer, and Nollau 2003; Mann, Hendrickson, and 
Pandey 2001; Mann et al. 2002; Mann and Jensen 2003; Vermeulen, Hubner, and Mann 
2008). In this regard, phosphotyrosine (pY)-specific antibodies and metal affinity chroma-
tography (IMAC) have been used to enrich phosphorylated proteins or peptides. Using the 
IMAC approach, Salomon and co-workers have profiled a considerable number of known 
as well as novel phosphorylated sites in different proteins from human hematopoietic 
cells (Salomon et al. 2003). Moreover, a large-scale analysis of GRB2-mediated epidermal 
growth factor receptor protein-protein interactors by Mann and co-workers reveals the 
significance of the SH2 domain as a bait in mapping phosphoproteome in normal and can-
cer cells (Blagoev et al. 2003). In addition to MS phosphorylation-dependent interactions 
by MS, Machida and colleagues employed a large-scale far-Western analysis and developed 
SH2 Rossete assays to profile the global tyrosine phosphorylation state of the cell (Dierck 
et al. 2009; Machida et al. 2007). Reverse-phase protein arrays were used to generate com-
prehensive, quantitative SH2 binding profiles for phosphopeptides, recombinant proteins, 
and entire proteomes (Machida et al. 2007). It can be envisaged that the combination of 
SH2 domain array screening and reverse screening of cell lysate arrays would provide a 
comprehensive readout of the phosphoproteome (R. Jiang et al. 2006; Nishizuka et al. 2003; 
Tangrea et al. 2004). When applied to cancer cell lines and cancer tissues, high-throughput 
comprehensive SH2 profiling could provide valuable mechanistic insights into tyrosine 
kinase signaling pathways associated with tumorigenesis and/or metastasis.

19.6  CONCLUDING REMARkS
Monitoring the continuum of phosphoproteome and relevant system trajectories to iden-
tify vectors of cell communication and translation of these identifications into models of 
cellular functions remain a significant challenge in systems biology. Efficient and system-
atic identification of tyrosine phosphorylation-mediated protein-protein interactions and 
monitoring the dynamic flux of the phosphoproteome and the phosphoprotein interactome 
demand a combination of approaches and assay platforms. SH2 domains and the underlying 
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interactome constitute a significant part of the phosphoprotein interactome, and it can be 
envisaged that, by systematically mapping SH2 domain interactions and by comparing SH2 
signaling profiles between a normal and a cancer cell, new avenues for cancer diagnosis and 
treatment may be created. Future efforts in drug design that target the SH2 domain should 
consider the impact of the drug on the targeted SH2 domain as well as on the entire SH2 
interactome.
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20.1  DATA SOURCES AND qUALITy FOR CANCER SySTEMS BIOLOGy
Cancer systems biology studies often integrate many datasets representing different facets 
of cancer cells (i.e., interaction data, gene expression data, gene silencing data, etc.). Public 
data are available via the literature or collections of high-throughput datasets. Generally 
speaking, the data quality of small-scale studies is high, whereas high-throughput datasets 
have low quality. However, manual curation of data from small-scale studies might intro-
duce errors (Cusick et al. 2009), whereas new technologies may improve the data quality 
of high-throughput datasets. For example, RNA-seq may generate digit reading of tran-
scripts, providing high quality gene expression profiles.

20.1.1  Cancer Datasets

Cancer driver-mutating genes: literature-mined cancer genes are available (Futreal 
et al. 2004). Recently, as genome sequencing technology has become cheaper, tumor 
genome sequencing has generated more information about cancer genes (Cui et al. 
2007). The COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/) col-
lects and assembles cancer genes derived from literature and tumor genome sequencing 
efforts. The Cancer Genome Atlas (TCGA) also collects tumor genome sequencing data. 
In the future, the International Cancer Genome Consortium (ICGC, http://www.icgc.org/) 
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will host a data repository for tumor genome sequencing data. The ICGC and the 
TCGA have worked together and plan to sequence more than 50 cancer types (250 
tumors for each type) in the future.

Cancer methylation genes: such genes have been determined for certain cancer stem cells 
(Ohm et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007) and NCI-60 cell 
lines (Ehrich et al. 2008) from high-throughput studies. Some databases have been built 
to collect cancer methylation data, for example, PubMeth (http://www.pubmeth.org/).

Tumor gene expression profiles: a great deal of gene expression data has been generated 
using microarray technology over the past 10 years. These data can be downloaded 
and queried from the Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) or from the tumor-specific gene expression profile database, 
Oncomine (http://www.oncomine.org/).

RNAi knockout of cancer cells: genome-wide RNAi knockout in cancer cell lines and tumor 
samples has been performed (Baldwin et al. 2008; Bommi-Reddy et al. 2008; Grueneberg 
et al. 2008a, 2008b; Manning 2009; Schlabach et al. 2008; Silva et al. 2008).

Profiling of drugs and small molecules on NCI-60 cell lines: more than 100,000 small 
molecules have been used to examine the growth of NCI-60 cell lines by a group from 
the National Cancer Institute (NCI), National Institutes of Health (NIH). These data 
are available at http://dtp.nci.nih.gov/. Furthermore, the Connectivity Map database 
(http://www.broad.mit.edu/node/305) collects genome-wide transcriptional expres-
sion data from human cancer cells treated with bioactive small molecules.

Phospoproteomic profiling of cancer cells: a large-scale survey of kinase activities in cancer 
cells and tumor samples has been performed (Du et al. 2009; Rikova et al. 2007; Wolf-
Yadlin et al. 2006). These data are suitable for cancer signaling network studies.

Cancer protein atlas: large-scale survey of protein expression patterns in cancer cell 
lines, tumor samples, and normal tissues using an immunohistochemistry-based 
approach. Data containing 5 million images of immunohistochemically stained tis-
sues and cells, based on 6122 antibodies representing 5011 human proteins, are avail-
able at the Human Protein Atlas (http://www.proteinatlas.org).

Tumor clinical data: some large-scale genome analysis of tumor samples is accompanied by 
patient clinical data, such as drug treatment, survival, and tumor recurrence, etc. It is crit-
ical for personalized medicine to be able to link clinical information and genome data at 
a systems level. Some databases exist that aim to collect clinical information and genome 
information of cancer patients. Specifically, Rembrandt (https://caintegrator.nci.nih.gov/
rembrandt/menu.do) contains genomic and clinical data for brain tumor patients.

20.1.2  Molecular Interaction Datasets

Public databases collect and assemble literature-mined datasets describing human protein 
interactions, and metabolic and signaling pathways. Some examples of this type of database 
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are the human protein interaction database HPRD (http://www.hprd.org/), IntAct (http://
www.ebi.ac.uk/intact/site/index.jsf), MINT (http://mint.bio.uniroma2.it/mint/Welcome.do), 
and DIP (http://dip.doe-mbi.ucla.edu/); the signaling pathway databases BioCarta (http://
www.biocarta.com/) and Reactome (http://reactome.org/). Additional databases are listed in 
Table 20.1.

TABLE 20.1 Public Data Resources for Systems Biology

Name
Data Source (Manual/

Predicted) Types of Data
1 4DXpress

http://ani.embl.de/4DXpress
Automatically 
integrates from several 
other databases and 
those submitted by 
researchers.

Gene expression data 
during development 
of multiple model 
organisms.

2 ArrayExpress
http://www.ebi.ac.uk/arrayexpress

Manually curated, 
re-annotated subsets of 
data from the archives.

Functional genomic data.

3 MGED
http://www.mged.org

Manually curated. Ontology for gene 
expression.

4 OMG
http://www.omwg.org/

Manually curated. Ontology management 
tools distributed 
through their sites.

5 BioGRID
http://www.thebiogrid.org

Manually curated. Protein-protein 
interaction data.

6 BioThesaurus
http://pir.georgetown.edu/iprolink/
biothesaurus/data/thesaurus

Predicted. Protein and gene names 
to uniprot knowledge 
accession mapping.

7 CancerGenes
http://cbio.mskcc.org/CancerGenes/Select.
action

Gene lists are annotated 
by experts/Information 
from other databases is 
added automatically.

Cancer gene database.

8 Cellmap.org
http://cancer.cellmap.org/cellmap/

Manually curated. Cancer related signaling 
pathways.

9 Entrez query
http://www.ncbi.nlm.nih.gov/sites/entrez

Predicted and user 
submitted.

Provides information 
from discrete databases 
related to health 
sciences.

10 Sanger COSMIC Database
http://www.sanger.ac.uk/genetics/CGP/cosmic/

Manually curated and 
predicted.

Cancer gene database.

11 Cancer Chromosomes
http://www.ncbi.nlm.nih.gov/sites/
entrez?db=cancerchromosomes

Predicted. Database of chromosome 
aberrations in cancer.

12 Mitelman Database of Chromosome 
Aberrations in Cancer

http://cgap.nci.nih.gov/Chromosomes/Mitelman

Manually curated. Database of chromosome 
aberrations in cancer.

(continued)
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TABLE 20.1 Public Data Resources for Systems Biology (Continued)

Name
Data Source (Manual/

Predicted) Types of Data

13 Haematology
http://www.infobiogen.fr/services/chromcancer/

Manually curated. Database for genes 
involved in cancer, 
cytogenetics, and 
clinical entities involved 
in cancer and cancer 
prone diseases.

14 CGH data: Charite
http://amba.charite.de/cgh/

Manually curated. Database of tumor 
collectives.

15 Progenetix
http:// www.progenetix.net/

Manually curated. This database provides an 
overview of copy 
number abnormalities 
in human cancer from 
comparative genomic 
hybridization.

16 Laboratory of Cytomolecular Genetics (CMG)
http://www.helsinki.fi/cmg/

Raw and processed data 
from the experimental 
pipeline are distributed 
from their site.

Information from the 
experiments using 
several techniques.

17 CGH Data Base
http://www.cghtmd.jp/cghdatabase/index_e.htm

Manually curated. Molecular cancer 
cytogenetics data 
obtained using 
comparative genomic 
hybridization technique.

18 Chromosome Rearrangements in Carcinomas
http://www.path.cam.ac.uk/~pawefish/

Manually curated. A collection of SKY and 
molecular cytogenetics 
data on cell lines mostly 
from epithelial cancers.

19 Cell Line NCI60 Drug Discovery Panel
http://home.ncifcrf.gov/CCR/60SKY/new/
demo1.asp

Manually curated. Molecular cytogenetics 
data in various tissues.

20 ChemBank
http://chembank.broad.harvard.edu/

Manually curated. Small-molecule screening 
and cheminformatics 
resource database.

21 DIPTM database
http://dip.doe-mbi.ucla.edu/

Manually curated and 
predicted.

Database of 
experimentally 
determined interactions 
between proteins.

22 DrugBank database
http://www.drugbank.ca/

Manually curated. Database of drug data 
with drug target 
information.

23 Evola
http://www.h-invitational.jp/evola/

Manually curated. Ortholog database of 
human genes.

24 GenomeRNAi
http://rnai2.dkfz.de/GenomeRNAi/

Manually curated. Database for cell-based 
RNAi phenotypes
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TABLE 20.1 Public Data Resources for Systems Biology (Continued)

Name
Data Source (Manual/

Predicted) Types of Data
25 GEO

http://www.ncbi.nlm.nih.gov/geo/
Deposited by the 
community/automated.

Gene expression 
database.

26 GLIDA
http://pharminfo.pharm.kyoto-u.ac.jp/services/
glida/

Manually curated. GPCR-Ligand database.

27 Het-PDB Navi
http://daisy.bio.nagoya-u.ac.jp/golab/
hetpdbnavi.html

Manually curated. Protein-small molecule 
interaction database.

28 Genew, the Human Gene Nomenclature 
Database

http://www.gene.ucl.ac.uk/cgi-bin/
nomenclature/searchgenes.pl

Manually curated. Human gene database.

29 HPTAA
http://www.hptaa.org

Automated collection. Human potential tumor 
associated antigen 
database.

30 Human Proteinpedia
http://www.humanproteinpedia.org/

Manual curated. Integration of human 
protein data.

31 Human Protein Reference Database (HPRD)
http://www.hprd.org/

Manually curated. Database for human 
protein interactions.

32 CLDB
http://www.biotech.ist.unige.it/interlab/cldb.
html

Manually curated/
automated.

Database of cell lines.

33 I2D - Interologous Interaction Database
http://ophid.utoronto.ca/ophidv2.201/

Manually curated and 
predicted.

Protein interaction 
database.

34 IMGT-GENE-DB
http://www.imgt.org/IMGT_GENE-DB/
GENElect

Manually curated. Database for human and 
mouse immunoglobulin 
and T cell receptor 
genes.

35 IntAct
http://www.ebi.ac.uk/intact/site/index.jsf

Manually curated. Protein interaction 
database.

36 Oncomine
http://www.oncomine.org/

Manually curated. Cancer gene expression 
database.

37 Phospho.ELM
http://phospho.elm.eu.org/

Manually curated. Database of serine, 
threonine, and tyrosine 
sites in eukaryotic 
proteins.

38 NetworKIN
http://networkin.info/search.php

Predicted. Consensus motifs with 
context for kinases and 
phosphoproteins

http://www.biotech.ist.unige.it/interlab/cldb.html
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Efforts are ongoing to perform large-scale determination of protein interactions and 
signaling relationships in normal and cancer cells. For example, the human Src homol-
ogy 2 domain (SH2 domain) protein interactions have been determined at a genome scale 
(Huang et al. 2008). This effort extends the human signaling map. More details regarding 
the extension of current signaling networks are discussed in Chapter 19.

There are also efforts to manually curate signaling relationships from research articles. 
Useful datasets can be found in research articles that have manually curated data from the 
literature (Oda et al. 2005; Oda and Kitano 2006). For instance, we have manually curated 
a large human signaling network containing more than 1600 proteins and 5000 signaling 
relationships (Cui et al. 2007). Our group is accumulating this type of curated signaling 
network. At present, the human signaling network contains more than 4000 proteins and 
22,000 signaling relationships.

When using these public datasets, the quality of data should be carefully examined. 
For example, false positives are present in the protein interaction data derived from high-
throughput studies. Relevant computational methods have been developed to elimi-
nate these false positives as much as possible (Braun et al. 2009; Venkatesan et al. 2009). 
However, dealing with these problems is still a challenging task. In addition to false posi-
tives, public datasets are often incomplete. To overcome these problems, sensitivity analy-
sis can be applied. False positives and false negatives can be mimicked by randomly adding 
or removing an extra 10% or 20% of the network nodes and the analysis is then performed 
on the modified network (Cui et al. 2006).

20.2  COMPUTATIONAL TOOLS FOR NETWORk 
CONSTRUCTION, ANALySIS, AND MODELING

Many computational tools have been developed for visually and numerically exploring 
biological networks, including well-known examples such as Cytoscape, VisANT, and 
Pajek. These tools play an important role in systems biology, integration of data sources, 
and bioinformatics. These computational tools assist in network construction, visualiza-
tion, and analysis.

Some tools, such as Cytoscape and VisANT, are used for many aspects of network anal-
ysis. Other tools are designed for specific purposes of network analysis. For instance, Mfinder 
(http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html), FANMOD (http://
www.minet.uni-jena.de/~wernicke/motifs/index.html), and MAVisto (http://mavisto.ipk-
gatersleben.de/) have been specifically designed to find network motifs. CFinder (http://
www.cfinder.org/) can be used to define network communities.

Additional descriptions of these tools are provided in Table  20.2. Furthermore, 
Chapter 17 provides an in-depth explanation of how to use VisANT to perform net-
work visualization and analysis. It also provides a discussion of some new network con-
cepts, such as meta networks. Finally, network modeling tools are reviewed extensively 
in Chapter 16.
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TABLE 20.2 Useful Tools for Network Analysis and Systems Biology

Tools Functions Application

1 NeAT
http://rsat.ulb.ac.be/
neat/

The network analysis tools include:
Graph manipulation tools: covert-graph (graph 
format interconversions), alter-graph (adding 
and removing of nodes and edges), and 
random-graph (generates random graphs either 
from existing graph or from scratch).

Network analysis tools: comparing graphs 
(supports set operations such as computing union, 
intersection, and difference between two 
networks), graph-topology (calculates the degree, 
betweenness, and closeness of each node), 
pathfinder (finds k-shortest path between nodes).

Network visualization tools: display-graph, which 
draws a network graphical representation, 
random-graph.

The Network cluster tools include:
MCL and RNSC (finding the densely connected 
subsets of the graph).

Graph-clique and graph-neighbors extractor 
(extracting all the cliques of a graph and 
neighborhood of a node/set of seed node, 
respectively).

Graph-cluster-membership (mapping a cluster 
onto a graph and computing the membership 
degree between each node and each cluster).

Graph-get-clusters (comparing graphs with 
clusters. Extracting the intra-clusters edges of 
map the clusters on the network).

Cluster tools:
Compare-classes (comparing query file and 
reference file).

Contingency-stats (studying a contingency table).
Roc-stats (calculating and draws ROC curves).

Neighborhood analysis can 
be applied to predict the 
function of an unknown 
polypeptide by collecting 
its neighbors with known 
functions in a protein 
interaction network (“guilt 
by association”).

Network comparison is 
typically applicable to 
estimate the relevance of a 
protein-protein interaction 
network obtained by some 
high-throughput 
experiments, by 
comparing it with a 
manually curated network 
such as BioGrid or MIPs 
database.

Path finding tools can be 
applied to uncover signal 
transduction pathways 
from protein-protein 
interaction networks.

Clusters predicted by NeAt 
can be used in comparing 
classes to extract some 
overlap with biologically 
relevant classes (i.e., gene 
ontology classes). Further, 
the program helps to 
create a contingency table 
that can be analyzed via 
the contingency-statistical 
applications.

2 GraphWeb
http://biit.cs.ut.ee/
graphweb/

Clustering algorithms: Markov cluster (MCL) 
algorithm and Betweenness Centrality 
Clustering (BCC).

Basic graph algorithms: connected components, 
strongly connected components, biconnected 
components, maximal cliques.

Node grouping: hub-based modules, input 
graph-based module, weight graph.

Node filtering (i.e., keep N% of highest degree 
nodes), network neighborhood.

Edge filtering (i.e., keep N% of heaviest edges).

Methods to analyze 
directed and undirected, 
weighted and unweighted 
heterogeneous networks 
of genes, proteins, and 
microarray probesets for 
many eukaryotic genomes.

(continued)
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TABLE 20.2 Useful Tools for Network Analysis and Systems Biology (Continued)

Tools Functions Application
Module filtering (i.e., hide modules with less than 
N nodes, show N largest modules, hide 
insignificant modules).

Help to integrate multiple 
diverse datasets into 
global networks. Help to 
incorporate multispecies 
data using gene orthology 
mapping.

Extract customized 
networks using filters for 
nodes and edges based on 
dataset support, edge 
weight, and node 
annotation.

Analysis and detecting of 
gene modules from 
networks using various 
algorithms from the 
collection.

Functional interpretation 
of predicted modules 
using Gene Ontology, 
pathways, and cis-
regulatory motifs.

3 DAVID
http://david.abcc.
ncifcrf.gov/

Identify enriched biological themes, particularly 
GO terms and functionally related genes.

Visualize genes on BioCarta & KEGG pathway 
maps.

Display related many-genes-to-many-terms on 
2-D view.

Search for other functionally related genes in 
genome, but not in the list and search other 
annotations functionally similar to one of interest.

List interacting proteins.
Link gene-disease associations.
Highlight protein functional domains and motifs.
Redirect to related literature.
Convert gene identifiers from one type to 
another.

Cluster redundant and heterozygous annotation 
terms.

Read all annotation contents associated with a gene.
All these can be done for a single gene and also in 
batches.

DAVID’s design provides 
automated solutions that 
enable researchers to 
rapidly discover biological 
themes in lists of genes 
from large experimental 
datasets. The tools and 
analysis algorithms have 
been applied to various 
studies.

Identify enriched 
annotation terms 
associated with user’s gene 
list. Cluster functionally 
similar terms associated 
with user’s gene list into 
groups. Query associated 
terms like disease, 
heterozygous annotation 
terms.
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TABLE 20.2 Useful Tools for Network Analysis and Systems Biology  (Continued)

Tools Functions Application
4 iHOP

http://www.pdg.cnb.
uam.es/UniPub/
iHOP/

Allow literature investigation starting with a gene or 
protein of interest.

Gene-name-serves has hyperlinks to their 
corresponding pages.

Ranking systems to emphasize the information 
with high experimental evidence.

All the sentences/phrases displayed as result of a 
query are likened to their corresponding abstracts.

Text mining and easy 
reference search.

Visualize gene network 
based on their 
co-occurrence in scientific 
literature.

5 VisANT
http://visant.bu.edu

Provide a visual interface for combining and 
annotating network data and support for very 
large networks.

Provide supporting functional annotation for 
different genomes from the Gene Ontology and 
KEGG databases.

Provide various statistical and analytical tools 
that could be used to extract network 
topological properties of the user-defined 
networks.

Provide network-drawing capabilities.
Advanced iconic representation pertaining to 
biological entities such as protein complexes or 
pathways allowing exuberant visualizations.

Can be extensively used for 
sophisticated visualization 
and analysis of many types 
of networks of biological 
interactions and 
associations including 
cellular pathways and 
functional modules.

6 Hub Objects 
Analyzer

http://hub.iis.sinica.
edu.tw/Hubba

Find the degree of the network nodes.
Find the bottleneck in the network.
Find the edge percolation component (EPC).
Find the Subgraph Centrality (SC).
Identify Maximum Neighborhood Component 
(MNC).

Identify Density of Maximum Neighborhood 
Component (DMNC).

Perform Double Screening Scheme (DSS).

Helps to find the most 
essential nodes in a 
protein-protein 
interaction network. Helps 
to elucidate roles of a 
protein in a cell.

7 bioNMF
http://bionmf.
dacya.ucm.es.

A web-based tool for nonnegative matrix 
factorization in biology.

Bicluster analysis using a sparse variant of the 
NMF model.

Sample classification with 
an unsupervised 
classification method that 
uses NMF to classify 
experimental samples.

8 Cytoscape
http://www.
cytoscape.org/

Basic network analysis tools for global features of 
networks.

Many plug-ins for specific topics of the network 
analyses, such as finding active modules, 
enrichment analysis of functions in some of the 
network components, network inferring from 
functional genomic data, comparing networks, 
and so on.

An open source 
bioinformatics software 
platform for visualizing 
molecular interaction 
networks and integrating 
these interactions with 
gene expression profiles 
and other state data.

(continued)
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TABLE 20.2 Useful Tools for Network Analysis and Systems Biology (Continued)

Tools Functions Application
9 CellNetAnalyzer / 

FluxAnalyzer 
(CNA)

http://www.
mpi-magdeburg.
mpg.de/projects/
cna/cna.html

Facilitate the analysis of metabolic 
(stoichiometric) as well as signaling and 
regulatory networks solely on their network 
topology, i.e., independent of kinetic 
mechanisms and parameters.

Provide a powerful collection of tools and 
algorithms for structural network analysis which 
can be started in a menu-controlled manner 
within interactive network maps.

Enable interested users to call algorithms of CNA 
from external programs.

Compute paths and cycles.

A package for MATLAB 
and provides a 
comprehensive and 
user-friendly environment 
for structural and 
functional analysis of 
biochemical networks.

Applications of CNA can be 
found in systems biology, 
biotechnology, metabolic 
engineering, and chemical 
engineering.

10 SYCAMORE
http://sycamore.
eml.org/sycamore/

Allow building a draft model of your system of 
interest in such a way that kinetic expressions 
and parameters are as close to reality as possible.

Build, view, edit, refine, and analyze the models.

SYCAMORE is a system 
that facilitates access to a 
number of tools and 
methods in order to build 
models of biochemical 
systems; view, analyze, and 
refine them; as well as 
perform quick simulations.

SYCAMORE is not intended 
to substitute for expert 
simulation and modeling 
software packages, but 
might interact with those. It 
is rather intended to 
support and guide system 
biologists when doing 
computational research.

11 ChemChains
http://www.
bioinformatics.org/
chemchains/wiki/

Provide a Boolean network-based simulation and 
analysis.

Combine the advantages of the parameter-free 
nature of logical models while providing the 
ability for users to interact with their models in 
a continuous manner.

Allow users to simulate models in an automatic 
fashion under tens of thousands of different 
external environments, as well as perform 
various mutational studies.

ChemChains combines the 
advantages of logical and 
continuous modeling and 
provides a way for 
laboratory biologists to 
perform in silico 
experiments on 
mathematical models 
easily for systems biology.

12 Nested effects 
models (NEMs)

http://bioconductor.
org/packages/2.4/
bioc/html/nem.
html

Allow reconstruction of features of pathways 
from the nested structure of perturbation 
effects.

Take input data: a set of pathway components, 
which were perturbed, and high-dimensional 
phenotypic readout of these 
perturbations (i.e., gene expression or 
morphological profiles).

Nested effects models 
(NEMs) are a class of 
probabilistic models 
introduced to analyze 
the effects of gene 
perturbation screens visible 
in high-dimensional 
phenotypes like microarrays 

or cell morphology.
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TABLE 20.2 Useful Tools for Network Analysis and Systems Biology (Continued)

Tools Functions Application
NEMs reverse engineer 
upstream and downstream 

relations of cellular 
signaling cascades. NEMs 
take as input a set of 
candidate pathway genes 
and phenotypic profiles of 

perturbing these genes. 
NEMs return a pathway 
structure explaining the 
observed perturbation 
effects.

13 Signaling pathway 
impact analysis 

(SPIA)
http://vortex.
cs.wayne.edu/
ontoexpress/

Provide a bootstrap procedure used to assess the 
significance of the observed total pathway 
perturbation using microarray data.

Provide increased sensitivity as well as improved 
specificity and better pathway ranking.

Signaling pathway impact 
analysis (SPIA) combines 
the evidence obtained 
from the classical 

enrichment analysis with a 
novel type of evidence, 
which measures the actual 
perturbation on a given 
pathway under a given 
condition.

14 MetNetAligner
http://alla.cs.gsu.
edu:8080/
MinePW/pages/
gmapping/
GMMain.html

Provide aligning metabolic networks (similar to 
sequence alignment), taking into account the 
similarity of network topology and the enzymes’ 
functions.

Allow or forbid enzyme deletion and insertion.
Provide measurement of enzyme-to-enzyme 
functional similarity and a fast algorithm to find 
optimal mappings from a directed graph with 
restricted cyclic structure to an arbitrary 
directed graph.

MetNetAligner can be used 

for predicting unknown 
pathways, comparing and 
finding conserved patterns, 
and resolving ambiguous 
identification of enzymes.

15 JClust
http://jclust.embl.
de/

Implemented the procedures: (1) density, 
(2) haircut, (3) best neighbor, and (4) cutting 
edge operation.

Provide k-Means, Affinity Propagation, Spectral 
Clustering, Markov Clustering (MCL), 
Restricted Neighborhood Search Cluster 
(RNSC), MULIC.

Provide filtering procedures as haircut, outside–
inside, best neighbors, and density control 
operations.

Provide visualization tool for data analysis and 
information extraction.

JClust provides a collection 
of clustering algorithms 
that can be applied to 
various data (i.e., the 
datasets of networks and 
microarrays) to find 
network clusters, or cluster 
chemicals, and clusters of 
heterogeneous data to see 
connections between 
clusters.
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